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Abstract- In this study, response of Steel-Concrete Composite 
(SCC) panels subjected to air-blast loading is numerically 
simulated by conducting finite element analysis. A simplified 
approach to generate the finite element model of the SCC 
panels is proposed. In the proposed approach, solid, plate and 
link elements are used to represent the concrete core, steel 
cover plates and through-through connectors respectively. 
Interface between the solid and plate elements are idealized 
with surface-to-surface contact elements, which take care of 
the transfer of forces between solid and plate elements. 
Application of the proposed approach for analyzing the SCC 
components is validated through two examples. Static response 
of a SCC beam is obtained by using the proposed approach, 
which is in close agreement with the experimental results. 
Dynamic response of a SCC panel with through-through 
connectors subjected to blast pressure due to an explosion of 
200 kg TNT at 5 m is obtained by using the proposed simplified 
approach.  Peak response is verified with the results obtained 
by using an analytical approach. Parametric studies are 
carried out by varying the charge weight, thickness of the 
cover plates and diameter of shear connector of the SCC panel. 
Thickness of the cover plates is found to affect the peak 
response in a nonlinear manner, while diameter of shear 
connector is found to have only marginal influence on the peak 
response. 

Keywords- Steel-Concrete Composite; Blast Loading; Peak 
Displacement; Overpressure; Time-History 

I. INTRODUCTION 

Structures may  experience accidental loads due to blast 
or impact in addition to other service loads. Blast loads are 
transient in nature. Peak pressures due to a blast are much 
greater than that of static collapse load of the structures [1-
3]. Structures have to undergo large deformat ions in order to 
resist such load, because elastic design is uneconomical and 
seldom possible. While undergoing such excessive 
deformation, they should not lose their integrity as well. 
Concrete is common construction material that possesses 
large mass, which is essential in blast resistant construction. 
However, one of the disadvantages of concrete is possibility 
of spalling and scabbing. An alternate and cost-effective 
way is to use structural forms that can improve blast 
resistance. Some of these forms are layered sacrificial 
cladding, corrugated metal sandwich cores, fibre-metal 
laminates and steel-concrete composite construction [4-15].  

Among the alternatives, steel-concrete composite (SCC) 
exhibits promising properties for improved blast resistance 
[4]. This form of construction combines the characteristics 
of both the materials, namely, steel and concrete in an 
efficient manner. It is reported in literature, through 
experimental and analytical studies on SCC panels, that 

under static as well as close in detonation, SCC structural 
components perform relat ively better than other structural 
forms [5-13]. 

Light weight foam core sandwich panels have been 
analysed by Andrews and Moussa [13] to evaluate their 
structural response under air-blast loading. Bi-steel panels 
comprising of two steel plates that are connected together by 
an array of friction welded transverse bars have been used in 
blast-resistant construction [14]. The requirement of 
minimum core thickness in these types of connectors has led 
to development of slim light weight Steel-Concrete-Steel 
(SCS) system with J-hook connectors by Liew and Sohel 
[15].  

Theobald et al. [16] performed a numerical parametric  
investigation on new type of sandwich panels consisting of 
tubular structure in protective cladding fo r b last loading. 
Influence of tube layout within the panel, tube geometry and 
top plate geometry on the energy absorption properties of 
the panel has been determined from the investigation. 

Numerical investigations on steel-concrete composite 
structural members are carried  out by using the finite 
element method (FEM). Conventionally, components of the 
SCC members, namely, concrete core, steel p lates / girders 
and shear connectors are represented by using solid 
elements [17-20]. In the present study, a simplified fin ite 
element modelling approach is proposed for numerical 
simulation of blast response of SCC panels. The simplified 
model uses solid, plate and link elements to represent 
concrete, steel cover plates and shear connectors 
respectively. Response of a monotonically loaded SCC 
beam predicted by using the simplified model is found to be 
in good agreement with that of experimental results, which 
validates the applicability o f simplified model fo r pred icting 
static response. A SCC panel subjected to air-b last loading 
is analysed by using the proposed approach. An analytical 
approach based on equilibrium of fo rces is used to obtain 
the peak displacement. This is compared with that of fin ite 
element results and is found to be in  close agreement, thus 
validating the proposed approach for dynamic response. 
This approach is adopted for parametric investigations 
carried  out an SCC panels. In fluence of the parameters is 
studied by comparing the peak response of the panel. 

II. FINITE ELEMENT MODELLING APPROACH 

FEM is widely used numerical technique for blast 
analysis [21-24]. Conventional approach of modelling SCC 
panel is to employ solid elements to discretize all the 
components, namely steel, concrete and shear connector 
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[17-20]. Th is modelling  approach results in large number of 
degrees of freedom (DOF) due to the complex nature of 
geometry. Th is poses more demand on modelling 
requirements. 

A. Simplified Approach 

A simplified approach is proposed for modelling SCC 
panels. Based on the characteristics of the components, 
appropriate elements are identified to represent them. 
Concrete core, cover plates and shear connectors are 
idealized using solid, plate and link elements, respectively. 
Solid elements are eight-noded hexahedral (3D) elements 
with 3 translational DOF per node. Plate elements are four-
noded quadrilateral (2D) elements with 6 DOF per node. 
Link element is uniaxial (1D) element with 3 DOF per node. 
This reduces the number of DOF. Interface between 
concrete and steel plates is modelled using contact pair. 
Contact and target surfaces constitute a “Contact Pair”. 
Contact element is located on the surface of plate elements 
called underly ing element. It has the same geometric 
characteristics as the underlying elements. Target surface is 
concrete surface facing the plate as shown in Fig. 1. In this 
study, augmented Lagrangian method of contact algorithm 
is adopted. The augmented Lagrangian method is an 
iterative series of penalty updates to find the Lanrange 
multip liers, i.e., contact tractions.  Contact detection points 
are the integration point and are located at Gauss points. 
Friction model adopted in this study is Coulomb’s friction 
model. In this model, two contacting surfaces can carry 
shear stresses upto a certain  magnitude, τlim across their 
interfaces before they start sliding relative to each other. 
Coulomb friction model is defined as:  

 Plim µ=τ                                        (1) 

limτ≤τ
 

where, 
τlim= limit shear stress, 
τ= equivalent shear stress, 
µ= coefficient of friction, 
P= contact normal pressure. 

This contact pair takes care of the compatibility between 
solid and shell elements at their interfaces. 
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Fig. 1 Interface between steel plate and concrete 

III. NUMERICAL VALIDATION 

Validation of the proposed simplified approach is carried  
out by analysing two SCC structural components. In the first 

example, a  SCC beam is subjected to monotonic loading. 
Load-deflection response of the beam obtained from the FE 
analysis and experiments are compared. In o rder to ascertain 
that the proposed approach can be used for dynamic 
response as well, a SCC panel subjected to air-blast loading 
is analysed. Numerical results are verified  with that of an 
analytical model. 

A. Static Response 

The proposed simplified approach is validated by 
analysing a SCC beam with through-through connectors 
subjected to static load. Overall length of the beam is 2.2 m, 
while width and depth of the beam are 400 mm and 200 mm, 
respectively. The compression and tension plate thicknesses 
are 11.93 mm and 6.2 mm, respectively. Connectors of 25 
mm diameter are equally spaced at 300 mm c/c between the 
simply supported span of 1.8 m. The beam contains two 
rows of connectors spaced at 200 mm c/c. Characteristic 
compressive strength of concrete used is 40 MPa.  
Properties of steel used for plate and connector are 
summarized in  Table I. Multi-linear material model is used 
to represent the behaviour of concrete, while steel behaviour 
is represented by using bilinear stress-strain curve. Beam is 
subjected to central concentrated load. Details of the beam 
are shown in Fig. 2. 

TABLE I PROPERTIES OF STEEL 

Component Yield Strength, 
MPa 

Ultimate Strength, 
MPa 

Plate 384 507 

Connector 541 566 
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Fig. 2 Details of Steel-Concrete Composite Beam 

Two approaches are used to model the beam. In the first 
approach, solid elements are used to represent the entire 
composite beam, while in the second approach, proposed 
simplified model is used. Surface to surface contact is 
applied on interfaces between steel and concrete. Nonlinear 
static analysis is carried out to obtain the load-deflection 
response. Responses from both approaches are compared 
with that of the experimental results available in literature 
[25] as shown in Fig. 3.  
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Fig. 3 Load-deflection response of SCC beam 
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Results of the solid model are found to be in close 
agreement with that of experiments up to yield load. 
Stiffness of the load-deflection curve obtained by using the 
simplified approach is found to be less than that of 
experiment.  Yield load, ult imate load, y ield  and ultimate 
deflections predicted by the solid model and simplified 
models compared with experimental values are shown in 
Table II. Difference between prediction of ult imate load and 
deflection and experimental value is less than 10%, while 
yield load and deflection are predicted with about 16% 
difference. From the results given in Table II, simplified 
approach is found to be computationally efficient, without 
losing the accuracy in prediction of the responses of steel-
concrete composite panel. 

TABLE II COMPARISON OF RESPONSE OF BEAM WITH THROUGH-THROUGH 
CONNECTORS 

 Experiment Solid 
Model 

Simplified 
Model 

Yield load, kN 333 360 280 

Ultimate load, kN 545 616 530 

Yield deflection, 
mm 7.1 8.44 9.02 

Ultimate deflection, 
mm 46.25 52.59 50.24 

B. Dynamic Response 

To ensure the applicability of the simplified approach 
for blast response analysis, a SCC panel subjected to air 
blast loading is solved by conducting finite element analysis. 
Results from the analysis are compared with that obtained 
using an analytical model proposed by Coyle and Cormie 
[26].  

Dimensions of steel-concrete composite panel are 2m x 
2m. The panel is simply supported on all four sides. 
Through-through connectors of diameter 16 mm are 
provided at a spacing of 200 mm c/c in both directions. 
Concrete core thickness is 200 mm and thickness of the 
plates on either side is 6 mm.  

Simplified approach described earlier is used to model 
the panel. Load transfer from concrete to steel plates is 
realised through the shear connector and interface between 
steel and concrete surfaces is modeled using surface to 
surface contact. Fig. 4 shows the fin ite element model of the 
panel.  

Properties of the concrete and steel used in  the study are 
given in Table III. Steel behaviour is idealized using bilinear 
stress-strain model (Fig. 5a) and a parabolic curve is used to 
characterise the behaviour of concrete (Fig. 5b).   

       
(a) Panel with concrete core       (b) Steel plates and shear connector 

Fig. 4 Finite element model of the panel 

TABLE III PROPERTIES OF CONCRETE AND STEEL 

Parameter 
Material 

Steel Concrete 

Yield stress (MPa) 350 - 

Young’s modulus (GPa) 200 31.62 

Cube strength (MPa) - 40 
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Fig. 5 Material model used in the study 

Blast pressure due to explosion of 200 kg TNT at 5 m 
distance from the panel is computed and is shown in Fig. 6.  
Nonlinear t ransient dynamic analysis is carried out with 
time step of 0.00001 sec. Responses in terms of transverse 
displacement at centre of panel are obtained. Fig. 7 shows 
the displacement time h istory at centre point of the panel. 
Peak displacement is found to be about 17.6 mm as 
observed from Fig. 7.  
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       Fig. 6 Pressure time history        Fig. 7 T ime history of displacement at 
                                                                     centre of the panel  

C. Analytical Model 

Cross-section of steel-concrete composite panel and the 
stress variation along its depth are illustrated in Fig. 8. 
When the panel is in elastic state, bottom plate experience 
tension and top plate and concrete above neutral axes are in 
compression (Fig. 8(a)). On further loading the panel, stress 
variation across the cross-section in the elasto-plastic state is 
as shown in Fig. 8(b). In both the cases, concrete above 
neutral axis contributes to the moment capacity of the 
section. At ultimate stage, capacity of the section is only due 
to the outer steel plates and is as shown in Fig. 8(c).  
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Nat – force in steel plate in tension  

Fig. 8 Cross-section of steel-concrete composite panel 
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Depth to neutral axes is calculated by applying 
equilibrium of forces. Second moment of area Ib is 
calculated based on the transformed section. A factor ‘c’ is 
applied to Ib to obtain the effective moment of inert ia, Ieff. 
Effective stiffness, ke which is function of I, E and L is 
obtained from standard charts available in TM5-1300 [27]. 
Peak deflection of the panel is calculated based on the 
procedure described in Coyle and Cormie [26] and is as 
given below: 

Maximum resistance of the section, Rm is calculated for 
simply supported condition and subjected to uniformly 
distributed load using the following equation: 

 ( )PbPam MM
a

12R +=                                  (2) 

where,  
MPa= total positive ultimate moment  capacity along midspan 
section parallel to short edge / m, 
MPb= total positive ult imate moment capacity along midspan 
section parallel to long edge / m, 
a= short span, 

b=long span. 
MPa = MPb = MR, which is given by:  

 ( )thtfM cyR +=                                 (3) 

where, 
MR= moment of resistance, 
t= tc = tt, 
t= thickness of compression steel plate, 
t= thickness of tension steel plate, 
h= thickness of concrete core, 
fy= yield stress of the steel plate 

Depth to neutral axis, ‘x’ is given by: 

 C2BBx 2 −+−=                                    (4) 

where, 

B= e c e t ta t +a t -t                                       (5) 

      C=
2 2 2

t e c e c
e c

t a t a t
-Da t + + +

2 2 2
              (6) 

D= overall thickness, 

s

c

E=
Eea                                                    (7) 

Second moment of area of unit width of the panel, Ib is 
calculated as: 

3
2 2c c t

b c t
e

t (x-t ) tb
I =bt (x- ) + +bt (D-x- )

2 a 3 2
   (8) 

Due to reduced shear stiffness that results from slip  
between the face plates and concrete, effective second 

moment  of area, Ieff is obtained by multip lying second 
moment of area with a factor c, which is calculated from: 

 
sb

bc
δ+δ

δ
=                                          (9) 

where δb and δs are deflections due to unit bending and 
shear loads respectively.  

Effective shear stiffness, G’, which  is required in 
calculation of δs is determined from empirical equation. 
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where sx and sy are the shear connector spacing in the 
primary and secondary span directions respectively and tc, tt, 
sx and sy are in mm and the calculated G’ is in N/mm2.  

Effective stiffness of unit width of the panel, ke is 
obtained from  

       
m/N

a

EI252
k 2

ffe
e =

                          (11) 

Elastic deflect ion of the panel, Xe is obtained from 

 
e

m
e k

RX =                                      (12) 

Basic impulse equation is obtained by equating areas 
under resistance deflection curve (Fig. 9) and pressure time 
curve (Fig. 10) and is  

 ( )emm
em

LM

22 XXR
2
XR

MK2
Ai

−+=                  (13) 

where, 
KLM= load-mass factor given in IS: 4991-1968, 
Xm= maximum deflection attainable by the section, 
i= unit impulse, 
A= area on which blast pressure ‘p’ is acting, 
M= mass of panel. 

 In Equation (13), all other values except Xm are known. 
Therefore,  
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Fig. 9 Idealized resistance-

deflection curve [26] 
Fig. 10 Idealization of blast load [26] 
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The value of peak displacement corresponding to the 
blast loading chosen in the example is calculated to be 16.7 
mm using the above procedure. This value is in close 
agreement with the peak displacement of 17.6 mm obtained 
from the finite element analysis. Thus, the simplified 
approach can be used for modeling the steel-concrete 
composite panels subjected to blast loading. 

IV. NUMERICAL STUDIES 

A steel-concrete composite panel o f 2 m x 2 m size with 
through-through connectors spaced at 200 mm c/c in both 
the directions is taken up for study. Size of the connector is 
kept as 16 mm. Concrete core thickness is 200 mm, while 
steel cover plates are of 6 mm thickness. This panel is 
subjected to air-b last loading due to a charge at 5 m distance 
from the centre of the panel as shown in Fig. 11.   

 

5 m 

2 m 

2 m 

 
Fig. 11 Charge weight location 

A. Charge Variation 

Charge at 5m distance is varied from 100 kg TNT to 400 
kg TNT. Pressure time histories due to explosion of these 
charges are generated. Panel is modeled using the simplified 
approach. Nonlinear transient dynamic analysis is carried 
out. Fig. 12 shows the time h istory of the displacement at 
centre of the panel for different charge weights. From Fig. 
12, it can be observed that the peak displacement increases 
with the charge weight. Analyses are repeated for d ifferent 
plate thicknesses of 8 mm, 10 mm and 12 mm. Variation of 
peak central displacement with charge weight is plotted in 
Fig. 13.  Peak displacement is found to vary in  a nonlinear 
manner with charge and is proportional to the impulse as 
observed from Fig. 13. It can also be noted that similar trend 
of variation is observed for all p late thicknesses. Fig. 14 
shows variation of time period of response with charge 
weight. Th is variation is found to be in similar trend as 
observed in Fig. 13. 
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Fig. 12 Time history of displacement 

0

2

4

6

8

10

0

5

10

15

20

25

30

0 100 200 300 400 500

Im
p

u
ls

e,
 b

ar
 m

s

P
ea

k
 D

is
p

la
ce

m
en

t,
 m

m

Charge weight, kg

6 mm thick

8 mm thick

10 mm thick

12 mm thick

Impulse

 
Fig. 13 Variation of peak displacement with charge weight 
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Fig. 14 Variation of time period of response with Charge weight 

B. Thickness Variation 

Thickness of the cover plates is varied from 6 mm to 12 
mm with increments of 2 mm. A ll other parameters are kept 
same as above. Panel is subjected to pressure loading due to 
explosion of 100 kg TNT at a d istance of 5m. Time h istory 
of displacement is shown in Fig. 15. Peak d isplacement at 
centre of the panel is obtained. This set of analysis is 
repeated for 200 kg, 300 kg and 400 kg TNT. Variation of 
peak displacement with thickness is plotted in Fig. 16. It can 
be observed that the variation is nonlinear. Similar t rend is 
observed for all charge weights. Time period of response is 
plotted for all plate thicknesses as shown in Fig. 17. 
Similarity of variat ion of peak d isplacement in Fig. 16 and 
that of time period of response in Fig. 17 can be observed. 
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Fig. 15 Time history of displacement for 200 kg TNT 
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Fig. 16 Variation of Displacement with Thickness 
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Fig. 17 Variation of time period of response with thickness of plate 

C. Diameter Variation 

The diameter of connector is varied as 16 mm, 20 mm 
and 25 mm, and all other parameters are kept constant, 
namely, spacing of connector, charge weight and plate 
thickness. Spacing of connector is kept as 200 mm while 
charge weight is 100kg. Thickness of plate is 6mm. 
Diameter of connector is found to have only negligible 
influence on the peak response as observed in Fig. 18. 
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Fig. 18 Variation of peak displacement with connector diameter 

V. CONCLUSIONS 

Conventional approach for finite element modeling of 
steel-concrete composite (SCC) panels is to employ solid 
elements to represent all the components of the SCC panels. 
In this paper, a simplified approach of modeling the steel-
concrete composite panel subjected to air-blast loading is 
proposed to simulate the behavior. This approach is 
computationally efficient and requires less modeling effort. 
A SCC beam subjected to static load at centre is analyzed 
using the proposed approach. Ultimate load and deflection 
are predicted with less than about 10% difference with that 

of experimental values, while yield load and deflection are 
predicted with about 16% d ifference. Dynamic response of 
the SCC panel modeled using proposed approach is verified 
using an analytical model. Peak displacement predicted by 
using the proposed approach is 17.6 mm, while that by 
using the analytical study is 16.7 mm. The use of the 
proposed approach to analyze SCC panel is thus justified. 
Parametric studies are conducted to find out their influence 
on peak response. Plate thickness is found to influence the 
response in a nonlinear manner, while diameter of connector 
has only negligible influence. Variat ion of displacement 
with charge is found to be nonlinear and is proportional to 
the impulse. 
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