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Abstract-This paper presents a method for extracting features of real sound data from time-frequency images. The features are used 

for a sound classification equipped for hearing aids. As an application of hearing aids in mind, four classes of “classical music”, 

“speech”, “multi-talker noise”, and “speech in the noise” are prepared in order to classify the input signal of a hearing aid into 

useful classes. Although there are several possible ways to figure out which class the current input signal belongs to, an approach 

from image processing is utilized to find out appropriate features because 2D image (time-frequency image) can contain multifaceted 

information compared to 1D information (waveform or frequency response of sound), and can be regarded as comprehensive data. 

It is found that eight features are required to meet a certain quality of sound classification according to our investigation. 

Experimental results of the sound classification by some clustering machines using the proposed features have shown that accuracy 

of the classification was more than 95% with every clustering machine. 
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I. INTRODUCTION 

Digital hearing aids have been developed with several functions such as noise reduction, microphone directivity, and 

feedback cancellation systems [1]. Some of the functions are automatically controlled based on the surrounding environment of 

a hearing aid user. This means that hearing aids force the users to change some parameters of hearing aids manually according 

to the environment. However, most of the users are the aged and they wish the manual controls would be improved.  

To resolve this issue, sound classification could be useful for hearing aids to know in what sort of environment the users 

are and how the parameters of hearing aids should be optimized according to the environment. It would be allowed to consider 

that the most important part to establish any sound classification system is “feature extraction”. As a trial of the classification, 

a classification of artificial sounds into four classes (music, speech, noise, and speech in the noise) was reported, where 

features of amplitude, frequency, and rhythm were extracted by signal processing techniques [2]. However, this method cannot 

be applied to hearing aids because the sampling rate for the spectral analysis in this method exceeds 16 kHz, which is the 

maximum rate in the current hearing aids. Besides, in examining performance of sound classification systems, it is convenient 

to use artificial sound data because we can clearly define boundaries between classes of speech, noise, and speech in noise by 

SNR (signal to noise ratio) [2, 3]. However, since SNR for speech cannot be measured to real sound signals and we cannot 

decide the boundaries strictly, we cannot examine performance of the systems in the case when input signals are sound in real 

environment. On the other hand, there are reports on classifications of real environmental sound signals [4-6]. The sound 

signals used in them are noises which arise from traffic, wind, and machines in addition to human voice, so that the 

classifications are effective for users which often send a time under these environments. However, most of hearing aid users 

are aged people, and they send much time in shops, stations, and common rooms of welfare homes (e.g., a nursing home, 

protective institution, etc.) in their daily life. Therefore, if we consider applying a sound classification to hearing aids, we 

should treat noises which hinder the aged users in listening to human voices and important announcements in a space. 

Assuming a sound classification for hearing aids, this paper proposes features for classifying sound signals recorded in real 

environment, and presents classification of the real sound data using the proposed features. In this investigation, as well as the 

existing systems (for only artificial sounds) [2, 3], the four classes shown above are prepared before extracting features 

because the sound classification is expected to be applied to the current configuration of commercialized hearing aids. This 

means it seems to be insignificant for the sound classification to have so many classes to control the current configuration or 

only a few functions. If the classification is conducted by using the existing methods [7-9], the classification needs a 

microphone-array and filter-banks which are not equipped in the current hearing aids, hence they would be not practical ways 

for enhancing hearing aids. On the other hand, the proposed method does not need a new device to classify environmental 

sound signals in a hearing aid. The proposed method classifies the signals using time-frequency images. The images are 

generated by the frequency analysis which is applied in hearing aids, and represent the signals in 3 dimensions of time, 

frequency, and sound pressure. The proposed features for the classification are extracted from time-frequency images and the 

classification is conducted by a discriminant machine using the features and classifies the signals into the four classes shown 

above. 2D images can be found as more comprehensive data, and 2D structure of time-frequency components should be 
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processed in a cooperative way on the basis of computational auditory scene analysis [10]. To deal with sound data in a sense 

of auditory scene analysis [11], which is based on Gestalt psychology, it seems to be convenient to have time-frequency 

information that can be seen at once rather than have the waveform or frequency response. This is understandable intuitively 

because human hearing system listens to any sound in several senses. 

II. FOUR CLASSES 

The proposed method classifies the sound signal obtained from a hearing aid into four classes of “speech”, “noise”, “speech 

in noise”, and “music” [12]. At the end of the simulation towards the evaluation of the proposed method, it is necessary to 

define each of four classes. In this investigation, since all the sound materials are prepared by recording in real environment, 

the four classes are defined as follows; 

 “music”: classical music recorded in a quiet room (not an anechoic room), 

 “speech”: speech by adults recorded in the quiet room, 

 “noise”: multi-talker noise recorded in a clamorous space (e.g., a classroom in a lecture break), 

 “speech in noise”: speech by adults recorded in the space, 

where “quiet” would be roughly assumed as about 30 – 45 dB on a sound level meter. The classification for the four classes 

enables optimization of parameters which control the functions of howling canceller and noise reduction in hearing aids. For 

example, the howling canceller is a function of reducing ingredients which cause howling such as a dull hollow sound. 

Frequency characteristics of classical music are often similar to a dull hollow sound, i.e., it is difficult for hearing aids to 

distinguish the two sound signals; hence hearing aids could reduce music sound as well as howling. If hearing aids equip the 

classification, hearing aids can automatically switch off the howling canceller when the input sound is classified into the music 

class. Besides, when the hearing aids classify the input signal into “speech”, the hearing aids can switch off the noise reduction 

because the signal has no noise. And then, the hearing aids can apply the noise reduction appropriately by distinguishing 

“noise” with “speech in noise”. It means that the hearing aids can save energy consumption if the hearing aids can classify the 

four classes. 

Ideally, the classification should treat various noises. However, in order to cope with them, hearing aids have to equip a 

filter for each of them. Under the current situation, where the number of filters is limited due to the small capacity, it is 

difficult for current hearing aids to treat numbers of filters. Hence, as the first step, only the multi-talker noise (MTN), which is 

much demanded in the noise-cancelling, is considered in the proposed method. 

III. TIME-FREQUENCY IMAGE 

The time-frequency image utilized in this research is a spectrogram based on short-time Fourier transform (STFT). Fig. 1 

shows an example of time-frequency images consisted of Japanese female speech for 5 seconds. The size of the image is 

32×500 pixels (H/W) with 256 gray levels. The vertical axis y corresponds to frequency up to 8 kHz (32 bins, linear scale), and 

the horizontal axis x is time for 5 seconds (i.e., 1 pixel = 10 ms). The bottom left corner of the image is assigned as the origin 

such as (x, y) = (1, 1) in this paper. 

 

Fig. 1 A time-frequency image consisted of a female speech 

The time-frequency image is created as follows. The input signal is digitalized at a sampling rate of 16 kHz. After Hanning 

window is utilized to 64 points, FFT is applied to the 64 points. The FFT is applied at 75% overlap to the 64 points, i.e., the 

STFT is conducted to 16 points (1 ms) each. The result of the FFT for 10 ms is added at each frequency in the power spectrum. 

The sound pressure levels for the 10 ms are calculated by transforming the added value with the base of logarithm 10. The 

levels which are no more than 35 dBSPL are assumed as gray level 0 on the image, and which are more than 120 dBSPL are as 

gray level 255. The frequency is linearly divided into 32 matching with the frequency resolution of hearing aids. Hence, from 

the input signal for 10 ms, the STFT produces 32 pixels which have a gray value out of 8 bits at 1 column in the time-

frequency image. After the STFT is applied to the signal for 5 seconds, a time-frequency image is created as a bunch of power 

spectra for the input signal over 5 seconds such as Fig. 1. 
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IV. PROPOSED METHOD 

First, the features f1 ~ f5 among the eight proposed features are utilized to classify the data into “music” and “the others”. 

Then, for the images which were classified into “the others”, the features f4 ~ f8 are utilized to classify the data into “speech”,

“noise” and “speech in noise”. The details of the eight features are described below. In order to save the capacity of hearing 

aids, the calculations for extracting each of the features is sequentially conducted. 

A. Pre-processing 

In the time-frequency image O(x, y), the mean value µx over 256 gray levels except for zeros is sequentially obtained by Eq. 

(1), and the image is binarized into the black and white image I(x, y) by the threshold µx as shown in Eq.(2). Note x and y 

correspond to the axes of time and frequency, respectively, and the origin point of the image array is defined as the corner at 

the lower left of the image. 
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µx represents the threshold at a bunch of columns between the first and the x-th columns, and nx is the number of pixels which 

are nonzero at the x-th column. Here, µ0 = 0 and n0 = 1 for convenience of the calculation. 

 

 

(2) 

Fig. 2 shows the binarized image for the time-frequency image shown in Fig. 1. 

 

Fig. 2 Binarized image made from Fig. 1 

Besides, the histograms of H1(y) and H2(x) are calculated by Eqs. (3) and (4), respectively. Fig. 3 and Fig. 4 show the 

histograms obtained from Fig. 2, respectively. 

 






500

1

1 ),()(

x

yxIyH  (3) 

 






32

1

2 ),()(

y

yxIxH  (4) 

       

                                           Fig. 3 H1(y) obtained from Fig.2.                                                                    Fig. 4 H2(x) obtained from Fig. 2 

B. Extraction of Features for the Classification 

Feature f1 is defined as 
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It could be said that the feature f1 calculates how sharp the peaks of the histogram are. 

Feature f2 is defined as 
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Feature f3 is defined as 
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where SY(x) and EY(x) are the minimum and the maximum values of y-coordinates at a column x in the case I(x, y) = 1, 

respectively. 

Feature f4 is defined as 

  

 
(8) 

where p is the number of segments which are black and vertical lines with the width just 1 in I(x, y). 

Feature f5 is defined as 
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where 

 

 

 

and m is the number of pixels which have a grey value higher thanµx. f5 represents the variance of grey values in the original 

image for the pixels which were transformed into the white pixel by the binarization. 

f6 is defined as 

  

 
(10) 

f7 is defined as 

  

 
(11) 

f7 represents difference of the numbers of white pixels between two bunches of lines for 0–4 kHz and 4–8 kHz in the 

binarized image. 

f8 is defined as 
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where 

 

 

 

and n is the number of pixels which are nonzero in the original image. 

C. Classification 

First, the five features f1 ~ f5 are utilized as variables in a discriminant analysis for classifying the data into “music” and the 

other classes (Step 1). Second, the five features f4 ~ f8 are utilized as variables in a multiple discriminant analysis for 

classifying the data into “speech”, “noise” and “speech in noise” (Step 2). The reason why the classification of the four classes 

is conducted by the two steps is because sound signals of “music” are composed of various tones by instruments and the other 

classes are composed of only human voices, i.e., characteristics of “music” are much different from the other classes. 

Therefore, the classifications by the proposed method could get better performance than a single classification. 

Each of the features is normalized as the mean value is zero and variance is one. 

V. COMPUTER SIMULATION 

A. Preliminaries 

All the sound materials were prepared by recording real environments. The recordings were conducted with sound recorder 

(SONY, PCM-D50), where the dial for changing the degree of collecting the sound is equipped. The recordings were 

conducted by adjusting the dial watching the meter which displays how small the sound pressure is from 120 dBSPL. The 

range of the dial is between 1 ∼ 10 and the pressure of the recorded sound changes 8 dBSPL as the dial changes 1. According 

to this function, in recording a sound, the dial or the distance between the sound source and microphone is adjusted as the 

meter can catch the range from −12 to −9 dB. This adjustment is because the sound pressure is depended on the distance and 

sound volume under various environments. The dial is fixed for a recording time. And then, the recorded sounds are stored in 

the recorder as the sampling rate is 44.1 kHz and the quantization bit rate is 16. 

Materials for “music” are prepared by recording the signals of classical music from a speaker (Towa Electronics: Olasonic 

TW-S5). Materials for “speech” are prepared by recording adults’ speeches in a quiet room, where the participants aloud read a 

book. Materials for “noise” are prepared by recording environmental sounds in a restaurant, a lecture room, and a lobby, where 

MTN is heard. Materials for “speech in noise” are prepared by recording speeches in the environment where MTN is heard. 

When the sound materials for “music” and “speech” were recorded in a quiet room, the sound level for 10 min. in the quiet 

room was 34.9 dB by a sound level meter (RION, NL-62). 

The signals recorded for 5 min. are divided into 60 segments at even intervals hence 60 time-frequency images (for 5 sec.) 

are created. Table 1 shows the number of data prepared for the experiments. Each of learning and test data for each class was 

chosen randomly in the class, where the sound sources for all the test data are different from the learning data for the test data. 

TABLE 1 DATA SETS OF LEARNING AND TEST DATA IN EACH CLASS 

 Learning data Test data Sound source 

music 1800 600 78 

speech 600 600 20 

noise 600 600 20 

speech in noise 600 600 20 

B. Experimental Results 

Fig. 5 shows the mean value and the standard deviation of the features in each class of “music” and “the others”, where Fig. 

5 (A) is results obtained from the learning data and Fig. 5 (B) is results obtained from the test data. And then, Fig. 6 shows the 

mean value and the standard deviation of the features in each class of “speech”, “noise”, and “speech in noise”, where Fig. 6 

(A) is results obtained from the learning data and Fig. 6 (B) is results obtained from the test data. In Fig. 5 and Fig. 6, the 

horizontal axis represents f1 ~ f5 and f4 ~ f8, and the vertical axis represents values of the features. From the figures, we can 

confirm that there is significant difference between each class. 
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                                                        (A) Learning data                                                                            (B) Test data 

Fig. 5 Mean value and standard deviation of the features in each of “music” and “the others” 

 

                                                       (A) Learning data                                                                          (B) Test data 

Fig. 6 Mean value and standard deviation of the features in each of “speech”, “noise”, and “speech in noise” 

Next, according to the classification method shown above, experiments of the classification for the 4 classes were 

conducted. As a discrimination machine for the classification, linear discriminant analysis (LDA), discriminant analysis by 

Mahalanobis’ generalized distance (MD), and a neural network (NN) were applied. The neural network was a feedforward 

neural network which consisted of three layers in both steps of the classification. In Step 1 of the classification, the input and 

output layers of the NN had 2 nodes and the hidden layer had 3 nodes. In Step 2 of the classification, its input, hidden, and 

output layers had 3, 10, and 3, respectively. 

Table 2 (A) shows experimental results for Step 1 of the classification, where performance of the classification is 

represented by Recall and Precision. Table 2 (B) shows the number of images classified into each class to the number of input 

images in each class. Recall and Precision were calculated by 
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where Xh  is the number of images in the image group h for conducting the discrimination, X c is the number of images in the 

image group c discriminated by the proposed method, and Xh∩c is the number of images which belong in h ∩ c. 

TABLE 2 RESULTS OF THE DISCRIMINATION BETWEEN “MUSIC” AND “THE OTHERS” 

                                    (A) Recall and Precision                                                                                                     (B) The number of images 
 

Tool Class name Recall (%) Precision (%) 

LDA 
music 89.3 91.2 

the others 97.1 96.5 

MD 
music 99.5 63.0 

the others 80.5 99.8 

NN 
music 95.5 93.5 

the others 97.8 98.5 

 

Tool 
                    Output 

Input 
music the others 

LDA 
music 536 64 

the others 52 1748 

MD 
music 597 3 

the others 351 1449 

NN 
music 573 27 

the others 40 1760 

Similarly, Table 3 (A) and (B) shows experimental results and the numbers for Step 2 of the classification. 
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TABLE 3 RESULTS OF THE CLASSIFICATION BETWEEN “SPEECH”, “NOISE”, AND “SPEECH IN NOISE” 

                                (A) Recall and Precision                                                                                                       (B) The number of images 
 

Tool Class name Recall (%) Precision (%) 

LDA 

speech 98.7 100.0 

noise 97.0 95.4 

speech in noise 95.3 95.7 

MD 

speech 100.0 97.6 

noise 95.7 98.3 

speech in noise 96.3 96.2 

NN 

speech 100.0 98.7 

noise 97.2 97.7 

speech in noise 96.3 97.1 

Tool 
                  Output 

Input 
speech noise Speech in noise 

LDA 

speech 592 0 8 

noise 0 582 18 

speech in noise 0 28 572 

MD 

speech 600 0 0 

noise 3 574 23 

speech in noise 12 10 578 

NN 

speech 600 0 0 

noise 0 583 17 

speech in noise 8 14 578 

VI. DISCUSSIONS 

Table 2 (A) shows that the proposed method can correctly discriminate the sound in Step 1 of the classification in more 

than 90% of probability. From the view that a hearing aid manufacturer currently aims at 75% of the success ratio in the 

classification and the numbers of sound sources and data are sufficient accordingly, the experimental results in Step 1 have 

shown performance of the proposed method is high enough. 

In Table 2 (A), Precision for “music” in MD is significantly lower than the others. To examine this source, a parameter D 

is prepared. D is difference between the Mahalanobis distance from one of the data to “music” (Dmusic) and the distance from 

the one to “the others” (Dothers), i.e., D is defined as D = Dothers − Dmusic. From the experimental results shown in Table 2 (B), D 

was obtained from every of 1449 images which were correctly classified into “the others” in MD, and the mean value of them 

is defined as D1, and the standard deviation is defined as S1. Similarly, D2 is defined as the mean value obtained from 281 

images which were incorrectly classified into “music” in MD (its standard deviation is defined as S2), and D3 is defined as the 

mean value obtained from 19 images which were incorrectly classified into “music” in all the discrimination machines (its 

standard deviation is defined as S3). Table 4 shows these values. In Table 4, comparing D2 with D1 and D3, D2 is notably close 

to zero. Therefore, considering the value of S2, we can deduce the 281 images would cluster around the boundary of the two 

classes. And then, Fig. 5 shows that the standard deviations of f1 ~ f5 of the images in “music” are higher than “the others”, and 

the mean value and the standard deviation obtained from absolute values for variance-covariance of f1 ~ f5 extracted the images 

in ”music” were 1.183 and 0.326, respectively. On the other hand, the two values obtained from the images in “the others” 

were 0.230 and 0.152, respectively. From these results, we can deduce the images which belong in “the others” and are located 

around the boundary shifted to the area where the images in “music” are distributed; because MD standardizes the distribution 

of two classes before the distance calculation. The reason that the standard deviations for the features in “music” are higher 

than “the others” is because image patterns of signals extracted from music are far more various than human voice, hence there 

would be significant difference of the distribution area between “music” and “the others”. Therefore, MD would be not 

suitable as a discrimination machine for Step 1 of the classification. 

TABLE 4 D1 ~ D3 AND S1 ~ S3 IN THE DISCRIMINATION BETWEEN “MUSIC” AND “THE OTHERS” 

 i = 1 i = 2 i =3 

Di -6.368 2.160 8.139 

Si 5.679 2.513 4.360 

Referring to Table 3 (A), we can confirm all the discrimination ratios are more than 95% in Step 2 of the classification. As 

well as Step 1, the experimental results in Step 2 have shown performance of the proposed method is high enough.  

In Table 3 (B), most of errors occur between “noise” and “speech in noise” in every machine. Listening to the sound data 

of “noise” for 7 images which were incorrectly classified into “speech in noise” in every machine, it was found that sudden 

noises which are not MTN such as the sound of laughter, clapping hands, or dropping something on the floor are included in 

the data. Since the proposed features were designed by considering characteristics of MTN, the proposed method cannot 

classify composite noises which include strong noises other than MTN into “noise” correctly. Therefore, as the next trial, it is 

necessary to cope with the composite noises and to increase type of noise. 

VII. CONCLUSION 

This paper has presented features of sound data for a sound classification equipped for hearing aids. The features have been 

extracted by using image processing techniques to time-frequency images. As an application of hearing aids in mind, the four 

classes of “music”, “speech”, “multi-talker noise” and “speech in the noise” are prepared to classify the input signal. 

Experimental results of the sound classification by some clustering machines using the proposed features have shown that 

accuracy of the classification was more than 95% with every clustering machine. 
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As future works, it is necessary to recognize sudden noise in real environment, and then enhance sound quality of 

announcements via hearing aids in stations. 
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