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Abstract- A new kind of the homoclinic solution with oscillatory 
structure for Davey-Stewartson (DSI and DSII) equation with 
periodic boundary condition is constructed by using the Hirota’s 
bilinear form and extended homoclinic test method, respectively. 
The mechanical feature of the solution is also investigated. Result 
shows the variety of the structure for the homoclinic solution of 
one integrable system with periodic boundary condition. 
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I. INTRODUCTION 
Davey-Stewartson (DS) equation is written as [1]: 
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where RRRRvCRRRu tyxtyx →××→×× ++ :,: , ε  and 0α  
are constants. DS equation was derived by Davey et al. to 
model the evolution of a three-dimensional disturbance in the 
nonlinear regime of plane Poiseuille  flow. The function 

),,( tyxu  stands for the complex amplitude, and ),,( tyxv  
describes the perturbation of the real velocity. DS equation is 
called the DSI as 1,1 0 ±== αε  and DSII as i±== 0,1 αε . 
There are known results due to local well-posed, global 
existence and blow-up of some solutions, exact periodic 
soliton solutions, solitoff and dromion solutions [2-11]. Recently, 
homoclinic and heteroclinic tube solutions were obtained [12-
15]. 

It is well known that the existence of homoclin ic and 
heteroclinic orbits solutions is very important for studying the 
spatiotemporal chaos of partial d ifferential equation. Many 
methods were developed for proving the existence of 
homoclinic o rbits of perturbed soliton equation. As we know 
that the homoclinic solution is non-wave type solution, it is 
generally obtained using “Homoclinic test method” and can 
be expressed by function ))cosh(),(cos( 21 δγ ++ typxpF  
for (2+1)D system, where γ,, 21 pp and δ are some 
parameters[12]. The non-wave type homoclin ic solution has the 
stable and non-locally oscillatory structure with time 
evolution. It meanwhile satisfies periodic boundary condition 
and asymptotically tends to a fixed cycle as time tends to 
infinity.  

In this work, we search for a new two-wave kind of homo-
clin ic solution with locally oscillatory structure, homoclinic 
breather solution, for DSI and DSII equation using “extended 

homoclinic test method”, and it can be expressed by 
function ))cosh(),(cos( 4321 δβα +−+−+ typxptypxpF . The 
two-wave kind of homoclinic solution satisfies periodic 
boundary condition and asymptotically tends to a fixed cycle 
as time tends to infinity as well. We also exh ibit locally  
structure of these solutions, respectively. 

Consider DSI equation 
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with periodic boundary condition 

  );,,(),,( 21 tlylxutyxu ++=  ),,(),,( 21 tlylxvtyxv ++=    (1.3) 

and DSII equation 
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with periodic boundary condition 

);,,(),,( 43 tlylxUtyxU ++=  ),,(),,( 43 tlylxVtyxV ++=   (1.5)  

In this work, we analyse linear stability in neighbourhood 
of fixed cycle and then use the extended homoclinic test 
approach[16-18] to construct a new kind of the homoclinic 
solution different form homoclinic tube solution for DS 
equation[12, 13], some mechanical features are investigated and 
global structure of the solutions is exhib ited. 

II. HOMOCLINIC BREATHER SOLUTION FOR DSI EQUATION 
It is easy to see that )0),exp(( 2

2
tiaa  is a fixed cycle of  

DSI equation [13]. We investigate the linear stability of fixed  
cycle by considering a small perturbation of the form 
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where 1|),,(|,1|),,(| <<<< tyxtyxq εε ϕ . Substituting Eq.  
(2.1) into Eq. (1.1), we get the linearized equation as 
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where ∗  denote the conjugation. Assume that 
εq and 

εϕ  have 
the following forms  
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where BA, are complex constants and C  is real, 

pnn =µ
1

2
l

nπ= ,  
2

2
1 l

n
n np πµ ==  and nσ is the growth rate of 

the n th mode. 

Substitution of Eq. (2.3) into Eq. (2.2) leads to  
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Solving Eq. (2.4), we obtain  

         )2)(( 222222
nnnnn a µµµµσ −−+=                  (2.5) 

Since 0σ > , we obtain 

          222 2ann <+ µµ                               (2.6) 

This shows that the fixed cycle is hyperbolic provided. 
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Thus the number of unstable modes which determines the 
complexity of the homoclinic structure is given by the 
following the largest integer N with  
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Now, by using extended homoclinic test approach [16], we 
construct the homoclinic breather solution of DSI equation. 

Make the transformation 
2

,)exp( 2
2

ϕ
−== vQtiau a  and 

substitute it into Eq. (1.1), we can get 
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where ),,( tyxQQ =  is a complex function, and ϕ  is a 
real.  

By the dependent variable transformation  

          
F
GQ = ,          xxF )(ln4−=ϕ                       (2.10) 

where G  is a complex and F  a real. Then, Eq. (2.9) can be 
converted into the form 
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where B  is an integral constant and ∗  denotes the complex 
conjugation. 

       By  means of the extended homoclinic test approach [16, 17], 
we take the test function as follows: 
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where all of 3 4 1, , , ,a a p p α are real, and 21 ,aa are complex. 
Substituting Eq. (2.12) into Eq. (2.11), equating the 
coefficients of all powers of ))2(cos( 1

)( 2 tyxpe txjp y

αα −+++ , 
)( 2 txjp y

e α++  ))2(sin( 1 tyxp α−+   and ))((2 2 txp y

e α++±  )1,0,1( −=j  to zero,  
we can obtain a set of algebraic equations for 
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Solving these equations, we obtain the relations between the 
parameters as 
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From 02 ≥p and 02
3 ≥a  in Eq. (2.13), we 

have
39

320
507

800 2
2

2 aa
<<α . Substituting Eq. (2.13) into Eq. (2.12) 

and then Eq. (2.10), taking 04 >a , we obtain the solution for 
DSI equation as 
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piie 4
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+= α

αθ , 
431 ,,,, aapp α are given by Eq. (2.13). Note 

that if )),,(),,,(( tyxvtyxu  is the solution of DSI equation, then 
)),,(),,,(( tyxvtyxu −−  is the solution as well. So, we also obtain 

the solution of DSI equation as 
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We suitably choose 1, pp  such that all wave numbers n  
of x  and y  satisfy Eq. (2.7), then Eq. (2.15) is the 
homoclinic solution of DSI equation. In addition, the solution 
given by Eq. (2.15) satisfies periodic boundary condition. In 
fact, if we take

1211 3/4,3/2 plpl ππ == , then we have 

),,(),,(,),,(),,( 21112111 tlylxvtyxvtlylxutyxu ++=++=  

Eq. (2.15) (Resp. Eq. (2.14)) is a breather kind of homoclinic 
solution. It is a new kind of homoclinic solution different 
from homoclin ic tube solution obtained in [13]. It  has a 
homoclinic structure. Indeed, we have 
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where θ2  is a phase shift, )0),exp(( 2tiaa  a fixed  circle of DSI 
[12]. Note that Eq. (2.15) contains not only a periodic 
wave ))2(cos( 1 tyxp α−− , so its amplitude periodically  
oscillates with the evolution of t ime (the breather effect), but 
also a solitary wave 

))(cosh(
1

2 γα ++− txp y
 which shows that 

the interaction between a solitary wave and a periodic wave 
with the same velocity α and the opposite propagation 
direction can form a new family of homoclin ic solution. This 
is a new phenomenon of evolution o f a three-dimensional 
disturbance in the nonlinear regime of p lane Poiseeuille  flow 
(Ref. Fig . 1 and 2). 

   

 
Fig. 1 Behaviour of || 1u  in DSI and the homoclinic breather variation in 

|| 1ux−   plane 

 

 Fig. 2 Behaviour of 1v  in DS1 and the homoclinic breather variation in 

1vx − plane 

III. HOMOCLINIC BREATHER SOLUTION FOR DSII EQUATION 
As we know that )0),||2exp(( 2 taia −  is a hyperbolic fixed  

cycle of DSII equation when the period of y is larger than the 
period of x [12]. Similar to the argument in [12], we can  
analyse the linear stability of fixed  cycle )0),||2exp(( 2 taia − . 
By similar process of dealing with of Eq. (1.1), we take the 
transformation  
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F
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Eq. (1.3) can be converted into the bilinear form 
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where A  is a constant, G  is a  complex function, F  is a real. 
Now, we take the following ansatz: 
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where 
431 ,,,,, bbppa α are real, 

21,bb are complex. Substituting 
Eq. (3.3) into Eq. (3.2), we get 
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where 
)122(3

642 2

−
< aα . Substituting Eq. (3.4) into Eq. (3.1), we 

obtain the following solution for DSII equation:  
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432121 ,,,,,, bbbbpp α  are g iven by Eq. (3.4) and
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Note that if )),,(),,,(( tyxVtyxU is the solution of DSII 
equation, then )),,(),,,(( tyxVtyxU −− is the solution as well. 
So, we obtain the solution of DSII equation 
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The solution given by Eq. (3.6) is a homoclinic b reather 
solution different from the homoclinic tubes solution obtained 
in [12]. It satisfies the periodic boundary condition. In fact, if 
we take

2423 3/22,3/2 plpl ππ == , then  

),,(),,(,),,(),,( 43114311 tlylxVtyxVtlylxUtyxU ++=++=  

It is obvious that Eq. (3.6) is a two-wave kind of homoclinic 
solution, which has similar structure to Eq. (2.15). But the 
periodic boundary for DSII is different from DSI. Specially, 
the oscillation of two-wave for DSII is stronger (Ref. Fig. 3 
and 4). 

   
Fig. 3 Behaviour of || 1U  in DSII and the homoclinic breather variation in 

|| 1Ux−   plane 

 
   Fig. 4 Behaviour of 

1V  in DSII and the homoclinic breather variation in 

1Vx −  plane 

IV. CONCLUSIONS 
Based on the Hirota bilinear form, by applying the 

extended homoclin ic test method to DSI and DSII equations, 
we obtain a new kind of homoclin ic solutions of two-wave 
type with locally oscillatory structure. We also investigate and 
exhibit the different homoclin ic structures of solutions. These 
results show the complexity and variety of dynamical 
behavior for DS system. Following these ideas in this work, 
the problem needed to be further studied is whether the other 
types of nonlinear evolutions have this kind of homoclinic 
solutions or not. 
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