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Abstract- A new kind of the homoclinic solution with oscillatory
structure for Davey-Stewartson (DS1 and DSII) equation with
periodic boundary condition is constructed by using the Hirota’s
bilinear form and extended homoclinic test method, respectively.
The mechanical feature of the solution is also investigated. Result
shows the variety of the structure for the homoclinic solution of
one integrable system with periodic boundary condition.
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I.  INTRODUCTION
Davey-Stewartson (DS) equation is written as [!:

iu, =— y

—20[02‘9(| u |2)xx =0

_ 1 _ 2 2, _ 2
Ug =z Uy ag|“| u—_zuv L1
2
Vi =gV,
where u:R, xR xR"—>C,v:R xR xR" >R, & and ¢,
are constants. DS equation was derived by Davey et al. to
model the evolution of a three-dimensional disturbance in the
nonlinear regime of plane Poiseuille flow. The function
u(x,y,t) stands for the complex amplitude, and v(x, y,t)
describes the perturbation of the real velocity. DS equation is
called the DSl as & =1, =+1and DSl as ¢ =1, o, = #i.
There are known results due to local well-posed, global
existence and blow-up of some solutions, exact periodic

soliton solutions, solitoff and dromion solutions ?*. Recently,

Elsc])moclinic and heteroclinic tube solutions were obtained ®%

It is well known that the existence of homoclinic and
heteroclinic orbits solutions is very important for studying the
spatiotemporal chaos of partial differential equation. Many
methods were developed for proving the existence of
homoclinic orbits of perturbed soliton equation. As we know
that the homoclinic solution is non-wave type solution, it is
generally obtained using “Homoclinic test method” and can

be expressed by function F(cos(p,x+ p,Y),cosh(3t +5))
for (2+1)D system, where p p,y and O are some

parameters[lz]. The non-wave type homoclinic solution has the
stable and non-locally oscillatory structure with time
evolution. It meanwhile satisfies periodic boundary condition
and asymptotically tends to a fixed cycle as time tends to
infinity.

In this work, we search for a new two-wave kind of ho mo-

clinic solution with locally oscillatory structure, homoclinic
breather solution, for DSI and DSII equation using “extended
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homoclinic test method”, and it can be expressed by
function F(cos(p,x+ p,y —at),cosh(p,x+ p,y — At +5)) - The

two-wave kind of homoclinic solution satisfies periodic
boundary condition and asymptotically tends to a fixed cycle
as time tends to infinity as well. We also exhibit locally
structure of these solutions, respectively.

Consider DSI equation

|

with periodic boundary condition

==2|ul u-2uv

iU, +U, +U, (12)

Vix _Vyy = _2(| u |2)x><

u(x, y,t) =u(x+1, y+1,,t); v(x,y,t) =v(x+1,y+1,t) (1.3)
and DSl equation
iU, +U, -U, =2|UJ]?U+20V
{vxx +V,, ==2(IU *),,

with periodic boundary condition

(1.4)

Uy, ) =U X+, y+1,t; V(X y,t)=V(x+l,y+l,t) (1.5

In this work, we analyse linear stability in neighbourhood
of fixed cycle and then use the extended homoclinic test
approach®™®] to construct a new kind of the homoclinic
solution different form homoclinic tube solution for DS
equation® 1 some mechanical features are investigated and
global structure of the solutions is exhibited.

Il. HOMOCLINIC BREATHER SOLUTION FOR DSI EQUATION
It is easy to see that (%exp(iazt),O) is a fixed cycle of

DSI equation ™!, We investigate the linear stability of fixed
cycle by considering a small perturbation of the form

u=-Lexp(ia’t)(l+q, (x, y,1))

_ oyt
2

(21)
V=

where | q, (X, Y,t) |<<1| @, (X, V,t)|<<1 . Substituting Eq.
(2.1) into Eq. (1.1), we get the linearized equation as

|

i0, + 0, +0, =-a’q, —a’q, +¢

P ox _¢7a/y = zazqaxx + 2a2q:‘xx

(2.2)
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where * denote the conjugation. Assume that q_and ¢_have
the following forms

q — ,A\ei(/Un)("'/jny)"'o-nt + Be_i(ﬂnx'*'lﬂny)*'ant
&

2.3
o :C(ei(ﬂnx+ﬁny)+0nt +e—i(#n><+ﬁnY)+Unt) (2:3)
€

where A B are complex constants and C is real,
Hy=pn =% L =pn = 2= and o, is the growth rate of
the nth mode.
Substitution of Eq. (2.3) into Eq. (2.2) leads to
(ic,—ul —m>+a’)A=-a’B" +c
(io, —u’ —pu?+a*)B=-a’A"+C (2.4)
—cu? +Cu’ =2a’Au’ +2a’B* u’
Cu’ +Cu’ =2a’Bu? +2a’*A"u?
Solving Eq. (2.4), we obtain
or = (uy + 1) (2% — ul - k) (2.5)
Since ¢ >0, we obtain
p? + [iF < 2a’ (2.6)
This shows that the fixed cycle is hyperbolic provided.

2a’
n2 < — 7 (27)
p™+ P
Thus the number of unstable modes which determines the
complexity of the homoclinic structure is given by the
following the largest integer N with

. V2la] (2.8)
Vp?+p!

Now, by using extended homoclinic test approach (28] \ve
construct the homoclinic breather solution of DSI equation.

O<N

Make the transformation y = %exp(iazt)Q,v = _g and
substitute it into Eq. (1.1), we can get
iQ +Q, +Q,, =-a*(IQ* -1)Q+Qgp
P — Py =28°(1Q ")

where Q=0Q(x,y,t) is a complex function, and ¢ is a
real.

(2.9)

By the dependent variable transformation

G
Q==

F
where G is acomplexand F areal. Then, Eq. (2.9) can be
converted into the form

p=-4(InF), (2.10)

iG,F —iFG+G,F -2G,F, +GF, +G F
-2G,F, +GF,, —(a’® + B)GF =0,
2(F,F-F}-F,F+F’)-BF’-a’GG" =0

(2.11)

where B is an integral constant and * denotes the complex
conjugation.

By means of the extended homoclinic test approach 2617,
we take the test function as follows:

G= —p(x+5+at) p(x+3+at)

e +8, cos(p, (X + 2y —at)) + a,e (2.12)

F— —p(x+3-+at) p(x+3+at)

e +a,cos(p,(Xx+2y —at))+a,e

where all of a,a,, p, p,«are real, and a ,a,are complex.
Substituting Eq. (2.12) into Eq. (2.11), equating the
coefficients of all powers of grecta oqp (x12y—at)) -

jp(x+2+ . + +3 :
e in(p(x+2y —at)) and eI (1 g1y to zero,
we can obtain a set of algebraic equations for p p o,a,

k =1,2,3,4 With

B =-a’

(4pp, —ip,x)a, + (4pp, +ipa)a; =0

(—ip@ —4pp,)a,a, + (ip,a —4pp,)a,a, =0

(ipa +5 p* =5p)a, + (5 p* ~5p; —ipa)a, =0
(3p° —ipa—5p)aa +(ipa+5p* ~5p/)a;a, =0
—10a,a,p] + (5p° +2ipa)a, + (5p° - 2ipa)a, =0
a’(a; —aa;)=0

a’(al -a,a;)=0

(2a® -4 p®-6p;)a; —a’(a +a;) =0

(2a* - p* - 6p{)a,a, —a’(a,a; +a;a,) =0

(2a® -6p?)a, —6aip’ —a’(a, +a;) =0

Solving these equations, we obtain the relations between the
parameters as

21p> , 3202’ -394

B=_3’ 2 _ ocvd —oJa
a pi=T P 24 (2.13)

(i +4p)a, _(ia+4p)’a, _, 4(21a*-80p’)a,

" ia—4p ° (ia—4p)? " 2Ua’+16p?)
From p?>0 and a2>0 in Eq (213), we

have800a® _ ., 320a°. Substituting Eq. (2.13) into Eqg. (2.12)
507 39
and then Eq. (2.10), taking a, > 0, We obtain the solution for

DSI equation as

2cosh(é+y +i6) + %cos(n)

a _j(gra?)

2 2cosh(& +7) + % cos(77)

Ve 2H(S,y.m)
(a, cos(7) + 2y/a, cosh(& + 7))?

u=

(2.14)

where

H(&,7,77) = 2a,\/a, (p* — p2) cos(r7) cosh(& + 7)
+4a,pp,+/a, sin(i)sinh(& + ) + 4a, p? —aZp?
E=p(X+3+at), n=p(x+2y-at), y=In,a,

and '’ = :ng . P, pa,a,,a,are given by Eq. (2.13). Note
that if (u(x, y,t),v(x,y,t)) is the solution of DSI equation, then
(u(x,—y,t),v(x,~y,t)) is the solution as well. So, we also obtain

the solution of DS equation as
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. .
0 = a e 2cosh(&; +y +160) + = cos(r,)

V2 2cosh(&, +7) + %005(771)

2H, (&, 7 m)

VvV, =
" (a,co8(,) + 24fa, cosh(&, +))?
where

H, (&,7.17) = 2854/a, (p* — p} ) cos(,) cosh(&, +7)
+ 42, pp;+/a, sin(m,)sinh(&, +7) +4a, p* —al pf
&=p(x-F+at), m=p(x-2y-at), y=Ina,
We suitably choose p, p, such that all wave numbers n
of x and y satisfy Eq. (2.7), then Eq. (2.15) is the
homoclinic solution of DSI equation. In addition, the solution

given by Eq. (2.15) satisfies periodic boundary condition. In
fact, if we take l, =27/3p,l,=47/3p, then we have

(2.15)

u Gyt =u(x+1,y+1L,t), vy t)=v(x+1l,y+1,,1)

Eg. (2.15) (Resp. Eg. (2.14)) is a breather kind of homoclinic
solution. It is a new kind of homoclinic solution different
from homoclinic tube solution obtained in [13]. It has a
homoclinic structure. Indeed, we have

(ul,vl)%(%exp(i(a%ue)),m a5 {4

(t%) > (Cexpl@0)0)
where 2¢ is a phase shift, (aexp(ia’t),0) a fixed circle of DSI
12 Note that Egq. (2.15) contains not only a periodic
wave cos(p,(x—2y—at)) , SO its amplitude periodically
oscillates with the evolution of time (the breather effect), but

also a solitary wave 1 which shows that

cosh(p(x—% +at) + )
the interaction between a solitary wave and a periodic wave
with the same velocity o and the opposite propagation
direction can form a new family of homoclinic solution. This
is a new phenomenon of evolution of a three-dimensional
disturbance in the nonlinear regime of plane Poiseeuille flow
(Ref. Fig. 1and 2).

t— -0

Fig. 1 Behaviour of | u, | in DSI and the homoclinic breather variation in
X=|u, | plane

Fig. 2 Behaviour of V, in DSL andthe homoclinic breather variation in
x —v, plane
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I1l. HOMOCLINIC BREAT HER SOLUTION FOR DSII EQUATION

As we know that (aexp(-2i|a|’ t),0) is a hyperbolic fixed
cycle of DSII equation when the period of y is larger than the
period of X ™! Similar to the argument in [12], we can
analyse the linear stability of fixed cycle (aexp(-2i|a|* t),0).

By similar process of dealing with of Eq. (1.1), we take the
transformation

U :%, V=A-2(InF), @1
Eqg. (1.3) can be converted into the bilinear form
(iD, + D? —DYZ)G~F =(1+2A)G-F
(Df + D} +A)F -F =2GG’

(32)

where A is a constant, G is a complex function, F is a real.
Now, we take the following ansatz:

G = ae ¥ [e P 4 b cos(p, (X —+/2y +at))

+ g2y (3.3)

F =e P02 ® L cos(p, (x -4y +at))
+h,e P (V2xty-at)

where a, p, p,,a,b,,b,are real, b ,b,are complex. Substituting
Eqg. (3.3) into Eq. (3.2), we get

, 6427 +3(1-22)a?

A=2a’>, A=-a’

. 96(2v2 -1) (3.4)
2 _ (42 -1)p2, :ia+4\/§p1b
p;=@2-1)p, b PRN I

b2 - (42 Do’ +32p])

b — ia+442p, zb
YO (a2 -1)(a? +32p7)

2 lia-4v2p,

2 6422 . . .
where o° < TN . Substituting Eq. (3.4) into Eq. (3.1), we

obtain the following solution for DSII equation:

2cosh(R, (x, y,t) +i6) +%cos(R2 (x, y,1))

i(6-2]a)*t)

U=ae (3.5)

2cosh(R, (x, y,t)) + % cos(R, (x, y,t))
~ 2M
b, (2cosh(R, (x, y,t)) +%COS(R2 (X, y,1)))?

where

R, (x,y,t) = pl(\/§x+ y—at)+|n\/a
R, (X, y,t) = p,(X—~2y + at)
and
M = (8b, — (4+/2 —1)b?) p?
+2p2by4/b, {(3—4v2) cos(R, (x, y,t)) cosh(R, (x, , 1))
—\3242 —8sin(R, (x, y,t)) sinh(R, (X, y, 1))}

ia+442p,
ia—4«/§p1 '

., P,.a.b, b, b, b, are given by Eq. (3.4) ande'’ =

Note that if (U(x,y,t),V(x,y,t)) is the solution of DSII
equation, then (U (x,-y,t),V (x,—y,t))is the solution as well.
So, we obtain the solution of DSII equation
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) 2cosh(R, (X, y,t) +i6) + %cos(&(x, y,1))

i(6-2la’t

U. =
oo 2c0sh(R, (x, ¥, 1)) + - COs(R, (x, Y, 1) (3.6)

_ 2M,
b, (2cosh(Ry, (x, y, 1)) + %COS(RA X y.1))°

where

Ry (X, y,t) = p,(W2x—y —at) +In.Jb,
R,(x,y, 1) = pz(x+\/§y+at)
and
M, = (8b, — (42 ~1)b2) p?
+2 pfbﬂ/a{(B— 4\/5) cos(R, (x, y,t))cosh(R, (X, y,1))
3242 —8sin(R, (x, y,1))sinh(R, (x, V, )}

The solution given by Eq. (3.6) is a homoclinic breather
solution different from the homoclinic tubes solution obtained
in [12]. It satisfies the periodic boundary condition. In fact, if

we take |, = 27/3p,,|, = 24/27/3p,, then

U,(x, v, ) =U, (x+ 1, y+1,,t), Vo060 =V (x+15,y+1,,1)

It is obvious that Eq. (3.6) is a two-wave kind of homoclinic
solution, which has similar structure to Eq. (2.15). But the
periodic boundary for DSII is different from DSI. Specially,
the oscillation of two-wave for DSII is stronger (Ref. Fig. 3
and 4).

Fig. 3 Behaviour of U, | in DSII andthe homoclinic breather variation in
=1V, | plane

Fig. 4 Behaviour of y/ in DSI1 andthe homoclinic breather variation in

x—V, plane

V. CONCLUSIONS

Based on the Hirota bilinear form, by applying the
extended homoclinic test method to DSI and DSII equations,
we obtain a new kind of homoclinic solutions of two-wave
type with locally oscillatory structure. We also investigate and
exhibit the different homoclinic structures of solutions. These
results show the complexity and variety of dynamical
behavior for DS system. Following these ideas in this work,
the problem needed to be further studied is whether the other
types of nonlinear evolutions have this kind of homoclinic
solutions or not.
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