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Abstract-This work aimed to study isocurvature surfaces of Earth’s normal gravity field and their relation to partial derivatives of a 

plumb line curvature. An isocurvature surface of a gravity field is a surface along which the value of the plumb line curvature is 

constant. The normal gravity field is a symmetrical gravity field; therefore, isocurvature surfaces are surfaces of revolution. To 

study an isocurvature surface, special assumptions are made to form a vector equation, which will hold only for a small coordinate 

patch of the isocurvature surface. The gradient of a normal plumb line curvature is vertical to the isocurvature surface pointing to 

the direction along which the curvature of the plumb line decreases or increases the most. In order to show the significance of 

isocurvature surfaces, it was shown that it is possible to determine the value of the surface derivative of a plumb line’s curvature 

without differentiating the original complicated function of a plumb line curvature. 
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I. INTRODUCTION 

In Physical Geodesy and when studying vector fields in general, scientists define geometrical objects related to invariant 

quantities of the vector field of their respective interest. To illustrate these concepts as they apply to geodesy, [1] and [2], for 

instance, presented three characteristic examples: isozenithal lines, equipotential surfaces, and equigravitational surfaces. 

Specifically, along isozenithal lines, the angle between the gravity vector and the equatorial plane is constant, while on an 

equipotential surface, it is the gravity potential that is constant. On an isogravitational surface, the modulus of gravity vector is 

constant. All of these quantities, which remain constant on these geometrical objects, are also invariant quantities. Another 

important invariant quantity related to the gravity field is the plumb line curvature. Isocurvature lines were defined by [3]. As a 

theoretical application, two different families of normal isocurvature lines were studied: on a meridian plane and on a parallel 

plane. In this work, normal isocurvature surfaces were studied. Earth’s normal gravity field, with its rotational symmetry, 

simplified the desirable equations for this study. The first step in this study involved the determination of a suitable coordinate 

system for the local parameterization of the isocurvature surface around a chosen point P. This was required to show that the 

isocurvature surface’s parametric lines were also lines of curvature. The second step introduced a suitable function describing 

the behavior of the plumb line curvature function in the coordinate patch of the isocurvature surface. In the third step, the 

vector equation of the isocurvature surface was formulated and its fundamental quantities, which are related to the Gauss 

curvature, were determined. Finally, we describe an algebraic method for the determination of the surface derivative (along the 

North – South direction) of the plumb line curvature was determined without differentiating the complicated function of plumb 

line curvature. 

II. METHODOLOGY 

Consider a Cartesian equatorial system (X, Y, Z) whose origin is situated at Earth’s center of mass. The Z-axis is Earth’s 

mean axis of rotation, the X-axis is the intersection of the meridian plane of Greenwich, and the equator’s plane and the Y-axis 

make the system right-handed. If k(X, Y, Z) is the function for the plumb line curvature, then an isocurvature surface of 

curvature value k0 can be described by the following equation:  

  (1) 

Due to the rotational symmetry of the normal gravity field, the isocurvature surfaces are surfaces of revolution. The plumb 

line curvature is a complicated function, which contains first- and second- order partial derivatives of the normal potential. 

This makes it difficult to use it for the study of an isocurvature surface of a given value of plumb line curvature k. To overcome 

this difficulty and to form a simple vector equation for the isocurvature surface, in previous work, [3] defined the function 
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(2) 

and provided full expressions for the coefficients ci (i = 1,2,…,12). Eq. (2) involves two local Cartesian systems (x, y, h) and 

(x1, y1, h1). Let P be a point above the ellipsoid and Q is its projection to the ellipsoid along the vertical line to the ellipsoid 

passing through point P. The first is centered at point Q, the x-axis is tangent to the local parallel positive to the east, the y-axis 

is tangent to the local meridian positive to the north, and the h-axis is the vertical line to the ellipsoid passing through the point 

of interest P. The second system (x1, y1, h1) is a parallel transport of the previous one and its center is at point P.  

Let D be the interior of a circle on the meridian plane of P, which has its center at point P and radius ε = 1 m. The equation 

for this circle is: 

 
 

 (3) 

With Eq. (2), it is now possible to determine the curvature of a plumb line passing through an arbitrary point Q in set D at a 

specific point. The intersection between the meridian plane of P and the isocurvature surface passing through the same point is 

an isocurvature line. This isocurvature line in set D has an equation of the form:  

  (4) 

From the initial value theorem there exists a function 

  (5) 

that describes the isocurvature line in set D. This allows a vector equation to be formed for a coordinate patch of the 

isocurvature surface passing through P. If (φ, λ) represent the geodetic latitude and the geodetic longitude, then a 

parameterization of the isocurvature surface is: 

 

  (6) 

and 
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(7a) 

where [4] 

 

 

 

(7b) 

is the normal radius of the curvature of the ellipsoid taken in the direction of the prime vertical and  

 

 

 

(7c) 

In the remainder of the paper, in order to be more concise, the letter “k” will be used instead of the symbol “k1a” when the 

partial derivatives of the plumb line curvature are used. 

III. STUDY OF THE ISOCURVATURE SURFACES 

The intersection of a family of isocurvature surfaces and a meridian plane are plane curves that are isocurvature lines. The 

normal plumb lines on the equatorial plane are straight lines, and the plumb line that is vertical to the North Pole is also a 

straight line. Therefore, as the value of the plumb line curvature tends to zero, the isocurvature surfaces tend asymptotically to 

the equatorial plane and the Z – axis, as depicted in Fig. 1. 
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Fig. 1 The isocurvature lines of the normal gravity field on the meridian plane 

The parameterization of an isocurvature surface has two variables, one linear (y) and one angular (λ). The quantities of the 

first fundamental forms are given by the following expressions: 

 

 

 

(8) 

 
 

 

(9) 

 
 

 

(10) 

The normal vector to the surface is: 

 
 

 

 

 

 

 

(11) 

For the quantities of the second fundamental form there is:  
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(12) 

Therefore, since F = M = 0, the parametric lines y = c and λ = c are lines of curvature. The curve λ = c passing through 

point P is an isocurvature line and its equation is h=h(y). Since it is a plane curve its curvature is equal to  

 

 

 

(13) 

and the principal curvature k1 along this direction is equal to  

 

 

 

(14) 

In order to find the second principal curvature k2 (along the direction y = c), the Meusnier’s theorem is used, leading to the 

following expression for k2: 

 

 

 

(15) 

The first term in (15) describes the curvature of the parallel circle and the second term is the cosine of the angle between 

the normal vector and the equatorial plane. Furthermore, because the parametric lines of the isocurvature surfaces are lines of 

curvature, then:  
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(17) 

Using Relations (14) and (15), the other two quantities of the second fundamental form can be determined, i.e.  

   (18) 

 
 

(19) 

The Gauss curvature of the isocurvature surface can now be expressed as 

 

 

 

(20) 

From the study of the isocurvature surfaces it can be seen that it is not possible to write all the above relations in an explicit 

form. That is because all these expressions involve the unknown term h(y). However, it is still possible, if it is required, to 

carry out the necessary calculations at a specific point of the isocurvature surface by solving equation k(y, h) = kP numerically 

for a given y and, hence to find the value of the unknown term h(y) at a specific point of interest. 

IV. AN APPLICATION RELATED TO ISOCURVATURE SURFACES 

The problem at hand is the following: 

Given the geodetic coordinates (φP, λP, hP) of a point P on Earth’s physical surface, find the partial derivatives ky and kh of 

the plumb line curvature at the same point. 

The typical procedure to find these partial derivatives [5] is to derivate the plumb lines’ curvature function 
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These partial derivatives are going to be found in a different way. Let Q be the projection of point P on the ellipsoid along 

the vertical line to the ellipsoid passing through point P. Since it is restricted close to the ellipsoid, the following formula [6] 

for the determination of the plumb line curvature at point P is used: 

 

 

 

(21a) 

where the quantities of the above formula (principal curvatures k1, k2, and mean curvature J) are determined at point Q. The 

local Cartesian system (x, y, h) for the parameterization of the isocurvature surface passing through point P is centered at point 

Q. The x-axis is tangent to the local parallel positive to the east, the y-axis is tangent to the local meridian positive to the north, 

and the h-axis is the vertical line to the ellipsoid passing through the point of interest P. Using Eq. (21), is possible to find the 

partial derivative kh at point P, which is equal to: 
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For the determination of normal gravity at equator and at pole (γa and γb, respectively) see [4]. The remaining partial 

derivative ky (derivative along North – South direction) at point P will be found with the help of the theory of isocurvature 

surfaces. The normal vector to the isocurvature surface at point P is equal to  
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(29) 

where h(0) = hP. The angle Φ between the normal vector at point P and the meridian plane is determined by the following 

formula: 

 

 

 

(30) 

From Relation (29) there is  
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Therefore,  

 

 

 

 

 

(33) 

When 0 < φP < 900, the partial derivative ky > 0 tends to zero as φP tends to 900; hence, ky / kh is negative. The denominator 

is always positive. Therefore, the change of sign of the nominator results in a change of sign of cP. The relation between the 

two partial derivatives is given by the following formula:  

 
 

 

(34) 

For the determination of cP a point Q1 = (φQ1, λQ, 0) is chosen on the ellipsoid that is close to point P. Using Eq. (21) a point 

P1 = (φQ1, λQ, hP1) is determined such that k(P1) = k(P). This can be done starting from the initial value h΄ = hP. Then a suitable 

value δh΄ is found such that h΄P1 = hP + δh΄ or h΄P1 = hP – δh΄. The coordinates of point P1 in (X, Y, Z) system can be found [7] 

from the following transformation: 
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The transformation of the Cartesian coordinates of point P1 expressed in the (X, Y, Z) system to the local system (x, y, h) 

centered at point Q is given by the following: 
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Since the difference δφ = φQ1 – φQ was chosen to be small, the vector (0, y1, hP – h1) is assumed to be tangent to the 

isocurvature surface at point P. A vertical vector to it is (0, -hP + h1, y1). Using Transformation (35) there is  
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However, the vector (Xv, Yv, Zv) is collinear with the normal vector of the isocurvature surface at point P; therefore  
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From Transformation (37), the absolute value of the parameter cP is determined (remember that φQ = φP) as follows: 
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This formula is not valid at points where the normal vector of the isocurvature surface is parallel to the Z–axis because in 

that case cP becomes infinite. Hence, the points are excluded at which it holds that  

 
 

 

(41) 

From Eq. (40) cP is determined and then the partial derivative ky is determined from Eq. (34). The final relation is as 

follows: 
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Finally, it is worth mentioning that if cP is equal to zero, then the normal vector to the isocurvature surface at point P is 

parallel to the meridian plane (see Relations (34) and (29)). In this case Relation (42) becomes 
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V. CONCLUSIONS 

The sequence of steps required to study the isocurvature surfaces of the normal gravity field were outlined. Along 

isocurvature surfaces, the normal plumb line curvature has a constant value. The study of these surfaces is feasible only in 

small coordinate patches and for points not too far away from the ellipsoid (points on Earth’s physical surface). That is because 
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the function of the plumb line curvature is itself a very complicated function. The vector equation of an isocurvature surface is 

characteristic. Two variables were used, one angular (geodetic longitude) and one linear. The geodetic latitude serves only as a 

parameter in the vector equation and not as a variable. The advantage of this parameterization is that the parametric lines of the 

isocurvature surface are also lines of curvature. 

One global significant geometrical property of isocurvature surfaces is that, as the plumb line curvature tends to zero, they 

tend asymptotically to the equator’s plane and to the Z-axis. In addition, the normal vector of an isocurvature surface is 

collinear with the vector gradk. Finally, a method for the determination of the surface derivative ky of a plumb line’s curvature 

was described without differentiating the very complicated function of a plumb line’s curvature. This theoretical application 

shows the usefulness of isocurvature surfaces. The study of isocurvature surfaces may reveal new unknown geometrical 

properties of the normal gravity field. 
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