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Abstract- The REBMIX algorithm for fitting finite mixture models implemented in R package rebmix is presented. It provides functions
for random univariate and multivariate finite mixture generation, the number of components, component weights and component
parameter estimation, bootstrapping and the plotting of finite mixtures. It requires preprocessing of observations, information criterion
and conditionally independent normal, lognormal, Weibull, gamma, binomial, Poisson or Dirac component densities. The algorithm
optimizes the component parameters, mixing weights and number of components successively based on boundary conditions, such as
the maximum number of components and number of bins or nearest neighbours. The algorithm is robust, time efficient and can be
used either to assess an initial set of unknown parameters and number of components, e.g., for the EM algorithm, or as a standalone
algorithm providing a good compromise between parametric and nonparametric methods of finite mixture estimation. Univariate and
multivariate datasets are analysed for validation purposes.
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I.INTRODUCTION

Finite mixture models are used increasingly to model the distributions of a wide variety of random phenomena. For multi-
variate data of a continuous nature, attention is paid to the use of multivariate normal components because of their computational
convenience [1, 2, 3]. However, in fatigue and reliability analysis, lognormal and Weibull distributions are preferred due to their
flexibility and applicability to continuous positive random variables only [4, 5, 6, 7].

The finite mixture models have seen a real boost in popularity over the last two decades due to a tremendous increase
in available computing power. These models can be applied to datasets, where observations originate from categories whose
affiliations are not known, or it can provide approximations for multimodal distributions [8]. Some of the latest models can be
found in [9, 10, 11, 12, 13, 14, 15, 16, 17].

The REBMIX algorithm addresses the problem of finite mixture estimation numerically. It originates in [18] and is based on
the assumption that the problem of finite mixture estimation can be broken into multiple problems of parameter estimation for
basic parametric family types. Here the governing equations preexist and originate in the maximum likelihood. REBMIX is a
sequential algorithm that avoids the following drawbacks of the simultaneous EM algorithm [19, 20]:

• The EM algorithm converges to a local maximum of the likelihood function very quickly.

• There are often several other promising local optimal solutions in the vicinity of the solutions obtained from methods that
provide good initial guesses of the solution.

• Model selection criterion usually assumes that the global optimal solution of the log-likelihood function can be obtained.
However, achieving this is computationally intractable.

• Some regions in the search space do not contain any promising solutions. The promising and non-promising regions
co-exist, and it often becomes challenging to avoid wasting computational resources to search in non-promising regions.

Over time REBMIX has evolved [21, 22, 23, 24, 25]. This paper extends it by adding gamma, binomial, Poisson and Dirac para-
metric families. The reader should expect the derivation of a numerical algorithm, which combines basic statistical techniques in
a closed unit and not a concise statistical derivation of the governing equations. The latter does not seem to be feasible.

REBMIX has been compared to the recognizable FlexMix [26] algorithm in [7]. The comparison shows that REBMIX is a
robust, time efficient tool that can be used either to assess an initial set of unknown parameters and the number of components for
other algorithms [27, 28] or as a standalone procedure that acts as a good compromise between the parametric and nonparametric
methods of finite mixture estimation. The rebmix implementation of REBMIX [29] extends the set of algorithms available
for random univariate and multivariate finite mixture generation, number of components, component weights and component
parameter estimation, bootstrapping and plotting of the finite mixtures in the R language and environment for statistical computing
[30].
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II.ALGORITHM

Let y1, . . . ,yn be an observed d dimensional dataset of size n of continuous or discrete vector observations yj . Each
observation is assumed to follow the predictive mixture density

f(y|c,w,Θ) =

c∑
l=1

wlf(y|θl) (1)

with conditionally independent component densities

f(y|θl) =

d∏
i=1

f(yi|θil) (2)

indexed by the parameter vector θl = (θ1l, . . . ,θdl)
>. The components can currently belong to either normal

f(yi|θil) =
1√

2πσil
exp

{
−1

2

(yi − µil)2

σ2
il

}
,

lognormal

f(yi|θil) =
1√

2πσilyi
exp

{
−1

2

(log(yi)− µil)2

σ2
il

}
,

Weibull

f(yi|θil) =
βil
θil

(
yi
θil

)βil−1

exp

{
−
(
yi
θil

)βil}
,

gamma

f(yi|θil) =
1

Γ[βil]yi

(
yi
θil

)βil
exp

{
− yi
θil

}
,

binomial

f(yi|θil) =

(
θil
yi

)
pyiil (1− pil)θil−yi ,

Poisson

f(yi|θil) =
e−θilθyiil
yi!

or Dirac

f(yi|θil) =

{
1 yi = θil
0 otherwise

parametric family types. The object of the analysis is to obtain the number of components c, component weights wl summing
to 1 and component parameters θl. The REBMIX algorithm is an iterative numerical procedure which does not rely on rigorous
statistical analysis. Instead it makes good use of the suppositions:

• It is always possible to assign empirical densities to an arbitrary dataset.

• Based on the empirical densities, a global mode position can be identified.

• Once the global mode position and its empirical density are known, rough component parameters of the predictive compo-
nent density can be estimated.

• Based on the rough component parameters, the dataset can be clustered successively into the classes linked to the predictive
component densities and the residue.

• The number of components c equals the number of classes.

• Component parameters and the component weights can be enhanced for all classes.

• The unassigned observations can be distributed between the existing components by the Bayes decision rule and the
parameters of the finite mixture can be fine-tuned.

The idea is thus to assign the component densities one after another to the empirical mixture density. At the same time the
observations belonging to the component densities are extracted from the dataset. By increasing the number of components,
the number of observations in the dataset decreases. When the dataset attains a lower limit, it is assumed that the unassigned
observations can be distributed between the existing components. Sections A. to G. give the theoretical backgrounds for the
algorithm, while Section H. lists and explains its flow.
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A.Preprocessing of Observations

The algorithm requires the preprocessing of observations. Using a histogram, the dataset is counted into a finite number of
nonoverlapping, equally sized and regularly distributed bins. Assuming that the mean of a bin ȳj = (ȳ1j , . . . , ȳdj)

> is given by

ȳij = ȳi0 + ’An arbitrary integer’× hij , i = 1, . . . , d, (3)

the fraction of observations kj for j = 1, . . . , v falling into the volume Vj is counted out, where ȳi0 stands for an arbitrary
origin and v depicts the number of bins. Similarly, if the Parzen window is employed, the fraction of observations falling into
Vj centered on observation yj is obtained. In both cases, the volume is taken to be a hypersquare with sides of length hij . This
yields Vj =

∏d
i=1 hij . Moreover, for both approaches bin widths hij = hi and volumes Vj = V are kept constant. If the

k-nearest neighbour is used, the fraction of observations falling into a normalized hypersphere Vj = πd/2Rdj/Γ[1 + d/2] of
radius Rj centered on observation yj contains a constant number kj = k of observations. The bin widths for the histogram and
Parzen window and continuous parametric families

hi =
yimax − yimin

v

depend on the minimum yimin = min yij and maximum yimax = max yij observations. For the histogram and continuous
parametric families, the origin is preset to

ȳi0 = yimin +
hi
2
.

Discrete parametric families require hi = 1 and ȳi0 = yimin. The kth− 1 nearest neighbour yĵ is searched around yj based on
the normalized Euclidean distance

Rj =

√√√√ d∑
i=1

(
yiĵ − yij

yimax − yimin

)2

for ĵ 6= j and hij = 2Rj(yimax − yimin).

If N ≥ k nearest neighbours coincide, then the normalized Euclidean distance Rj to the first nearest non-coincident neighbour
yĵ is multiplied by (k/(N + 1))1/d. Infinite empirical density estimations are thus prevented.

B.Global Mode Detection

The argument m at which the empirical density flj attains its maximum

m = arg max
j

flj (4)

determines the global mode. If observations are binned into the histogram, then

flj =
klj
nl

1

Vj
, j = 1, . . . , v, (5)

where frequencies klj are initially set to kj and the number of observations in class l is

nl =

v∑
j=1

klj .

If the Parzen window or k-nearest neighbour is applied,

flj =
klj
nl

kj
Vj
, j = 1, . . . , n. (6)

Frequencies klj are initially set to 1, nl =
∑n
j=1 klj and the component weight wl = nl/n. Moreover, the lth component

conditional empirical density at the global mode for the histogram

fi|̂i.lm =
klm∑v

j=1, ȳîj=ȳîm
klj

1

him
=

klm
ki|̂i.lm

1

him
(7)

is required, where index î = 1, . . . , i − 1, i + 1, . . . , d. If d = 1, ki|̂i.lm = nl and fi|̂i.lm = flm. For the Parzen window and
k-nearest neighbour

fi|̂i.lm =
klm∑n

j=1, |yîj−yîm|≤hîm/2
klj

km
him

=
klm
ki|̂i.lm

km
him

. (8)
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C.Clustering of Observations

The clustering of observations is an iterative procedure which identifies those observations belonging to the lth component.
The deviations between klj and the predictive component frequencies for the histogram are given by

elj = klj − nlf(ȳj |θl)Vj . (9)

For the Parzen window and k-nearest neighbour

elj = klj − nlf(yj |θl)Vj/kj . (10)

To identify those observations which deviate the most, relative positive deviations εlj = elj/klj and a maximum positive relative
deviation εlmax are calculated. The total of positive and negative deviations

elp =

v∑
j=1, elj>0

elj and eln =

v∑
j=1, elj<0

max{elj ,−rj},

where rj represents the frequency of unassigned observations. If index v is replaced by n, the equation can also be used with the
Parzen window and k-nearest neighbour. The total of positive relative deviations of the lth component is then

Dl =
elp
nl
, (11)

where 0 ≤ Dl ≤ 1. The observations for which the inequality εlj > εlmax(1 − ar) holds are not assumed to belong to the
lth component and are therefore moved to the residue. The number of iterations depends on the acceleration rate 0 < ar ≤ 1,
whereby it is best to keep ar close to zero. The recommended value is 0.1. On the contrary, those observations for which
elj < 0 are transferred back to the lth component. The clustering of observations continues with the renewed rough parameter
and component weight estimation until

Dl ≤
Dmin

wl
. (12)

The constant 0 < Dmin ≤ 1 is optimized by one of the information criteria listed under argument Criterion in Fig. 1. The
clustering of observations ends with the enhanced component parameter estimation.

D.Rough Component Parameter Estimation

The clustering of observations depends on the rough component parameters. Proper extraction of observations belonging to
the lth component is assured by the restraints that prevents a component from flowing away from the global mode as at least one
component is supposed to be in its vicinity. This yields

f(y = ŷm|θl) = flm, (13)

where ŷm = ȳm for the histogram and ŷm = ym for the Parzen window and k-nearest neighbour. Restraint (13) is insufficient
if d > 1 even for single parameter component densities, such as Dirac and exponential parametric families. Allowing for the
independence of components in equation (2), equation (13) yields

d∏
i=1

f(yi = ŷim|θil) = flm =

d∏
i=1

εfi|̂i.lm, (14)

from where the required restraints

f(yi = ŷim|θil) = εfi|̂i.lm = fi|̂i.lmax, i = 1, . . . , d (15)

can be derived. In addition, from known flm and fi|̂i.lm, it follows that

ε = min

1,

(
flm∏d

i=1 fi|̂i.lm

) 1
d

 , (16)

where the upper limit of ε is set to 1. For Rayleigh, Poisson or binomial distributions with known θil it is assumed

∂f(yi = ŷim|θil)
∂yi

= 0, i = 1, . . . , d. (17)

17



Journal of Algorithms and Optimization Apr. 2015, Vol. 3 Iss. 2, PP. 14-28

The rough component parameters for single parameter distributions are thus gained from restraints (15) or (17). The restraint
chosen should ensure that the predictive component density at ŷim attains its maximum. For two parameter normal, lognormal,
Weibull or gamma distributions, the Lagrange multiplier

Λ(θil, λil) = −
∫ +∞

−∞
f(yi|θil) log(f(yi|θil))dyi + λil log(f(yi = ŷim|θil)/fi|̂i.lmax) (18)

provides a strategy for entropy maximization subject to the logarithm of (15). The rough component parameters for two parameter
distributions are then a solution of

∇θil,λilΛ(θil, λil) = 0, i = 1, . . . , d. (19)

Constrained entropy (18) maximization enables rough Weibull and gamma parameter estimation for shape parameter βil > 0
and not only for βil > 1 as in [24, 25]. Rough normal component parameters are given by

µil = ŷim and σil =
1√

2πfi|̂i.lmax

. (20)

Similarly, rough lognormal

f(λil) =
λil − 1

λil
+ log(λil(λil − 1)) + 2 log(

√
2πfi|̂i.lmaxŷim) = 0,

µil = λil − 1 + log(ŷim) and σil =
√
λil(λil − 1), (21)

Weibull

f(αil) =
αil − 1

λil
e

1
αil − fi|̂i.lmaxŷime = 0, λil =

αil
βil

,

βil = αil + γ + log

(
αil − 1

αil

)
, θil = ŷim

(
αil

αil − 1

) 1
βil

and βil > 0, (22)

gamma

f(αil) =
1

2
log(βil) + βil

(
log

(
αil − 1

αil

)
+

1

αil

)
− log(

√
2πfi|̂i.lmaxŷim) = 0,

βil =
γ(1 + αil)

γ − 1− αil log
(
αil−1
αil

) , λil =
αil
βil

, θil =
ŷimλil
αil − 1

and βil > 0, (23)

binomial

pil =


1− f1/θil

i|̂i.lmax
ŷim = 0

f
1/θil

i|̂i.lmax
ŷim = θil

ŷim/θil otherwise,

(24)

rough Poisson

θil =

{ − log(fi|̂i.lmax) ŷim = 0

ŷim otherwise
(25)

and rough Dirac
θil = ŷim (26)

component parameters are derived, where γ is the Euler-Mascheroni constant. When deriving (23) Γ[βil] is approximated by
the Stirling’s formula and digamma function by ψ(βil) = log(βil) − γ/βil, the rough binomial parameter θil = θi is fixed and
equals the number of categories minus one.

Such rigid restraints result in poor component parameter estimation if the modes of several component densities coincide.
The loose restraints introduced in [24] improve component parameter estimation and offer further evolution opportunities. The
rigid restraints become loose if fi|̂i.lmax in equations (20) to (26) is replaced by fi|̂i.lm, where

0 ≤ fi|̂i.lm ≤ fi|̂i.lmax. (27)

Instead of minimizing the maximum relative positive deviation [24], the simpler root finding of the total of relative deviations is
used here to attain the optimal fi|̂i.lm. For the histogram total of relative deviations

Di|̂i.lm = 1−
v∑

j=1, ȳîj=ȳîm

f(yi = ȳij |θil)hij (28)
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equals the fraction of observations falling into regions on the yi axis with zero empirical probability. If Di|̂i.lm is close to zero,
e.g., 0.002, then observations not contributing significantly to the lth component should not affect the loose component parameter
estimation. This yields

v∑
j=1, ȳîj=ȳîm

f(ȳij |θil)hij = 0.998 (29)

Equation (29) can be solved for optimal fi|̂i.lm by the bisection root finding method. If the root does not exist, then fi|̂i.lm =
fi|̂i.lmax. For the Parzen window and k-nearest neighbour the root of

n∑
j=1, |yîj−yîm|≤hîm/2

f(yij |θil)hij/kj = 0.998 (30)

is searched for optimal fi|̂i.lm. The Dirac parameter θil of (26) does not require fi|̂i.lm optimization.

E.Enhanced Component Parameter Estimation

Maximum likelihood is employed to obtain enhanced component parameters. For the histogram, enhanced normal compo-
nent parameters are given by

µil =
1

nl

v∑
j=1

klj ŷij and σ2
il =

1

nl

v∑
j=1

klj ŷ
2
ij − µ2

il. (31)

Likewise, enhanced lognormal

µil =
1

nl

v∑
j=1

klj log(ŷij) and σ2
il =

1

nl

v∑
j=1

klj log(ŷij)
2 − µ2

il, (32)

Weibull

θβilil =
1

nl

v∑
j=1

klj ŷ
βil
ij and f(βil) =

1

βil
+

1

nl

v∑
j=1

klj log(ŷij)−
∑v
j=1 klj ŷ

βil
ij log(ŷij)∑v

j=1 klj ŷ
βil
ij

= 0, (33)

gamma

θil =
1

βilnl

v∑
j=1

klj ŷij and f(βil) =
1

nl

v∑
j=1

klj log(ŷij)− log(θil)−
Γ′[βil]

Γ[βil]
= 0, (34)

binomial

pil =
1

nlθil

v∑
j=1

klj ŷij , (35)

Poisson

θil =
1

nl

v∑
j=1

klj ŷij (36)

and Dirac component parameters
θil = ŷim (37)

are estimated. Index v is replaced by n for the Parzen window or k-nearest neighbour.

F.First and Second Moment Calculation

The first and second moment of the normal

mil = µil and Vil = σ2
il + µ2

il, (38)

lognormal

mil = eµil+
σ2il
2 and Vil = e2µil+2σ2

il , (39)

Weibull

mil = θilΓ

[
1 +

1

βil

]
and Vil = θ2

ilΓ

[
1 +

2

βil

]
, (40)
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gamma
mil = θilβil and Vil = θ2

ilβil(1 + βil) (41)

and the first moment of binomial
mil = θilpil, (42)

Poisson
mil = θil (43)

and Dirac
mil = θil (44)

distributions are calculated to enable the classification of the unassigned observations.

G.Bayes Classification of the Unassigned Observations

With an increase in the number of components, the number nl of unassigned observations decreases

l−1∑
k=1

wk +
nl
n

= 1. (45)

The upper limit l − 1 equals the assigned number of components c and l the index of an additional component that has to be
checked whether or not it should be assigned to the finite mixture. The total of positive relative deviations D is then given by

D =

l−1∑
k=1

wkDk +
nl
n
Dl,

where nl/n and Dl stand for the weight of the unassigned observations and the total of positive relative deviations of the
unassigned observations, respectively. As elp in (11) for any unassigned component equals nl, Dl equals 1. This yields

D =

l−1∑
k=1

wk
ekp

nk
+
nl
n
. (46)

From equations (12) and (46) it follows that
D ≤ Dmin(l − 1) +

nl
n
. (47)

It is reasonable to stop assigning new components when the weight of the unassigned observations is less than or equal to

nl
n
≤ Dmin(l − 1). (48)

Unassigned observations klj are then assumed to belong to the existing classes and do not form new ones. The classification of
unassigned observations is accomplished by the Bayes decision rule [31]

l = arg max
l

wlf(yj |θl)

wl = wl +
klj
n

, mil = mil +
klj(yij −mil)

nwl
and Vil = Vil +

klj(y
2
ij − Vil)
nwl

, (49)

where klj is added to the lth class and the component weight and both moments are recalculated [32]. Once all v bin means or
all n observations are processed, the predictive mixture parameters are gained by inverting equations (38) to (44), inclusive.

H.Algorithm Flow

REBMIX is listed in Fig. 1. It requires fourteen arguments and, depending on the parametric families, five or six of them
are mandatory whilst the rest are optional. It consists of four main loops: the inner 9→ 37, the middle 6→ 41, the outer 4→ 47
and the outmost loop 1→ 48. The numbers are line indices.

In line 1 the outmost loop begins. It runs over an ordered set of numbers K of bins v for the histogram and the Parzen window
or numbers of nearest neighbours k for the k-nearest neighbour. If absolute distance between the number at which IC attains its
optimum and the closest two numbers in K is greater than 1, set K is extended by the golden section search method. In line 2 the

1Mandatory argument.
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Require: Dataset1, Preprocessing1, cmax, Criterion, Variables1, pdf1, Theta11, Theta2, K1, y0, ymin,
ymax, ar and Restraints.

Ensure: Dataset contains datasets, Preprocessing is one of "histogram", "Parzen window" or "k-nearest
neighbour", cmax ∈ N, Criterion is one of "AIC", "AIC3", "AIC4", "AICc", "BIC", "CAIC", "HQC",
"MDL2", "MDL5", "AWE", "CLC", "ICL", "PC", "ICL-BIC", "D" or "SSE", Variables are "continuous"
or "discrete", pdf is one of "normal", "lognormal", "Weibull", "gamma", "binomial", "Poisson" or
"Dirac", Theta1 may contain initial binomial parameters, Theta2 is inactive, K ⊂ N, y0 may contain origins, ymin
and ymax may contain minimum and maximum observations, 0 < ar ≤ 1 and Restraints are "loose" or "rigid".

1: for all K do
2: Preprocessing of observations
3: I1 ← 1, Dmin ← 0.25, klj ← kj for j = 1 to v
4: while I1 ≤ Imax do
5: l← 1, r ← n, nl ← n
6: while nl/n > Dmin(l − 1) do
7: Global mode detection
8: I2 ← 1, wl ← nl/n, rj ← 0 for j = 1 to v
9: while I2 ≤ Imax do

10: Rough component parameter estimation
11: elp ← 0, eln ← 0, elmax ← 0
12: for j = 1 to v do
13: elj ← 0, εlj ← 0
14: if klj > 0 or rj > 0 then
15: elj ← klj − nlf(ȳj |θl)Vj
16: if elj > 0 then
17: εlj ← elj/klj , εlmax ← max{εlmax, εlj}, elp ← elp + elj
18: else
19: elj ← max{elj ,−rj}, eln ← eln − elj
20: end if
21: end if
22: end for
23: Dl ← elp/nl, εlmax ← εlmax(1− ar)
24: if Dl > Dmin/wl then
25: for all j such that 1 ≤ j ≤ v and εlj > εlmax do
26: klj ← klj − elj , rj ← rj + elj , nl ← nl − elj
27: end for
28: elp ← elp/Dl − nl, f ← elp/eln if eln > elp otherwise f ← 1
29: for all j such that 1 ≤ j ≤ v and elj < 0 do
30: elj ← felj , klj ← klj − elj , rj ← rj + elj , nl ← nl − elj
31: end for
32: wl ← nl/n
33: else
34: Enhanced component parameter estimation, break
35: end if
36: I2 ← I2 + 1
37: end while
38: First and second moment calculation
39: c← l, r ← r − nl, l← l + 1, nl ← r, klj ← rj for j = 1 to v
40: Stop← c ≥ v or c ≥ cmax, break if Stop = true
41: end while
42: Bayes classification of the unassigned observations, log likelihood logL, information criterion IC and total of positive

relative deviations D calculation
43: if IC < ICopt then
44: logL→ logLopt, IC→ ICopt, c→ copt, w→ wopt, Θ→ Θopt

45: end if
46: break if Stop = true, Dmin ← cDmin/(c+ 1), I1 ← I1 + 1
47: end while
48: end for

Fig. 1 REBMIX algorithm
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observations are preprocessed as described in Section A.. In line 3, counter I1, constant Dmin and frequencies klj are initiated.
Next, the outer loop begins. Line 5 assumes the mixture consists of one component, the number of observations r to separate is
set to n and nl to n. If inequality (48) in line 6 is not fulfilled, the middle loop begins.

In lines 7 and 8, the global mode argumentm is detected as explained in Section B., counter I2 is initiated, component weight
wl is calculated and frequencies rj are set to zero. If I2 ≤ Imax, the inner loop begins, otherwise in line 38 the first and the
second moments are calculated (see Section F.). In line 39 the number of components c is set to l, the number of observations r
is decreased by nl, l is incremented, the number of the unassigned observations r joins nl, and the frequencies of the unassigned
observations rj are moved to klj . If the number of components c in line 40 is greater or equal than v or cmax, Stop is set to true
and the middle loop ends.

The inner loop is divided into three sections. In line 10 the component parameters are roughly estimated (see Section D.). In
the second section 11 → 23, deviations elj , the total of positive deviations elp, the total of negative deviations eln, the total of
positive relative deviations Dl and maximum relative deviation εlmax are calculated. The number of iterations depends on the
acceleration rate ar. In the third section 24→ 35, the maximum and negative deviations are transferred between frequencies klj
and rj . This way deviations elj are reduced gradually. The negative value of elj can never be higher than rj . If this is not true,
deviation elj is corrected as listed in line 19. When the condition in line 24 is not fulfilled, the enhanced component parameter
estimation is carried out (see Section E.) and the inner loop ends.

Enhanced component parameter estimation may fail. In this instance, the component parameters are reset to the state just
before the failure occurred. In line 42 the unassigned observations are classified by the Bayes decision rule as depicted in
Section G.. Further on, the information criterion, e.g., [33]

IC = −2 logL(c,w,Θ) + 2M (50)

is calculated, whereas the number of free parameters for the normal, lognormal, Weibull and gamma mixtures can be written as

M = 2cd+ c− 1. (51)

The binomial, Poisson and Dirac mixtures require M = cd + c − 1. The log likelihood function for the binned observations is
given by

logL(c,w,Θ) =

v∑
j=1

kj log f(ȳj |c,w,Θ). (52)

Otherwise

logL(c,w,Θ) =

n∑
j=1

log f(yj |c,w,Θ). (53)

Finally, the total of positive relative deviations for the histogram

D =
v∑
j=1

〈
kj
n
− f(ȳj |c,w,Θ)Vj

〉
, (54)

Parzen window or k-nearest neighbour

D =

n∑
j=1

〈
1

n
− f(yj |c,w,Θ)Vj

kj

〉
(55)

is calculated, where 〈x〉 = x if x > 0 and 〈x〉 = 0 if x ≤ 0. This way the optimum ICopt corresponding to the optimal number
of components copt, weights wopt and parameters Θopt is reached. The outer loop ends if the Stop criterion in line 46 is true.
Otherwise Dmin is decreased in such a way that the total of positive relative deviations

cDold
min = (c+ 1)Dnew

min

for the c and c + 1 components is preserved. If index v in Fig. 1 is replaced by n and line 15 is replaced by (10) the algorithm,
presented for the histogram, can also be used with the Parzen window and k-nearest neighbour.

III.APPLICATION

A comparison between the EM algorithm and the REBMIX algorithm for time efficiency and accuracy has already been
studied in [22, 23]. Therefore, the latest results [7] obtained by comparing the EM algorithm implemented in FlexMix [26]
to REBMIX are only summarized here. Two cases have been investigated. In case 1, a dataset of size n = 10000 generated
from the three component multivariate Weibull-normal mixture density has been considered. The FlexMix algorithm attained
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an AIC = 223736 with three components in 149.42s, whereas the REBMIX algorithm resulted in an AIC = 223999 with four
components in 1.53s. In case 2, the Weibull-normal mixture density has been applied to a real dataset, where the number of
components was not known. The FlexMix algorithm has shown some convergence problems and resulted in five components and
an AIC = 562113 in 1801.52s, whereas the REBMIX algorithm resulted in nine components and an AIC = 559637 in 7.09s.
The latest study has confirmed our previous experience with the EM algorithm. The REBMIX algorithm is time efficient and
robust. The main advantage of the EM algorithm is its accuracy if convergence problems are avoided by a carefully selecting the
initial set of unknown parameters. Since the efficiency and accuracy of the REBMIX algorithm have already been dealt with in
[22, 23, 7], the rest of this section stresses other capabilities of the REBMIX algorithm by studying univariate and multivariate
datasets.

A.Univariate Normal Datasets

As the family of finite normal mixtures is very flexible, it was used by [34] to represent a wide variety of density shapes
in their analytical study of the mean integrated squared error of the kernel density estimator. To demonstrate that the family of
normal mixtures is very broad, 15 carefully chosen examples were given. The first five represent different types of problems that
can arise for unimodal densities. The rest of the densities are multimodal. Densities 6 to 9 are mildly multimodal and might
be estimated fairly well with a dataset of a moderate size. The remaining densities are strongly multimodal and are very hard
to recover in full with moderate dataset size. However, they are still worth studying because the issue of just how much can be
recovered is important.

To find out the extent to which rebmix has improved, datasets of sizes 100, 1000 and 10000 are generated for these 15 finite
normal mixtures under identical conditions as in [24]. For each dataset size and each density from 1 to 15, 100 datasets are
generated. See help("RNGMIX"), help("REBMIX") and help("kseq") in rebmix for details.

The REBMIX function is applied to the three dataset sizes and the 15 finite normal mixtures. The preprocessing is set
to histogram, the maximum number of components to 20 and the information criterion to BIC. The number of bins ranges
from Sturges [35] to Log10 corresponding to the Log10 rule or to the RootN rule. One or two values appear in Tables 1
and 2. Where two values are shown, they are separated by a slash sign. If the calculations are performed for K ranging from
Sturges:Log10, then the values in the tables are on the left side of the slash sign. If K ranges from Sturges:RootN,
then the values are on the right side of the slash sign. To speed up computation, K is set to kseq(from = Sturges, to
= RootN, f = 0.05) for datasets of size 10000. If there is no slash, K = Sturges:Log10. The origin y0 = 0.0,
minimum ymin and maximum ymax observations are set to the outmost values of 100 datasets attained by the RNGMIX function.

The true numbers of components c from which the datasets are generated for the 15 densities, predictive mean numbers of
components µc and the corresponding standard deviations σc are shown in Table 1 and are compared to Table 2 in [24]. In testing

TABLE 1 TRUE NUMBER OF COMPONENTS c AND PREDICTIVE MEAN NUMBER OF COMPONENTS µc WITH THE CORRESPONDING STANDARD DEVIATION
σc FOR UNIVARIATE NORMAL DATASETS

n = 100 n = 1000 n = 10000

Density c µc σc µc σc µc σc

1 Gaussian 1 1.0 0.00 1.0 0.00 1.0 0.24
2 Skewed unimodal 3 1.2 0.36 2.1 0.29 4.4/2.4 1.53/0.84
3 Strongly skewed 8 2.5 0.56 7.3 1.09 16.2 1.74
4 Kurtotic unimodal 2 2.0 0.10 2.1 0.22 2.0 0.00
5 Outlier 2 2.2 0.55 2.5 0.50 2.2 0.49
6 Bimodal 2 1.6 0.50 2.0 0.00 2.2 0.66
7 Separated bimodal 2 2.0 0.10 2.0 0.20 2.4/2.0 0.69/0.00
8 Skewed bimodal 2 1.5 0.50 2.2 0.36 4.0 1.23
9 Trimodal 3 1.8 0.42 2.4/2.5 0.48/0.50 4.2/3.0 1.36/0.20
10 Claw 6 1.1 0.27 3.4/5.8 1.64/1.55 9.5 1.33
11 Double claw 9 1.6 0.50 2.0 0.10 2.1 0.62
12 Asymmetric claw 6 1.1 0.27 4.3 1.94 10.1 2.28
13 Asymmetric double claw 8 1.7 0.45 2.0 0.17 5.0 3.08
14 Smooth comb 6 3.2 0.55 5.1 0.96 10.0 2.15
15 Discrete comb 6 3.9 0.32 5.0 0.83 11.0 1.32

the null hypothesis, that the predictive mean number of components µc with the corresponding standard deviation σc equals the
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true number of components c, one sample t-test

t =
µc − c
σc/
√
nc

(56)

is used. Let statistics t calculated from Table 2 [24] be told and let those from Table 1 be tnew. If tnew < told, an improvement
denoted by + in Table 2 is observed. If tnew = told, notation 0 means unchanged. If tnew > told, a deterioration denoted by – is
observed.

Table 2 shows that for n = 100 an improvement of 20% is achieved. For n = 1000 an improvement of 27% is achieved.
However, for n = 10000 a worsening by 7% is observed. This means that for the three dataset sizes a 13% change of the old state
is observed. If RootN is chosen for maximum K, no improvement is observed for n = 100 as the value of K for n = 100 for
both Log10 and RootN rules is identical. For n = 1000 and 10000 an improvement of 53% and 20% is observed, respectively.
This means that for the three dataset sizes the old state is improved by 31% on average.

The gaussian density can be recovered by the REBMIX algorithm. When the unimodal density is skewed, µc tends towards
c = 3 for higher n. The strongly skewed density can not be recovered satisfactorily even for n = 10000. These kind of
densities point out one of the limitations of the REBMIX algorithm which will be difficult to suppress. The kurtotic unimodal,
outlier, bimodal and separated bimodal densities can also be recovered however the skewed bimodal density is slightly overfitted
for n = 10000. The trimodal density can be better recovered for higher n. The claw density consists of one broad density
with w1 = 1/2 and five superimposed narrow densities with w2 = . . . = w6 = 1/10. It can be recovered for n = 1000,
however overfitting occurs for high n. This suggests further improvements of the loose restraints are required. The double
claw density consists of a bimodal density with w1 = w2 = 49/100 and seven spikes with w3 = . . . = w9 = 1/350.
Insensitivity of the REBMIX to these spikes can be treated as beneficial. A similar conclusion holds for the asymmetric double
claw density where three narrow densities with component weights of 7/300 can be recovered completely for the highest n.
The asymmetric double claw density can be better recovered for higher n values. Further improvements of the loose restraints
could also lead to improvements in this area. The smooth comb and discrete comb densities can be modelled if n is high
enough although overfitting occurs. The optimal number of bins should preferably be searched within the broadest limits of
K. The rebmix.univariate.normal.R script file that generates the results is available in the rebmix package demo
subdirectory. To run it enter demo("rebmix.univariate.normal.R","rebmix") and press return.

TABLE 2 THREE-STATE LOGIC COMPARISON OF THE t STATISTICS FOR UNIVARIATE NORMAL DATASETS

Density n = 100 n = 1000 n = 10000

1 Gaussian 0 0 0
2 Skewed unimodal – + –/+
3 Strongly skewed + + –
4 Kurtotic unimodal + – 0
5 Outlier – – +
6 Bimodal + 0 +
7 Separated bimodal 0 0 –/0
8 Skewed bimodal + + +
9 Trimodal – –/+ –/0
10 Claw + –/+ –
11 Double claw + + +
12 Asymmetric claw + + +
13 Asymmetric double claw – + +
14 Smooth comb + + –
15 Discrete comb – + –

20% 27%/53% -7%/20%

B.Galaxy Dataset

The dataset analysed in [36] contains the measurements of the velocities of 82 galaxies diverging away from our own galaxy.
The multimodality of the velocities may indicate the presence of super clusters of galaxies surrounded by large voids, each mode
representing a cluster moving away at its own speed [36, gives more background]. Richardson and Green [37] concluded from
their approach that the number of components ranged from 5 to 7, while [38] provided the support for six components. Stephens
[39] reported that three components were optimal for the mixture of normal and four for the mixture of t distributions.
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The REBMIX function in rebmix is entered for normal, lognormal, Weibull and gamma parametric families. The maximum
number of components cmax is set to 10. The influence of the Akaike [33] information criterion AIC and the Bayesian [40]
information criterion BIC for the histogram and Parzen window preprocessing on predictive number of components c is studied.
The optimal number of bins is searched within the broadest limits for K = 7:20. The minimum information criterion and

TABLE 3 PREDICTIVE NUMBER OF COMPONENTS c, NUMBER OF BINS v, INFORMATION CRITERION IC AND LOG LIKELIHOOD logL FOR GALAXY DATASET

Parametric family Preprocessing Criterion c v IC logL

normal

histogram AIC 6 20 424 -195
histogram BIC 4 19 453 -202
Parzen window AIC 6 18 431 -199
Parzen window BIC 4 16 459 -205

lognormal

histogram AIC 6 20 422 -194
histogram BIC 3 19 442 -203
Parzen window AIC 6 19 436 -201
Parzen window BIC 3 8 461 -213

Weibull

histogram AIC 5 15 428 -200
histogram BIC 4 17 458 -205
Parzen window AIC 4 11 435 -207
Parzen window BIC 4 11 462 -207

gamma

histogram AIC 6 20 423 -194
histogram BIC 3 19 444 -204
Parzen window AIC 6 18 432 -199
Parzen window BIC 4 14 462 -207

the maximum log likelihood in Table 3 are observed for the histogram preprocessing. The maximum log likelihood resulting
in 6 components coincides with the lognormal and gamma parametric family types and the AIC. Most frequently six and four
components appear. For this particular dataset the AIC is favorable giving 4 to 6 components. The plot method delivers a fitted
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Fig. 2 Empirical density and distribution function (circles) and predictive lognormal mixture density and distribution function (solid line) for galaxy dataset

TABLE 4 COMPONENT WEIGHTS AND LOGNORMAL COMPONENT PARAMETERS FOR GALAXY DATASET

l 1 2 3 4 5 6

wl 0.456 0.154 0.243 0.0854 0.0372 0.0244
µl 2.99 3.11 3.18 2.28 3.49 2.78
σl 0.041 0.034 0.0648 0.0511 0.029 0.0312

finite mixture, complete with legend, in Fig. 2. The corresponding predictive lognormal mixture parameters in Table 4 are given
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by the coef method. For the details on specifying arguments for the plot and coef methods see help("plot.REBMIX")
and help("coef.REBMIX"), respectively. The rebmix.galaxy.R script file is made available via demo("rebmix.
galaxy","rebmix").

C.Mixed Continuous-discrete Dataset

A multivariate mixed continuous-discrete 3 component mixture is generated here by calling the RNGMIX function. The
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Fig. 3 Empirical densities (large coloured circles), predictive multivariate marginal lognormal-Poisson-binomial-Weibull mixture densities (coloured lines and
small circles), empirical densities (circles), predictive univariate marginal lognormal, Poisson, binomial and Weibull mixture densities and progress charts (solid
line)

REBMIX function is called for the multivariate lognormal-Poisson-binomial-Weibull parametric family type. To plot the reb-
mix mixture in Fig. 3 the plot method is called. By calling the boot.REBMIX function B bootstrap datasets of length
n are generated for the x object of class REBMIX at position pos, where bootstrap Bootstrap can be one of the default
"parametric" or "nonparametric" options. Arguments replace and prob affect the nonparametric bootstrap only,
see help("sample") and [38] for details regarding replacement and weighted bootstrap.

The mixedboot object of class boot.REBMIX holds a data frame c = {9, 8, 6, ..., 7, 5, 5, 5, 5} con-
taining numbers of components c for B = 100 bootstrap datasets, standard error c.se = 1.54, coefficient of variation
c.cv = 0.259, mode c.mode = 5 and mode probability c.prob = 0.31 of the numbers of components. Component
weights w, component parameters theta1.i and theta2.i, standard errors w.se, theta1.i.se and theta2.i.se and
coefficients of variation w.cv, theta1.i.cv and theta2.i.cv for those bootstrap datasets for which c = 5 are also re-
turned. See help("boot.REBMIX") in rebmix for details. The demo("rebmix.mixed.continuous.discrete",
"rebmix") makes the section reproducible.

IV.CONCLUSIONS

The article presents the REBMIX algorithm and the rebmix package. The datasets are studied on the x64 architecture. By
applying the tikzDevice package [41], plots with legends are obtained. The REBMIX algorithm can be used to assess an initial
set of unknown parameters and number of components for, e.g., the EM algorithm or as a standalone procedure that is a good

26



Journal of Algorithms and Optimization Apr. 2015, Vol. 3 Iss. 2, PP. 14-28

compromise between the parametric and nonparametric methods of finite mixture estimation. Its major advantages are robustness
and time efficiency. Its advantages are more apparent if mixtures are composed of a larger number of components. On the other
hand, it requires the preprocessing of observations, which is a drawback, especially where smaller datasets are concerned. The
restoration of overlapping components is not always adequate either. However, further improvements of the loose restraints
seem to be feasible. The rebmix package can be broadened to other parametric family types, including those with conditionally
dependent component densities, e.g., multivariate normal mixtures with full covariance matrices. Currently multivariate normal
mixtures with diagonal covariance matrices are available. In time further improvements will see an extensibility of the REBMIX
algorithm whereby users should have the ability to provide their own parametric family types for the rapid prototyping of new
finite mixture models. The RCLSMIX function that enables class membership prediction is available in the rebmix package. See
help("RCLSMIX") for details. The REBMIX is thus also intended to be used for pattern recognition.
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