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Abstract- The response of reinforced concrete structures to 
earthquake is a complicated issue that has been the subject of 
researchers’ studies for years. At present, various methods are 
used to evaluate the seismic resistance of existing buildings in the 
world. These methods are established in such ways that they only 
have an application in different types of reinforced concrete 
buildings constructed in a country. Therefore, direct application 
of them in other countries is not possible. On the other hand, 
design control of the existing reinforced concrete structures and 
determining their behaviour against earthquake motions, needs 
a rather easy applied method. One of the main desired goals on 
this basis is to introduce a new method for computing the 
probability of vulnerability of reinforced concrete structures that 
besides simplicity, and accuracy in computation, presents a more 
realistic and pragmatic probability of structures vulnerability 
and also can readily compute the level of vulnerability of other 
structures and be able to present in valid regulations of seismic 
design of structures, because it seems that it expresses the Log 
normal distribution probability very conservatively. Therefore, 
Logistic probability distribution was studied and it appeared 
that it has the ability of computing probability of vulnerability of 
the structures with high accuracy. In this paper, the attempts 
have been made to apply the logistic distribution simultaneously 
with the Log-normal distribution and to compare their results. 
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I. INTRODUCTION 
In recent years many studies and researches have 

performed in order to estimate the risk level o f structures. 
Available records and documents show startling statistics of 
evaluation of economic damages in seismic areas and 
therefore in order to reduce the potential of damage that 
depends on seismic performance o f structures, the amount of 
damages incurred to structures should be predicted by valid 
and reliab le methods. Among introduced methods is IDA 
(Incremental Dynamic Analysis) Curves that are obtained 
through nonlinear dynamic analysis of the structure under 
earthquake accelerograph. Structure′s response such as 
displacement, relative drift o f stories, accelerations and so on 
is determined by  numerous nonlinear dynamic analyses in 
which maximum accelerat ion of earthquake increase 
continuously. This trend will continue until instability of 
structure and then the resultant response will be d rawn against 
PGA of earthquake. These curves show useful informat ion 
about risk level of structures. Two other methods can be used 
for describing structural damage amount in a given area [5]: 
1. Fragility Curves,Damage. 
2. Probability Matrix1. 

                                                 
1 -Whithman 1973 

Damage Probability Matrix is indeed an ind ication of 
damages distribution in form of table. Each column is 
considered for one earthquake intensity and numbers in  
columns show a fraction of different ranges of damages 
experienced by structures. The sum of numbers in one column 
is 1. DPM shows the discrete probability of incidence of one 
damage range for different intensities. On the other hand, 
fragility curves provide graphical information of structural 
damage distribution. Therefore, informat ion provided by 
DPM and frag ility curves are similar and the only difference 
is that fragility curves show a cumulat ive distribution of 
damages that suggests the continuous probability of incidence 
or crossover of a damage range. These curves are of specific 
importance. Generalit ies and concepts of fragility curves are 
described in this paper. 

II. SEISMIC FRAGILITY 
Description of seismic risk involves three major 

parameters: 

• Earthquake risk, 
• Characteristics of structure components, 
• Fragility of structure components with regard to seismic 

risk. 

During the process of providing information about 
fragility, inherent uncertainties in risk and structure 
component should be introduced in calculat ions and 
integrated in uncertainties due to calculation methods. 
Fragility curves give us an estimation of structure crossover 
from a limit state in a particular level o f intensity. Limit state 
usually gives a damage state or applied limitation in terms of 
structure response. In recent studies, limit states are expressed 
as terms of transformation  instead of load. Fragility 
informat ion can be used by design engineers, reliable 
specialists, insurance specialists and managers of crisis 
systems, hospitals and highways network. Th is informat ion 
can be used for analysis, evaluation and improvement of 
seismic performance of structural and non-structural systems. 
Also, various sources of data can be used for achiev ing 
fragility curves. 

An easy way to comply with the journal paper formatting  
requirements is to use this document as a template and simply  
type your text into it. 

III. DAMAGE INDEX 
Damage index is a response quantity or a dimensionless 

ratio of structure response to earthquake simulation that is 
used as measure for criterion for measuring imposed damages 
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of structures based on performance ranges. Damage indices 
are defined in local and total forms (as shown in Fig. 1). 

 
Fig. 1 Damage index 

Two types of the oldest and the most simple damage 
indices are plasticity and relat ive drift of stories. Plasticity 
ratio can be in form of curvature ( φµ ), rotation ( θµ ) or 

displacement ( δµ ).  

, ,m m m

y y y
φ θ δ

φ θ δµ µ µ
φ θ δ

= = =              (1) 

Where   mδ , mθ , mφ  are maximum curvature, maximum 
rotation and maximum d isplacement at the end of one 
component, respectively, and yδ , yθ , yφ  are y ield  
curvatures, yield rotation and yield displacement, respectively. 
Banon (1981) improved plasticity ratio based on hardness 
reduction and resistance reduction that occurs in oscillatory 
loading. Bending damage ratio  is defined in the following 
way [4]:  

0

m

KFDR
K

=                              (2) 

Where  0K  is in itial scant hardness and  mK  is the scant 

hardness equivalent to maximum response and fk  is final 
scant of final hardness. Comparison with experiments results 
shows that it does not have any of plasticity ratios and failure 
or damage compatible results. Another quantity that has been 
used widely as a damage index is relat ive drift of stories. The 
fact that stories drift is used for measuring expected damages 
is generally  accepted. Algan (1982) and Hazus (2003) used 
relative drift as a basis for measuring damages due to 
earthquake. 

IV. LOCALIZED INDICES BASED ON DEFORMATION 
Stephen and Yao (1987), Wang and Shah (1987), Wang 

(1992) and Chung (1987) suggested a different damage index 
for modeling bulk damages which occur in oscillatory loading. 
This damage index was implemented either by relat ion 
making based on fatigue in which damages were considered 
as a function of localized plastic deformations or by 
combin ing a part of energy absorbed during loading [10]. 

V. COMPOUND INDICES 
Willums and Sexmith  (1995), Gouzman (1989) and Valles 

(1996) described Park & Ang Index which is the most famous 
and the most widely used localized damage index. This index 
is a linear combination of normalized  deformat ions and 
absorbed energy [6, 9]. 

m
e

u y u

dE
D

F
δ β
δ δ

= + ∫                         (3) 

Where D  is damage index,  
mδ  is maximum change 

response under earthquake, dE is absorbed hysteretic energy 
component, 

u
δ  is final deformation capacity under uniform 

deformation, 
y

F  is yield resistance of longitudinal 

reinforcements, and  
e

β  is a positive constant coefficient that 
represents effect of oscillatory loading on structural damage. 
This coefficient is a function of shear span ratio, normalized 
axial stress, longitudinal steel rat io and closure ratio  of steel. 
Park (1985) suggested D = 0.4 as threshold value of repairable 
and non-repairable damages, while some researchers in 1987 
presented a more detailed classification which is shown in Fig.  
2. 

 
                Fig. 2 Performance ranges of Park & Ang Index 

VI. TOTAL DAMAGE INDEX 
Total damage index of a structure depends on distribution 

and intensity of local damages. Method widely used for 
expressing total damage index of a structure is the weighted 
or normal average of local indices or local absorbed energy. 
Therefore, for a story: 

i i
story

i

D ED
E

= ∑
∑                         

(4) 

Where 
i

D  is local damage index in thi point and 
i

E  is  

energy absorbed in thi  point. Natural frequencies of damaged 
structures reduce due to reduction of hardness. Roufaiel and 
Meyer presented a total damage index with a correction factor 
[8]: 

14.2 1und
y

damm y
global

f y f y

f
f

D
δ

δ δ
δ δ δ δ

−
−

= =
− −

 
 
           (5) 

Where 
undF and 

damF are structure foundation frequencies 

before and after damage, 
f

δ is final capacity and  
y

δ  is yield  
capacity under uniform loading. A  number of softening 
indices, such as maximum softening

msD , are calib rated based 
on three periods shown in Fig. 3. 

2 2

2 2
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Fig. 3 Basic period evolution of Milican Laboratory (Willimas and Sexsmith, 

1995) 

Where 
und

T and 
dam

T are structure periods before and after 

earthquake and mT  is the maximum period during earthquake. 
Regarding to these indices, maximum softening was 
suggested as the best quantity for showing total damage index 
of structure. Merk (1992) extended the maximum softening 
index in order to include second mode. He defined two 
damage parameters [7]: 

1,
1

1,

2,
2

2,

1

1

m

und

m

und

K
D

K

K
D

K

= −

= −

                          (7) 

Where 1 2,K K  are spring constants for a system of two 
freedom degrees with two equal masses. Its periods are 
equivalent to first and second periods of multi-freedom degree 
structure. It can be assumed that 

1D , 
1K represent lower part  

of the structure and 
2D , 2K  represent the upper part of the 

structure. 

VII. DRAWING FRAGILITY CURVES BY SIMPLE METHOD 
As mentioned before, structure fragility for a limit state is 

defined as conditional probability of transition from limit  state 
capacity for a g iven level of ground motion intensity. So it  
can be said that knowing demand values for different levels of 
spectral acceleration (Incremental Dynamic Analysis data) 
and knowing limit state capacity, we can determine 
probability of transition from g iven limit state at a certain 
level of intensity by following formula : 

/( )data data LS
LS

Total data

n
P

n
>

−

=
             

(8) 

In this method, we do not take a certain statistical 
distribution for data and all the inherent random 
characteristics will be effective d irectly. But a disadvantage of 
this method is that it does not have a formula defin ition for 
damage function. 

VIII. PROVISION OF FRAGILITY CURVES BY INTENSITY-
BASED METHOD 

Structural fragilit ies for a limit state are defined as 
conditional probability of transition from limit state capacity 
for a g iven intensity level [11] (as shown in Fig. 4) 

        
Fig. 4 Structural fragility flowchart 

Where ( )Ls aF S  is structure fragility at spectral 
acceleration aS  for limit state Ls . From above expression it  
can be found that fragility is expressed as probability that 
random variable ,a cS be lower than or the same as aS value. 
So, fragility is still expressed as cumulative distribution 
functions of random capacity ,a cS [11]. If it is assumed that 
probability distribution of spectral accelerat ion capacity, ,a cS  
is as logistic log with mean  and natural log standard 
deviation

,a cSβ . Schematic fragility curve is showed in  Fig. 5 
[11]. 
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Fig. 5 Schematic diagram of fragility and risk curve 

IX. FRAGILITY CURVE USING 3D DAMAGE INDEX 
In constructing analytical vulnerability functions, damage 

state of a structure is estimated based on analytical assessment 
results such as maximum displacements, interstory drifts and 
various damage indexes. From the latter analysis results, 
probability distribution and its parameters are determined. 
However, if the demand is far larger than the capacity of the 
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structure, the analysis often stops due to the failure of 
numerical convergence in the algorithm of the structural 
analysis program. Th is incomplete analysis may result in very  
large response value, as shown in Fig. 6. The latter analysis 
result should be excluded in the statistical estimat ion of 
structural responses because it distorts the statistical 
parameters such as mean and standard deviation that 
represents the damage state of structures [12]. 

 
Fig. 6 Response histories of the example structure under various intensities of 

Kalamate 1986- Prefecture 

In this paper, analysis results with D.I. larger than 1.0 are 
separated from the procedure of determining statistical 
parameters to estimate the level of structural damage and the 
probability of collapse during the analysis was calcu lated, as 
shown in Step 1(Fig. 7). For structures that are not collapsed 
during the analysis (0 ≤ D.I. ≤ 1.0), conventional method of 
calculating cumulat ive probability distribution is multip lied 
with the probability of non-collapse which is the 
complementary probability of co llapse[12], as shown in Step 
3 (Fig. 7). Finally, the probability o f damage index exceeding 
a predetermined limit  state is calculated by combining the 
probability of collapse and the probability of structures 
suffering a certain level of damage without collapsing. Similar 
concept to the above mentioned method is given by Shome 
and Cornell (2000). For a given earthquake intensity, the 
procedure of calcu lating the probability o f damage index 
exceeding a given limit state (L.S.) is described as follows 
[12]:     

 
       Fig. 7 Fragility curve using 3D damage index flowchart 

The parameters used are defined as follows: 
µ : Mean of Damage Indexes (D.I.) that are between 0 and 
1.0 

σ : Standard deviation of Damage Indexes (D.I.) that are 
between 0 and 1.0 

σδ
µ

= : Coefficient of variation, 
21

mx µ
δ

=
+

: Median  

ln mxλ = , 2ln(1 )ξ δ= + and (...)L  cumulat ive 
standard Logistic distribution. 

The probability distribution is assumed to be Logistic for 
convenience. Fig. 8 shows the comparing of fragility curves 
by lognormal distribution and logistics distribution. 
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Fig. 8 Comparison of fragility curves by logistic distribution and lognormal 
distribution 

Vulnerability functions using the new 3D damage index 
and conventional damage index are compared in Fig. 9. Four 
Limit States are defined based on damage indices D.I. of 0.2, 
0.4, 0.6 and 0.8. Since the structure is under bi-directional 
loading, conventional damage index is defined as the bi-
directional combination of unid irectional demand-to-capacity 
ratio which is the ratio o f maximum d isplacement demand to 
the ultimate displacement capacity, as follows [12]: 

22

max,max,

, ,

. .( ) yx

Ultimate x Ultimate y

D I SRSS
∆∆

= +
∆ ∆

  
  

   

(9) 

 

Fig. 9 Comparison of vulnerability functions using 3D damage index and 
conventional Damage Index  

Fig. 9 clearly shows that vulnerability functions using the 
3D damage index represents higher risk than those using the 
conventional damage index. The d ifference between two  
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types of vulnerability functions becomes larger as the limit  
state represents more significant damage level [12].  

Where L.S.m is the median value of a displacement limit  
state and βi (i=1, 2, …, n) represent various uncertainties [12]. 
These can be demand uncertainty, capacity uncertainty and 
modeling uncertainty as in (Wen et al., 2004) or simply  
response and capacity uncertainty (Dimova and Hirata, 2000). 
Modeling of uncertainty is not presented in this paper, though 
its importance in seismic loss assessment cannot be over-
emphasized. 

X. PROVISION OF FRAGILITY CURVE BY POWER-LAW 
METHOD 

To determine fragility  curve, Power-Law can  be used [2, 
3]. To this end, first non-collapse probability should be 
obtained from following equation: 

( ) .( )bP NC a Sa=                 (10) 
a  and b  are spectral acceleration curve parameters 

obtained from following expression: 

Empirical ( ) / ba F LS Sa=            (11) 

1 1

2 2

Empirical ( )
ln( ) / ln( )

Empirical ( )
Sa F LSb
Sa F LS

=    (12) 

aS is spectral acceleration and NC is non-collapse state. 
It should be noted that to determine a  and b  parameters, 

Empirical F (Ls) need to be determined which is obtained 
from following equation: 

30

1

Empirical ( ) (1 [ / 30])i
i

F LS n
=

= − ∑
     

(13) 

n  is the number of data which had reached to collapse 
state in a g iven accelerat ion. In  this method a limit state is 
defined that whenever structure crosses this state collapse will 
happen. 0Sa  is taken as limit spectral acceleration and β is 
considered as partial standard deviation. Both are obtained 
from following expressions: 

0 (ln( ) / )
b

Sa Exp a
β

β
= −
=

          (14) 

If aS ≥ 0aS means that the structure has crossed the given 
limit  state, collapse has happened, therefore fragility 
probability is obtained from following equation [1]: 

0a aS S≥ ⇒ ( ) 1 ( )F LS P NC= −        (15) 

LS  is the limit state. 
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Fig. 10 Compare fragility curve (Power Law Method) 

XI. CONCLUSION 
According to investigations conducted by the author 

determined that the Log normal probability d istribution, the 
probability of the vulnerab ility of structures to be very 
conservative calculation. According to the research was clear 
that the likely vulnerab ility of structures using the Log normal 
distribution approximately 20% of the structures more 
vulnerable than the Logistic  distribution shows (Figs. 11 and 
12), the fact  considers less risk, but designing structures in 
discussion of economic problems and desirable structural 
safety with regard to reasonable risk of the most essential 
things. Therefore it is suggested to calculate the probability of 
structural vulnerability of the Logistic distribution probability 
distribution simple, symmetrical, and the likelihood and 
ability to accurately calculate the probability of occurrence 
and the response it has caused (Bader taking some reasonable 
risks) instead of Log normal p robability distribution use. 
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Fig. 11 Compare fragility curve logistic & lognormal distribution – drift  
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Fig. 12 Compare fragility curve logistic & lognormal distribution-

displacement IDA 
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