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Abstract-The selection of input variables from different techniques can provide different artificial neural network (ANN) model 
performances. This study utilizes an ANN model to forecast the water level at the M.7 gauge station for t+48 hour.  Three objectives 
to be investigated are: (1) to compare the efficiency of four input determination techniques (cross correlation, stepwise regression, 
cross correlation with stepwise regression, and genetic algorithm); (2) to investigate the number of hidden nodes from 1-2n+1 node; 
and (3) to compare two different learning algorithms (Levenberg Marquardt-LM and Baysian Regularization-BR). Results 
demonstrate that the cross correlation and the cross correlation with stepwise regression techniques are best for selecting input 
variables to forecast water levels at t+48 hours at the M.7 gauge station. Additionally, the use of only one hidden node is sufficient for 
the ANN model, and LM and BR learning models perform similarly. 
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I. INTRODUCTION 

Hydrological models such as MIKE 11 [1], TANK [2], IHACRES [3], URBS [4] and Artificial Neural Network (ANN) [5] 
have been developed and applied to flood forecasting. In addition, the ANN model is an example of a data driven method. The 
advantages of the ANN model are that it does not require physical data or field data, and requires less computation time than 
other approaches. There are several methods for improvement to the typical ANN model such as the selection of input 
variables from input determination techniques [6, 7], the addition of extra input variables [8], the selection of different transfer 
functions [9], and the selection of different learning algorithms [10-12]. In addition, input variable determination techniques 
can be classified into six approaches: (1) trail and error or an ad hoc approach [13]; (2) sensitivity analysis approaches [14, 15]; 
(3) statistical approaches, such as correlation analysis [16], multiple regression [17], and Partial Mutual Information-PMI [18, 
19]; (4) neural network-specific approaches, such as pruning algorithms [20] and saliency analysis [6]; and (5) data driven 
approaches such as Self Organizing Maps (SOMs); and (6) genetic algorithms [21]. 

ANN model performance also depends on learning algorithms, input variables and the number of hidden nodes; when there 
are too many hidden nodes, the ANN model overfits the training data and is not able to generalize to new data. Therefore, the 
suitable number of hidden node is generally determined by trail and error [22]. 

The Matlab software includes many type of learning algorithms such as Scaled Conjugate Gradient (SCG), Levenberg-
Marquardt (LM) and Bayesian Regularization (BR); each algorithm offers a different approach. For example, SCG is 
exemplary for pattern recognition, LM is the fastest algorithm, and BR provides an automate regularization for improving 
generalization [23]. 

The objectives of this study are: (1) to determine the efficiency of input determination techniques, and (2) to investigate the 
effective number of hidden nodes by the comparison of two learning algorithms (LM and BR) to forecast the water level at the 
Mun Basin, Thailand. The inputs for the models are obtained from four input determination techniques, also supervision 
selection and the use of all input variables. 

II. METHODOLOGY 

The Mun Basin is the largest river basin in Thailand, with an area of approximately 71,000 km2. The basin is located in the 
north eastern region of Thailand, adjacent to the Chi and Khong-Isan Basins in the north. The Mun Basin is divided into 31 
sub-basins, which expand across 15 provinces in the region (Fig. 1). 
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Fig. 1 Mun Basin [27] 

The Mun Basin can be divided into three sub-areas according to differences in topographical conditions and land use: the 
upper, middle and lower parts of the basin. The annual average rainfall is 1,399 mm. The annual average rainfall is highest in the 
east and the northeast areas of the basin, and lower in the inner area. The annual runoff in the rainy season between May and 
October is approximately 16,300 million m3 or 85.9% of the total annual runoff; the annual runoff in the dry season between 
November and April is approximately 2,680 million m3 or 14.1% of the annual runoff. The Mun River is located in the lower 
part of the basin, particularly in Ubon Ratchathani province. Ubon Ratchathani province is located at the lower part of the Mun 
Basin, and is approximately 630 km east of Bangkok. In the past 50 years, there were 23 flood events (occurrences during which 
the water level exceeded 7.0 m) in this area. The highest recorded level of river runoff was between September and October. The 
highest water level of +117.7 m above mean sea level (12.76 m) was recorded in the year 1978, which had dramatic effects on 
the communities, environment, and economy. 

Inputs for the ANN model are the recorded water level from four upper stations (M.181, M.179, M.176 and M.182) and the 
M.7 station, to forecast the water level at M.7. The M.181 and M.182 stations are the gauge stations located upstream of M.7 
on the main river, while the M.176 and M.179 are gauge stations located on the tributary of the main river (Fig. 2). The longest 
distance of 76 km is from M.176 to M.7, followed by 72 km from M.182 to M.7. 

 

Fig. 2 Location of five gauge stations 

The data in the study is recorded per hour. However, the available data from all five stations covers only the time frame 
2007-2011, with four total flood events and no floods in the year 2010 (Fig. 3). At the M.7 station, a water level of 7 m 
represents the onset of flood in the study area. Data from five gauge stations can enhance the variable data from time t to time 
t-12 hour (12 hours before time t: t_12) and t-24 hour (24 hours before time t: t_24); total input consists of 15 input variables. 

In order to explore the efficiency of the learning algorithms and the number of hidden nodes, the experiments are divided 
into five different input variables. Performances of the LM and BR models were compared. 
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Fig. 3 Flood events during 2007-2011 

Four different input determination techniques were investigated: (1) cross correlation (BC) is a method of calculating the 
relationship between input variables and output variables greater than 0.9; (2) stepwise regression (BS) is a multiple regression 
method, which removes the smaller correlation variables and selects from the remaining input variables; (3) cross correlation 
and stepwise regression (BCS) is a combination of BC and BS which first selects the input variable by cross correlation and 
then uses stepwise regression to select from the remaining inputs; and (4) genetic algorithm (BG) is based on biological 
evolution and natural selection and was developed by Holland [24]. Additionally, supervised selection (BSp) consists of input 
variables at time t of each station; all input variables (BA) are explored to indicate the differences in input variable selection 
(Table 1). The cross correlation and stepwise regression were calculated from SPSS software, and WEKA software was used 
to calculate the genetic algorithm. 

To compare the four input determination techniques, all 15 input variables are significant as 12, 13, 11 and 9 are selected 
by cross correlation, stepwise regression, combination techniques and the genetic algorithm, respectively. The data from the 
M.176 station at time 12 and 24 hours seem to be less significant input variables. 

TABLE 1 INPUT VARIABLES OF T+48 HR 

Input 
Input Determination Techniques 

BC BS BCS BG BSp BA

M.7 X X X X X X

M.7_12 X X X X  X

M.7_24 X X X X  X

M.181 X X X X X X

M.181_12 X X X X  X

M.181_24 X X X   X

M.179 X X X X X X

M.179_12 X X X X  X

M.179_24 X     X

M.176  X  X X X

M.176_12  X    X

M.176_24      X

M.182 X X X  X X

M.182_12 X X X X  X

M.182_24 X X X   X

Total 12 13 11 9 5 15

ANN Models were developed to compare the two learning algorithms, LM and BR. The number of hidden nodes for each 
model depends on the number of input nodes, which varied according to the five input determination techniques. The hidden 
nodes are set from 1 to 2n+1 (n representing the number of input variables). The output of this study is the forecasted water level 
at the M.7 gauge station at t+48, anextension of the previous study that forecasted water level at t+24 hours [25]. For the 
available dataset, the ANN model will learn from small flood events and try to forecast a big flood event. Therefore the data 
from the years 2007-2009 is used as learning data, and the data in the year 2011 is used for testing the model performance. The 
final results were obtained from the average of 50 loop calculations. 



Journal of Water Resource and Hydraulic Engineering  Apr. 2015, Vol. 4 Iss. 2, PP. 131-137 

- 134 - 
DOI: 10.5963/JWRHE0402002 

To assess the model performances, Peak Difference PDIFF (Eq. 1), Root Mean Square Error-RMSE (Eq. 2) and Coefficient 
of Efficiency (Nash-Sutcliffe efficiency)-CE (Eq. 3) were applied [26]. 

 
 

(1)

In Equation 1,  is the modelled value at time i, and  is the observed value at time i. If the result of PDIFF is a 
positive value, it indicates that the model forecasting is greater than the actual peak, while a negative value indicates that the 
model forecasting is less than the actual peak. 

 

 (2)

A value of RMSE close to zero indicates good model performance. 

  
(3)

In Equation 3,  represents the average of observer data, and a CE value close to 1 indicates good model performance. 

III. RESULTS AND DISCUSSION 

All model performances will be decreased with an increasing number of hidden nodes, as demonstrated by CE, RMSE and 
PDIFF values (Fig. 4). 
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Fig. 4 Comparison of all models with PDIFF, RMSE and CE values 

A hydrograph of all models, with LM and BR algorithms, used different input determination techniques. All hydrographs 
demonstrated similar results that forecasted water level at t+48 hour close to the actual water level at t+48hours, with the 
exception of the BSp model which used time t as the input variable (Fig. 5). 
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Fig. 5 Hydrographs of all models 

The hydrographs of five models (BC, BS, BCS, BG and BA) provided similar results and statistic values (CE and RMSE) 
except for the BSp model, which provided the least accurate results (Table 2). It may be that using only time t as the input 
variable is not suitable for water level forecasting. Moreover, training algorithm BR tends to underestimate at the peak, 
demonstrated by the negative PDIFE values (Table 2). BS_BR and BCS_BR models demonstrated best performances to 
forecast the peak water level with only 0.01 m error (Table 2). 

TABLE 2 MODEL PERFORMANCE EVALUATION 

Models PDIFF RMSE CE
BC_LM 0.02 0.13 0.99
BC_BR -0.02 0.14 0.99
BS_LM 0.03 0.19 0.99
BS_BR -0.01 0.19 0.99
BCS_LM 0.06 0.12 1.00
BCS_BR 0.01 0.13 0.99
BG_LM -0.05 0.19 0.99
BG_BR -0.08 0.19 0.99
BSp_LM -0.37 0.39 0.94
BSp_BR -0.38 0.40 0.94
BA_LM 0.02 0.20 0.99
BA_BR -0.02 0.20 0.98

Models with different input determination techniques demonstrate different results, particularly regarding the flood 
situation. As can be seen in Fig. 6, models BC and BCS were the only two models to forecast the water rising to the flood level 
slightly before the actual time, a key component for flood warnings. On the contrary, models with other input determination 
techniques (BS, BG, BA and BSp) do not forecast with appropriate warning time. 
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Fig. 6 Hydrograph of all models when flood begins 

IV. CONCLUSIONS AND RECOMMENDATIONS 

Learning algorithms LM and BR provide similar performances. The suitable number of hidden nodes is 1 for flood 
forecasting, particular this study area. The reason may be that all learning data sets represent small flood events, but the testing 
data set represents a big flood event. In addition, selecting input determination by cross correlation, and by cross correlation 
with stepwise regression, provide the best techniques for flood forecasting and flood warning at t+48 hour.  
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