
Journal of Water Resource and Hydraulic Engineering  Apr. 2015, Vol. 4 Iss. 2, PP. 138-150 

- 138 - 
DOI: 10.5963/JWRHE0402003 

Water Resources Planning and Management by Use 
of Generalized Benders Decomposition Method to 

Solve Large-scale MINLP Problems 
André A. Keller 

Computer Science Laboratory (LIFL) / SMAC Unit, Lille 1 University – Science and Technology 
Cité Scientifique, 59650 Villeneuve- d’Ascq, France 

Andre.Keller@univ-lille1.fr 
 
 

Abstract-Water resources systems (WRS) models involve a large number of continuous and integer quantities. Water quality 
management problems also require the consideration of uncertainties related to the variability of flow streams and temperatures. 
WRS dynamics are primarily nonlinear. These characteristic features suggest the use of (stochastic) mixed-integer programming 
models, as well the use of sensibility analysis and simulations. Moreover, high dimensional real-world models and combinatorial 
alternatives require adequate tools for large-scale optimization models. These techniques consist of decomposition methods such as 
the generalized Benders decomposition (GBD) and the branch-and-bound enumerative algorithm. This contribution introduces the 
subject of modeling WRSs by use of GBD and branch-and-bound algorithms with numerical applications. 
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I. INTRODUCTION 

This contribution1 introduces water resources problems that involve continuous and discrete quantities. For example, in 
groundwater management systems, pumping rates are continuous parameters, while discrete parameters include the locations 
of wells. Water quality control problems are related to additional uncertainties, which are notably due to natural variability in 
stream flows and temperatures, as well as random pollution transport. These characteristics determine the type of mathematical 
program to be used, such as mixed-integer programming (MIP) and stochastic MIP. 

Numerous simulation and optimization models1 have been proposed in practice. Some of these models formalize the 
interactions between surface water and sub-surface flow systems [2]. Optimization models correspond to linear and nonlinear 
programming, dynamic programming, and stochastic programming. Real-life water resources systems (WRS) involve two 
additional complications: the large-size models with thousands of decision variables and equations, and the combinatorial 
number of alternative solutions. Specific techniques have been developed to combat these two challenges. 

The first challenge is how to best take into account the high dimensional WRSs. Dantzig-Wolfe [3] initiated an extensive 
study of large-scale programming methods [4]. The procedure consists of a master program with interacting sub-problems. 
Sub-problems receive a set of simplex multipliers, and apply their solution to the master program. The master program 
optimally combines this information to compute new duals. This procedure was applied to block-angular structures in which 
blocks are linked by coupling equations. The second challenge is to reduce the number of alternatives to be examined. The 
branch-and-bound enumeration technique was proposed by Land & Doig (1960) [5], and consists of two basic operations. The 
first operation is a branching step which partitions the feasible space into smaller subsets. The second operation is a bounding 
step to calculate a lower bound (for a minimization problem) within each subset ([6-8]. 

This article is organized as follows: Section II formulates general and particular mixed-integer nonlinear programming 
(MINLP) problems. Section III introduces the decomposition methods, focused on the GBD algorithm for which a numerical 
example illustrates all iteration steps necessary to obtain an optimal solution (Appendix A). Section IV characterizes WRS 
applications from previous literature; these applications include WRS planning and management problems, water management 
problems, and water quality management problems. Appendix A offers an illustrative numerical example of the GBD 
algorithm. Appendix B solves a simple groundwater supply system serving industry. 

II. STRUCTURE OF MINLP SYSTEMS 

An MINLP problem utilizes a general formulation in which the discrete decision variables are integers. We demonstrate 
that the integrality constraints can be expressed by means of binary variables. Bloc-separable formulations are efficient for 

                                                 
1 Simulation and optimization models are different approaches. Simulation models aim to approximate the system behaviour taking all its characteristics. They 
may include experience and judgment of the planners and designers. They can provide helpful responses of the system to some decision rules. Today, 
preference would be to incorporate optimization routines in a simulation model. A linked simulation-optimization model application is in Finney et al. (1977) 
[1]. 
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large-scale systems. In this context, a Lagrangian relaxation yields partial Lagrangian sub-problems. 

A. MINLP Formulation with Integer Variables 

The general formulation of an MINLP problem is as follows: 
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where :f X Y  R , :
m

X Yg  R , and :
p

X Yh  R . The conditions for which the Equation (1) has a finite 

optimal solution and optimal multipliers were previously noted by Floudas (1995) [9], pp. 114-115. 

B. MINLP Formulation with Binary 0-1 Variables 

An integrality constraint such as ,L Uy y y    Z  can be expressed by N  binary 0-1 variables. In fact, 
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C. Block-separable MINLP Formulation 

Let an NLP problem (without equalities) be represented by separable functions, and suppose that there exists a partition 
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kJx  denotes a sub-vector of x , such as we get 
1 2

|| || ||
pJ J Jx = x x x , after index reordering. The functions in Equation 

(1) , : n

jf g R R  and the set 
nX  R  are block separable. In this context, a Lagrangian relaxation decomposes into p  

partial Lagrangian problems, as with Equation (2) (Nowak, 2005 [10]). 
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The particular structure of MINLP problems corresponds to a formulation in which nonlinearities only concern continuous 
variables, while discrete variables appear separably and linearly. We may write: 
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where  ,:n L UX      x x x xR  and  : , ,q L UY      y y y y y dBZ   . 

III. GENERALIZED BENDERS DECOMPOSITION 

Mixed-integer linear programming (MILP) problems can be solved by using inner or outer approximations, or integrated 
decomposition methods. Decomposition methods solve large-scale systems in operations research. This section is dedicated to 
the GBD algorithm, which we present with a complete numerical example (Appendix A). 

A. Decomposition Methods 

The decomposition method used to solve MILP consists of generating approximations to the convex hull of a polyhedral 
feasible set. Traditional methods are inner approximation (e.g., Danzig-Wolfe method, Lagrangian method) and outer 
approximation2 (e.g., cutting-plane method, relaxation algorithms). Other integrated decomposition methods include the price-
and-cut and relax-and-cut methods [4]. 

Decompositions methods solve large-scale problems in operations research by exploiting the structure of programming 
problems. The principle is the splicing of difficult problems into smaller sub-problems which involve complicated constraints. 
These problems are coupled with a simple master problem in high dimension. Nowak (2005) [10] considers four 
decomposition principles including the Lagrange decomposition method, primal cutting-plane method, column generation and 
Benders decomposition. Floudas (1995) [9] describes the methods best suited to solving MINLP problems; he considers 
notably generalized Benders decomposition (GBD), branch-and-bound (BB), outer approximation (OA), and generalized cross 
decomposition (GCD). 

B. GBD Algorithm 

The GBD algorithm generates an upper bound and a lower bound of the approximated solution at each iteration point. The 
original problem with continuous x  variables and discrete y  variables is decomposed into two problems: a primal sub-

problem, and a master problem. The primal sub-problem corresponds to the original problem with fixed discrete variables; his 
problem provides information about the upper bound and Lagrange multipliers in the x -space. The master problem is derived 
from nonlinear duality theory and provides information about the lower bound and calculates the next set of values for the 
discrete y  variables. The sequence of updated upper bounds is nonincreasing, and the sequence of lower bounds is 

nondecreasing. A convergence is attained after a finite number of iterations (Floudas, 1995). 

The GBD algorithm3 consists of an initialization step and two additional steps for each iteration. Let us consider a 
simplified MINLP problem P in Equation (5), with one continuous decision variable xR  and one integer decision 

variable y Z . The functions  , 1, , :
i

f g i m X Y   R   are convex and differentiable, X is a compact set and Y  is 

a finite integer set. 
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The GBD algorithm4 consists of the following steps: 

 Step 0: Choose
1

y Y . Set index set 
0 0

I J    and iteration counter to 1k  . Then, set bounds to 
0 0

LB UB   . 

 Step 1: Solve  k
yP . Two cases are described below. 

                                                 
2 Recall that inner approximation solves a sequence of approximations whose feasible regions are included in the original feasible region. On the contrary, an 
outer approximation includes the entire initial feasible region. 
3 See Galati (2010)[11]  for a complete presentation with numerical examples. 
4 The original algorithm is due to Benders(1962)[12]. Benders’ approach was extended by Geoffrion (1972)[13] to a broader class of mathematical programs. 
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►If  k
yP  is feasible: an optimal solution is ˆ kx ,  and optimal duals are 
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►If  kyP  is infeasible: solve an equivalent l -minimization of constraint violations5 (Equation (6)). 
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Set 
k k

LB  . If 
k k

LB UB , then STOP and obtain the optimal solution ),()ˆ,̂( kk yxyx  . Otherwise, set 1k k   and 
return to Step 1. 

IV. SOLVING WATER RESOURCE PLANNING AND MANAGEMENT PROBLEM 

This section addresses surveys concerning the planning and management of water using mathematical programming 
methods. A small-size model applied to groundwater management illustrates the mathematical program. A comparison of 
recent applications in previous literature addresses WRS, groundwater and water quality management. 

A. Water Resources Planning and Management Problems and Techniques 

Numerous review articles from previous literature focus on mathematical techniques and their applications to water 
resources planning [15-17]. Recently, Husain [18] surveyed optimization models that are applicable to reservoir operation 
problems such as linear programming, dynamic programming, and fuzzy logic programming. These applications are also 
utilized in the surveys by Simonovic [19] and Wurbs [20]. Bragalli et al. [21] extended the applications to design problems of a 
water distribution network. 

 

 

 

                                                 
5 The minimization problem can be expressed by  minimize ,
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6 This master problem in which the constraints are value functions, is deduced from the Lagrangian dual of  yQ (see Li & Sun (2006) [14], p.379). 
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B. Modeling a Groundwater Planning Problem 

The following illustrative model is drawn from Kwanyuen and Fontane [22]. This model determines optimal well locations, 
as well as timing and pumping rates subject to economic and technical constraints. The demand is satisfied, and the 
construction and pumping operation costs are minimized. 

The following variables are in alphabetical order:  

●  , , 1j i k n   : unit response coefficient describing the effect on the hydraulic head at cell j , in time period k , due 

to a unit pumping amount at cell i  in the current or previous period n ; ●
q

C : construction cost of a well; ●
p

C : cost of 

pumping (unit volume per unit head at all wells); ●
jk

D : drawdown due to pumping of well j  at period k ; ● jkDL : maximum 

allowable drawdown of well j  at time k ;● kDM : water demand at period k ; ● jL : initial lift at well j ; ●M : number of 

potential pumping wells; ● N : number of planning periods; ● NP : maximum allowable wells; ●
jk

Q : pumping rate of well 

j  at period k ; ●
max

jkQ : maximum pumping capacity of well j  at period k ; ● r : interest rate; ● jkX : binary 0-1 indicating if 

well j  is constructed at period k ; ● Z : total cost of construction and pumping at present value over all the periods. 

The MIP problem is described below: 
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The objective function of Equation (8) is to minimize the total discounted cost of development and pumping subject to 
economic and technical constraints. The continuous decision variable is the pumping rate at each well. The integer decision 
variables are the location of wells and their time of development.  The individual constraints of Equation 9 are described below: 

The hydraulic constraint (1) characterizes the relation of pumping to drawdown, which must be satisfied by constraint (2). 
According to constraint (3), drawdown at each well cannot exceed the maximum allowable drawdown; pumping rate cannot 
exceed the maximum pumping capacity, and the wells must be constructed before they operate in constraint (4). In constraint 
(5) the number of wells must be less than or equal to the maximum allowable number of wells. According to constraint (6) a 
maximum of one well can be developed at each site during the planning period.  

This MINLP problem is solved by using a heuristic branch-and-bound method [22]. 

C. Water Resources Planning and Management Problems and Techniques 

The main features of recent applications are displayed in Table 1 and Table 2. Water resources planning and management, 
groundwater management, and water quality management are typical areas of WRS for which we provide some applications 
from previous literature. For each application, the main characteristics are: the type of problem, the programming model 
description (i.e., the decision variables, objectives, and constraints), the methodology, and reference. 
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The methods used in WRS planning and management are primarily multi-period networks and cost minimization programs. 
Decision variables are both continuous and discrete. The cost minimization objective may be included within a weighted set of 
multiple objectives. The constraints are: balance constraints, the meeting of water demands, and capacities of equipment and 
plants. MINLP programs are used for groundwater management problems. The GBD algorithm, branch-and-bound method, 
and other approaches are used to determine solutions. In water quality management problems, stochastic methods are required 
due to the intrinsic random nature of the data. 

TABLE 1 WATER RESOURCE MANAGEMENT APPLICATIONS 

# Type of problem Programming model description Type of method Reference 

►WATER RESOURCES SYSTEMS PLANNING & MANAGEMENT 

1 ●Planning with shortage 
control (e.g., dimension of 
water works, reliability of 
the system). 

●Management (e.g., 
vulnerability of the system 
to water resource shortage 
risk). 

●Maintenance of pipe-
networks for water supply. 

●Decision variables: Time independent planning 
variables (e.g., storage volume of reservoirs, 
extension of irrigation sites, etc.); time dependent 
operating variables to meet system requirements. 

●Objectives: To minimize costs of constructions, 
maintenance, and operating costs. 

●Constraints: Mass balance; flow continuity 
equations; links between planning constraints; 
filling capacity of reservoirs. 

●Multi-period network; optimization 
model. 

Liberatore et 
al. (2006)[23]

2 ●Reservoir system 
operation for water supply 
and power generation. 

●River basin water 
allocation. 

●Control and salinity. 

●Objectives: To maximize a weighted combination 
of objectives: the ratio of delivered water to 
demand; the smallest water deficit among all sites, 
the total amount of generated hydropower in the 
basin; to minimize salt concentration. 

●Constraints: Water balance at river, at reservoir 
nodes, at groundwater, etc.; power generation; 
salinity balance at river, canal. 

●Model network; large-scale nonconvex  
NLP, generalized Bender decomposition 
algorithm, relaxing the constraints. 

●Two models: 1) reservoir operation 
model; 2) water basin allocation and 
salinity control model. 

Cai et al.  
(2001)[24] 

► GROUNDWATER MANAGEMENT 

3 ●Design and water 
management. 

●Least-cost conjunctive 
use strategies for managing 
surface water and 
groundwater resource 
systems. 

●Decision variables: Continuous variables (i.e., 
extraction, injection rates from wells); discrete 
variables (i.e., well locations). 

●Objectives: To minimize operation costs. 

●Constraints: Desired groundwater levels; 
pumping capacities; meeting water demands. 

●MINLP model. 

●Solved by branch-and-bound method, 
GBD algorithm, global search 
techniques. 

Chiu et al. 
(2012)[2] 

TABLE 2 WATER RESOURCE MANAGEMENT APPLICATIONS (FOLLOWED) 

# Type of problem Programming model description Type of method Reference 

► GROUNDWATER MANAGEMENT 

4 ●Planning and design. 

●Large number of 
alternatives. 

●Decision variables: continuous variables (i.e., pumping rates at 
wells); discrete variables (i.e., well locations). 

●Objectives: To minimize developing and pumping costs. 

●Constraints: Hydraulic constraints; water demand requirements; 
maximum allowable drawdown; maximum pumping capacity; 
maximum number of wells.  

●MINLP model by 
using the response 
matrix method. 

●Solved by notably 
heuristic  branch-and-
bound outer 
approximation, GBD 
algorithm. 

Kwanyuen et 
al. (1998)[22]

►WATER QUALITY MANAGEMENT 

5 ●Determination of 
adequate treatments to 
obtain water quality 
standards at minimum 
costs. 

●Decision variables: Continuous variables (i.e., pumping rates); 
discrete variables (i.e., well locations). 

●Objectives: To minimize expected total cost. 

●Constraints: Water quality; state of water quality transition 

●Fixed-charge type 
problem. Stochastic 
MINLP model. Spatial 
network of streams in a 
watershed. 

Ali et al. 
(1998)[25] 
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 equations; technology selection and capacities.  

6 ●Selection of wastewater 
treatment facilities in river 
basin; water quality 
management. 

●Decision variables: Discrete waste water treatment levels; 
random pollution transport; uncertain reaction rates; natural 
variability in stream flows and temperatures. 

 ●Objectives: To maximize the likelihood of management 
solutions; minimize pollution control costs;  maximize water 
quality; maximize equity. 

●Constraints: Budget level; water quality goals; random transfer 
functions involving pollutants.  

●MIP model. 

●Stochastic branch-
and-bound method. 

Hägglöf 
(1996)[26] 

V. CONCLUSIONS 

Water resources planning and management relates to various problems such as those concerning water surface, 
groundwater, and water quality requirements. This introductory study demonstrated the benefit of using an MINLP 
optimization model. Some decision variables (e.g., pumping rates) are continuous, and other variables are discrete (e.g., well 
locations and installations). High dimensional real-world systems and a combinatorial number of alternatives required large-
scale adapted optimization techniques (e.g., GBD and branch-and-bound algorithms). Recent applications prove the benefits of 
these modeling choices.  

This study aimed to produce a unified presentation with completely solved numerical examples, developed by 
consideration of the intrinsic random nature of data7 [30]. Further developments could also expand on post-optimization (or 
sensitivity or parametric) analysis [31, 32], on multi-objective optimization methods, and on fuzzy logic approaches. 
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The following illustrative example is drawn from Li & Sun [14], pp. 374-375. The MINLP problem is described by 
Equation (9). 
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where f  and , 1, 2,3
i

g i    are convex and differentiable functions; X  is a compact set; and Y  is a finite integer set. 

The feasible region is non-connected and consists of two line segments as shown in Fig. 1. The optimal solution is 
Tyx )2,0694.1()ˆ,̂(  . For example, the sub-problem of iteration 1 is obtained by relaxing the integrality restriction on y . 

Taking 
1

3y  , we obtain the following continuous NLP primal  1

yP  sub-problem shown by Equation (10) at Step 1. 
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At Step 2, solve the ILP problem shown in Equation (11). 
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Fig. 1 Feasible sets and solution of the illustrative example 

The GBD is applied to solve the MINLP problem. Three iterations are needed. All results are shown in table 3 and the 
finite sequence of NLP sub-problems and master ILP problems are shown in Fig. 2. NLP sub-problems provide upper bounds, 
whereas master ILP problem yield lower bounds to the optimal solution. 

 

Fig. 2 Flow chart of the GBD algorithm in the illustrative example 

.
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TABLE 3 ITERATIONS OF THE GBD ALGORITHM IN THE ILLUSTRATIVE EXAMPLE 

Index 
Objective function

( )a
 

Lagrange multipliers Bounds Index sets 

k  #  k
x  

k
y   k

f x
 

1

k  
2

k
3

k  
1

k  
2

k  
3

k
 

k
LB  

k
UB  

k
I  

k
J  

0 0 - 3 - - - - - - -         

1 1 1 3 13.614 0 0 1 - - -   13.6137 {1}   

 2 1 1 5 - - - - - - 1.6137 - - - 

2 1 0.9808 - - - - - 0.554 0.447 0 1.6137 13.6137 {1} {2} 

 2 0.9808 2 8.6330 - - - - - - 7.6137 - - - 

3 1 1.0694 2 8.5453 1.132 0 0 - - - 7.6137 8.5453 {1,3} {2} 

 2 1.0694 2 8.5453 - - - - - - 8.5453 - - - 

( )a  ,x yx , where x  is a continuous variable and y an integer. 

APPENDIX B:  SIMPLE GROUNDWATER SUPPLY SYSTEM SERVING INDUSTRY
8 

Suppose that an industry plans to obtain water resources from a groundwater aquifer. Suppose that two well fields A and B 
can provide this water resource under various technical and economic conditions. The well fields have different known 
capacity limits. Their cost and benefit functions are piecewise nonlinear. Two questions can be submitted to the planner: how 
should a given water demand be distributed across the two well fields, and how should this distribution vary with the total 
water demand? We use a simple mixed linearized programming model to show these solutions. 

The cost and sales functions are linearized over segments of demand values with possible shifts (i.e., discontinuities). 
Binary 0-1 parameters are introduced to specify piecewise-linear functions and capacities, as shown in Fig. 3(a). The mixed 
linear programming problem is given in Equation (12). 
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where decision variables 1x and 2x  are continuous total costs (i.e., fixed and variable costs) for well fields A and B; 3x  

represents the continuous total flow of A and 
4 5 6
, ,x x x   are the continuous flows of A on segments of demand values Q ; 7x  

                                                 
8 This illustrative model is adapted from numerical examples by Loucks & Van Beek (2005)[36]. Results are same with different notations and illustrations. 
This version has been solved by using the LINGO package [37] and LINDO 6.1 (see Schrage (1997)[38]). 
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is the continuous total flow of B and 
8 9 10
, ,x x x   are the continuous flows of B on segments of demand values; and 1y  to 5y  

are binary variables. The maximum flow capacity of well fields A and B are set to 17 and 13, respectively.9 

The model is solved for various values of water demand from the industry. Fig. 3 (b) and Fig. 4 show the optimal least-cost 
solutions when the total demand Q varies. In Fig. 4, well field A supplies all water demand for 4.3Q   and 15 17Q  ; 

well field B provides all water demand for 4.3 13Q  . For 13 15Q   and 17 18Q  . Well field B supplies its full 

flow capacity and well field A provides a required additional amount of water. Suppose that the piecewise-linear approximated 
function of sales is represented by: 
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Profit is obtained if total sales S  exceed the total costs 
1 2

C x x   as shown in Fig. 3 (b), in which  water demands range 

in the interval  8.1580,14.2269 . 

 

Fig. 3(a) Cost functions of well fields A and B; b) total optimal sales, costs, losses and benefits for various water demands from the industry 

                                                 
9 In fact, combining the constraints of well field A for 

3
x  to 

6
x , we obtain  

3 1 2 3
5 10 17x y y y    . Then we get 

3
17x   since 

1 2
0y y  , 

and 
3

1y  . 
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Fig. 4(a) Optimal flow of well field A for different values of total demand; b) optimal flow of well field A for different values of water demands from the 
industry 


