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Abstract-Runoff prediction in ungauged watersheds is regarded as one of the major issues in contemporary hydrology. This study 
examined the utility of remote sensor datasets for parameter regionalization. A distributed hydrologic model, the Coupled Routing 
and Excess Storage (CREST) model, was employed to simulate runoff conditions in the mountainous watersheds over South Korea. 
In gauged watersheds, the relationships between the optimized parameter set of the hydrologic model and the physiographic 
properties of the gauged watersheds were investigated using multiple linear regressions. The regression parameters for the ungauged 
watersheds were then validated and assessed. Results demonstrated that the hydrologic model and the proposed regression equations 
could acceptably simulate the discharge in both gauged and ungauged watersheds. However, they provided somewhat biased 
discharge for all the ungauged watersheds. In further studies, these biases should be reduced by investigating other watersheds and 
finding physiographic properties highly related to the model parameters. 
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I. INTRODUCTION 

Knowledge of hydrologic responses from a watershed is very important to the management of water resources and to cope 
with water-related disasters, including floods and droughts. General runoff predictions can be achieved by hydrological 
modelling, which includes preparation of input datasets, implementation of hydrologic simulations, and model calibration and 
validation. For a particular watershed, a hydrological model simulates runoff discharge and estimates an optimal parameter set 
by comparing the output with physical measurements. This parameter set can be applied to predict another runoff event in the 
same watershed. 

However, hydrometeorological records including discharge, temperature, humidity, sunshine, and wind are insufficient for 
hydrological modelling in many watersheds in which precipitation is relatively abundant; this interferes with accurate and 
reliable prediction of runoff discharge. Moreover, recent hydrologic models contain complex nonlinear equations to simulate 
more practical watershed responses [1]. Thus, many parameters in such models must be estimated by calibration due to the 
deficits of measurements. 

Model parameters can be transferred by using different regionalization methods, which transfer a parameter set from either 
the nearest watersheds or a watershed with the most similar physiographic properties to the locations of interest ([2, 3]), to 
classify watersheds by climatology ([4, 5]), or to use the mean values of parameters from neighbourhood watersheds. Most 
widely-used regionalization methods use linear regression equations to evaluate the relationship between model parameters 
and the physiographic attributes of watersheds such as drainage area, elevation, slope, land cover, and soil type ([6, 7, 8]).  

The purpose of this study is to examine the utility of remote sensor datasets for runoff prediction in ungauged watersheds. 
To simulate runoff discharge in the watersheds over South Korea a distributed hydrological model, the Coupled Routing and 
Excess Storage (CREST) model [9], was employed. Hydrological simulation was implemented in gauged watersheds, and an 
optimal parameter set was estimated by model calibration. In addition, linear relationships between the model parameters and 
watersheds attributes were explored. New parameters from regression equations were generated for the ungauged watersheds. 
Runoff discharge with the estimated parameters was predicted and assessed by comparing observations. Fig. 1 shows the 
flowchart of this study. 

II. STUDY AREA AND DATA 

A. Study Watersheds 

Eight watersheds over South Korea were selected for hydrological modelling. All eight watersheds are located in the 
upstream regions of multi-purpose dams and are no directly affected by any artificial structures such as dams, bridge, buildings, 
asphalt, etc. The drainage areas of the study watersheds vary from 103.1 km2 to 6651.4 km2. Six of the eight watersheds were 
regarded as gauged for parameter regionalization, and two watersheds were regarded as ungauged for validation (Fig. 2). 
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Fig. 1 Flowchart of this study 

 

Fig. 2 Location map of the study area regarding gauged (red) and ungauged (blue) watersheds 

B. Remotely-sensed Precipitation 

The Goddard Space Flight Centre (GSFC) of the National Aeronautics and Space Administration (NASA) provides gridded 
quasi-global precipitation products as a result of the Tropical Rainfall Measuring Mission (TRMM) Multi-satellite 
Precipitation Analysis (TMPA) Algorithm [10]. The TMPA precipitation data is available in both near-real time and post-real 
time versions. The near-real time product, 3B42RT, is generated approximately 6-9 hours after observation, and the post-real 
time product, 3B42v6, is computed approximately 15 days after the end of each month. 

The TMPA method combines precipitation estimates from four passive microwave sensors, including the TRMM 
Microwave Imager (TMI), the Special Sensor Microwave/Imager (SSM/I), the Advanced Microwave Scanning Radiometer - 
Earth Observing System (AMSR-E), and the Advanced Microwave Sounding Unit-B (AMSU-B). Infrared estimates from 
geosynchronous earth orbit (GEO) satellites are merged to fill any data gaps [11]. 

Unlike the near-real time product, 3B42v6 makes use of additional sources including the TRMM Combined Instruments 
(TCI) [12] from the TMI and the TRMM Precipitation Radar (PR), the Global Precipitation Climatology Project (GPCP) 
monthly rain gauge analysis [13] developed by the Global Precipitation Climatology Centre (GPCC), and the Climate 
Assessment and Monitoring System (CAMS) monthly rain gauge analysis [14, 15] developed by the Climate Prediction Centre 
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(CPC). The multi-satellite merged microwave-infrared precipitation estimates are calibrated with TCI and then GPCP, and 
CAMS datasets are utilized to correct the bias for each calendar month in order to produce the final 3B42v6 product with 0.25° 

 0.25° latitude-longitude at three-hour intervals. 

C. Potential Evapotranspiration 

A daily potential evapotranspiration (PET) dataset from the Famine Early Warning System Network (FEWS NET) was 
applied to the hydrologic model as meteorological input forcing. The PET data of FEWS NET is calculated from climate 
parameter data that was extracted from the Global Data Assimilation System (GDAS) analysis fields. As input to the PET 
computation, the GDAS fields include air temperature, atmospheric pressure, wind speed, relative humidity, and solar radiation. 

The daily PET is also calculated by the Penman-Monteith method on the basis of 1°  1° grids on a global scale. Further 
details on this PET dataset can be found at the following website: http://earlywarning.usgs.gov/fews/. 

D. Digital Elevation  

The Shuttle Radar Topography Mission (SRTM) obtains land elevation data on a near-global scale to generate the most 
complete high-resolution digital topographic database of the global land surface. SRTM is a joint research project between the 
National Geospatial Intelligence Agency (NGA) and NASA. The SRTM DEM dataset is available as three arc second 

(approximately 90 m resolution at the equator) over 80% of the globe, and is provided in 5°  5° tiles for easy downloading 
and use. This study estimated the topographic parameters of the watersheds from the SRTM 90 m DEM data.  

III. HYDROLOGICAL MODELLING 

The Coupled Routing and Excess Storage (CREST) distributed hydrologic model [9] was employed to simulate runoff 
discharge in the selected mountainous watersheds. The model allows the computation of water balance components including 
infiltration, evaporation, runoff generation, and flow routing processes. The main components of the model are summarized as 
follows: 1) data flow module based on cell-to-cell routing; 2) three different layers within the soil profile that affect the 
maximum storage available in the soil layers; 3) coupling between the runoff generation and routing components via feedback 
mechanisms [16]. 

In this study, hydrological simulations were implemented by the CREST model from Jan-01-2004 to Dec-31-2009 at daily 
time-steps, and the optimal parameter sets were obtained by using the Adaptive Random Search (ARS) module provided in the 
model. As objective functions for calibration and validation, the Nash-Sutcliffe Coefficient of Efficiency (NSCE) and percent 
bias (PBIAS) were employed and computed as follows:  
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Where Qs = simulated discharge; and Qo = observed discharge. 

IV. PARAMETER REGIONALIZATION 

A. Physiographical Properties of the Watersheds 

Watershed properties can be estimated from digital elevation and land cover maps. Drainage area is the entire geographical 
area drained by a river and its tributaries that can be identified by tracing a line along the ridge between two adjacent 
watersheds. The mean elevation and mean slope are the mean values of DEM and slopes at grid points within a watershed. The 
longest path is the distance from the outlet of a watershed to the furthest point. River length is the distance from the outlet to 
the start of the main stream. Shape factor is the ratio of river length to the diameter of a circle encompassing the drainage area 
of a watershed. The elongation ratio is defined as the ratio of the diameter of a circle with the same area as that of the 
watershed to the maximum watershed length. The watershed properties of the six gauged watersheds (GWS1-6) and two 
ungauged watersheds (UWS1-2) are presented in Table 2. 

B. Multiple Linear Regression 

The relationships between the model parameters and watershed properties including drainage area, elevation, slope, longest 
path, river length, elongation ratio, impervious area, forest area, paddy field, and crop land were computed by multiple linear 
regressions in the six gauged watersheds. New parameter sets were then generated by the regression equations and 
physiographic properties of the six gauged watersheds and two ungauged watersheds.  
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In gauged watersheds, the relationship between the ith model parameter (ψi) as a dependent variable, and the watershed 
properties (Фj) as independent variables, are expressed as:  

 
ijjiiii   ,11,  (3)

Where αi = intercept; βi,j = coefficient; and ε = error term. 

An important process in building linear regression models is to determine which variables affect the dependent variable. 
There are several model-selection methods including forward selection, backward elimination, stepwise method, etc.; we 
utilized the stepwise method to select a linear regression model.  

TABLE 1 CREST MODEL PARAMETERS REQUIRING OPTIMIZATION 

Parameter Description Range 

coeM Slope flow speed multiplier 1.0-150.0 

expM Slope flow speed exponent 0.2-0.9 

River Multiplier used to convert slope flow speed to channel flow speed 0.1-3.0 

Under Multiplier used to convert slope flow speed to interflow speed 0.01-1.0 

LeakO Overland reservoir discharge multiplier 0.1-1.0 

LeakI Interflow reservoir discharge multiplier 0.01-0.5 

Th Flow accumulation needed for a cell to be marked as a channel cell 10.0-100.0 

GM Change in DEM used to calculate the slope when the DEM for the downstream cell  
is higher than the upstream cell, or when the downstream cell is a nodata/outside region cell 

0.5-2.0 

pWm Maximum soil water capacity of three soil layers 10.0-500.0 

pB Exponent of the variable infiltration curve 0.05-1.5 

pIM Impervious area ratio 0.0-100.0 

pKE Multiplier to convert between input PET and local actual ET 0.1-3.0 

pFc Soil saturated hydraulic conductivity 1.0-10.0 

iWU Initial value of soil water 1.0-100.0 

iSO Initial value of overland reservoir 1.0-10.0 

iSU Initial value of interflow reservoir 1.0-50.0 

AreaC Multiplier that modifies the area of grid cells 0.5-1.5 

TABLE 2 PHYSIOGRAPHICAL ATTRIBUTES OF THE WATERSHEDS 

Watersheds Drainage 
area (km2) 

Mean 
elevation 

(m) 

Mean 
slope 
(%) 

Longest
path 
(km) 

River
length
(km)

Shape
factor

Elongation
ratio 

Impervious 
area 
(%) 

Forest 
area 
(%) 

Paddy
field 
(%) 

Crop
land
(%)

GWS1 6651.4 615.6 32.4 300.0 232.6 2.528 0.307 1.7 83.1 10.4 1.6 

GWS2 2783.5 643.2 33.3 164.1 142.1 2.387 0.363 2.3 90.8 2.7 2.8 

GWS3 1590.3 562.5 29.1 164.1 109.2 2.428 0.274 1.3 85.7 5.9 6.1 

GWS4 1363.6 400.1 26.5 99.1 121.5 2.916 0.421 2.3 82.0 10.1 5.5 

GWS5 2288.2 430.8 27.1 111.8 86.7 1.605 0.483 0.9 75.2 16.8 7.0 

GWS6 103.1 549.8 38.7 28.6 20.2 1.762 0.401 0.0 92.0 4.0 4.0 

UWS1 931.5 514.8 27.4 64.6 60.6 1.761 0.533 2.1 80.2 9.2 5.9 

UWS2 1024.9 274.4 23.4 96.6 77.5 2.146 0.374 4.5 72.2 12.3 8.7 

V. RESULTS 

A. Regression Analysis 

Multiple linear regressions were utilized to develop equations for parameter regionalization. For eight of seventeen 
parameters in the model, the equations of parameters and watershed properties were estimated through the multiple linear 
regressions as given in Table 3. Because we could not find the regression equations for the rest of the parameters, they were 
replaced by the mean value of the parameters from the gauged watersheds. Although the equations did not appeared in this 
study, it is natural that the physiographical attributes of watersheds directly or indirectly affect hydrologic response. Therefore, 
further study should continue to investigate the relationships by applying additional watershed properties to other regions. 
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Fig. 3 Scatter plots and regression equations between the model parameters and physiographical attributes of the watersheds 
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TABLE 3 WATERSHED PROPERTIES AFFECTING THE MODEL PARAMETERS 

Parameter R2 Adjusted R2 Watershed properties 

coeM 0.8959 0.8699 Mean slope, forest area 

expM 0.7244 0.6555 Longest path, river length

LeakO 0.7783 0.7229 River length 

Th 0.9979 0.9974 Forest area, paddy field 

GM 0.7706 0.7132 Forest area 

pWm 0.7697 0.7122 Mean elevation 

pB 0.9974 0.9968 Drainage area 

pIM 0.8058 0.7573 Elongation ratio 

VI. RUNOFF SIMULATION 

The evaluation of the hydrologic model was assessed using three common statistical indices: NSCE, PBIAS, and the Root 
Mean Squared Error (RMSE) - Observation Standard Deviation Ratio (RSR) [17]. The NSCE index is a normalized statistic 
that determines the relative magnitude of the noise compared to the variance of the measurements, and varies from negative 
infinity to one. PBIAS assesses the systematic bias of the simulated runoff discharge; positive and negative values indicate an 
underestimation and overestimation, respectively. RSR is the standardized RMSE using the standard deviation of the 
measurements; it varies from the optimal value of zero to a large positive value and is computed as follows:  

  

 







2

2

so

so

QQ

QQ
RSR  (4)

A previous study [18] recommended model evaluation techniques, including statistical and graphical skills, and proposed 
criteria in terms of the accuracy of simulated discharge compared to the observed data (Table 4). We focused on and discuss 
the results from this study in monthly time-steps using the performance ratings presented in Table 4.  

TABLE 4 GENERAL PERFORMANCE RATINGS FOR STREAMFLOW SIMULATION IN A MONTHLY TIME-STEP 

Rating NSCE PBIAS RSR 

Very good 0.75 < NSCE ≤ 1.00 PBIAS < ±10% 0.00 ≤ RSR ≤ 0.50 

Good 0.65 < NSCE ≤ 0.75 ±10 ≤ PBIAS < ±15% 0.50 < RSR ≤ 0.60 

Satisfactory 0.50 < NSCE ≤ 0.65 ±15 ≤ PBIAS < ±25% 0.60 < RSR ≤ 0.70 

Unsatisfactory NSCE ≤ 0.50 PBIAS ≥ ±25% RSR > 0.70 

Fig. 4 shows the comparison between the simulated and observed discharge time series in the ungauged watersheds (UW1 
and UW2). Overall seasonal and daily variations of the simulated data agree with that of the observations. However, it can be 
seen that biased discharge was generated in both watersheds. 

Table 5 shows the statistical indices to evaluate the simulated discharge in the ungauged watersheds using the parameter 
sets estimated from regression equations. In UWS1, the simulated data obtained “satisfactory” ratings in terms of NSCE and 
RSR while it received an “unsatisfactory” rating in terms of PBIAS, based on the values presented in Table 4. Similarly, in 
UWS2 the simulation obtained “good” ratings in terms of NSCE and RSR, while receiving an “unsatisfactory” rating in terms 
of PBIAS.  

Although the biased results were obtained by parameter regionalization, we observed that the results from the hydrologic 
simulation with parameter regionalization are better than the results using the medians of the model parameters.  

VII. CONCLUSIONS 

This research utilized remote sensory datasets to predict runoff discharge in ungauged watersheds. The CREST distributed 
hydrological model was employed for hydrological simulation. First, we simulated the runoff discharge in the gauged 
watersheds, and an optimal parameter set was estimated by model calibration. Next, linear regression equations of the CREST 
model parameters and watershed attributes were investigated. New parameter sets derived from the regression equations were 
generated for the ungauged watersheds. Runoff discharge in ungauged watersheds was predicted by the hydrologic model with 
the parameters, and assessed by comparing observations. 

Results demonstrated that the CREST hydrological model and the proposed regression equations could acceptably simulate 
the runoff discharge as generated by NSCE and RSR in both the gauged and the ungauged basins, but they provided somewhat 
biased streamflow in all the study basins. In further studies, these biases should be reduced by applying parameters to other 
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watersheds and finding watershed properties highly related to model parameters. 

TABLE 5 PERFORMANCE STATISTICAL INDICES IN A MONTHLY TIME-STEP 

Watershed NSCE PBIAS RSR 

GWS1 0.67 29.83 0.58 

GWS2 0.62 40.34 0.62 

GWS3 0.87 -29.87 0.36 

GWS4 0.71 -1.49 0.54 

GWS5 0.74 -40.42 0.51 

GWS6 0.45 31.15 0.74 

UWS1 0.53 (-0.03)* 39.89 (82.98) 0.69 (1.02)

UWS2 0.68 (-15.34) -75.44 (-481.25) 0.56 (4.04)

* The values in parentheses indicate the performance statistics 
for the simulation of the CREST model using the medians  
of the model parameters without parameter regionalization.  

 

Fig. 4 Comparison between the simulated and observed runoff discharge in (a) UWS1 and (b) UWS2 for validation of the regression equations 
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