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Abstract-The widely accepted theoretical treatment of the electromagnetic boundary problem of evanescent wave refraction at an 

interface between a normal medium of n =1 and an ideal negative index medium of 1n    seems to predict that the negative index 

of refraction would result in perfect lenses. The treatment, however, disregards the effects of non-zero surface potentials due to the 

nonlocal nature of surface optics at the microscopic level, and is self-inconsistent. This paper proposed to capture the microscopic 

non-zero surface potentials by introducing the macroscopic electromagnetic description non-zero effective surface current and charge 

densities at the interface. This treatment provides a self-consistent solution to the aforementioned electromagnetic boundary problem 

by finding the effective surface current and charge distributions, and after which solving the refracted and reflected fields analytically 

using Green's function method. The self-consistent solution yielded a transmission coefficient of 1 and reflection coefficient of 0 for all 

evanescent waves at this special interface, making it impossible for resonant amplification of those waves to occur.  

Keywords- Applied Classical Electromagnetism; Reflection and Refraction; Metamaterials; Surface Plasmon Polariton  

I. INTRODUCTION 

 It is widely accepted that a slab of negative index medium (NIM) with 1   and 1    makes a perfect lens that 

transports all spatial frequency components of an object to the image plane without loss [1]. The concept of the negative index 

perfect lens has inspired an exciting new research field in negative index materials and, more generally, metamaterials as well as 

hyperbolic natural materials. These extraordinary materials have shown great promise in many breakthrough applications such as 

super-resolution imaging and invisibility cloaking [2-25]. Metamaterials have also shown potential in other practical applications 

such as electronically small antennas, enhancement of solar cell absorption, laser diode (LD) and light-emitting diode (LED) 

light extraction, photonic density of state engineering, and radiation control [26-30]. With advancements in nano-fabrication 

technology, metamaterials research has seen and will continue to see many more successful applications in the future. However, 

the widely accepted theory of the NIM perfect lens disregards the effect of non-zero surface potentials due to the nonlocal nature 

of surface optics at the microscopic level [31] and is therefore self-inconsistent. Initially, the surprising predication that a passive 

slab of negative index medium with 1   and 1    can amplify all evanescent waves was hotly debated. Hooft alleged 

that Pendry used incorrect arguments to arrive at his otherwise accurate conclusions [32]. Hooft also pointed out that, due to the 

amplification of the evanescent waves, the amplitude of the electric and magnetic fields grow extremely large and “can easily 

reach values beyond the breakdown of any material.” In reply, Pendry argued that the approach he took in his original paper was 

in accordance with multiple scattering theory as documented in textbooks and that because evanescent waves do not transport 

energy, energy conservation is not violated by amplification of evanescent waves [33]. This reply to the diverging energy density 

issue is unsatisfactory because, although evanescent waves do not transport energy, they do possess electro-magnetic field 

energy. With exponentially growing amplitude, the electromagnetic field energy density, due to the presence of these evanescent 

waves, grow exponentially, and this amplified electromagnetic field energy cannot be supported by a passive medium. The fact 

that evanescent waves possess electromagnetic energy was also pointed out by Williams [34, 35]. As early as 2002, Garcia and 

Nieto-Vesperinas [36-38] argued that although there is amplification of evanescent waves in ideal lossless, dispersive-less NIM, 

they still do not make a perfect lens since the effect is limited to the finite thickness of a slab, which prevents image forming. 

Furthermore, Garcia and Nieto-Vesperinas pointed out that any loss could dramatically diminish the evanescent wave 

amplification effect, and instead cause it to decay [38]. Smith and colleagues [39] also addressed the NIM issue and concluded 

that the loss may indeed pose a severe limitation to image resolution as well as the thickness of NIM slab lenses, limiting it to 

only a small fraction of a wavelength with any practical material loss. Much of these early debates were downcast, especially 

after experimental results by Liu, et al. [40], which indicated support for the amplification of evanescent waves in a silver slab, as 

originally suggested. Since 2008, the authors raised another issue regarding the perfect lens theory [41-43]. The issue centered on 

the realization that the usual textbook treatment of electromagnetic waves refraction and reflection at an interface used in 

Pendry's original paper [1] was self-contradictory when evanescent waves impinged upon the interface between air and ideal 

NIM of 1   and 1   . However, this realization has not been well accepted so far. Only recently the realization has come 

that such inconsistencies are actually inherent in any system supporting surface electromagnetic fields including the air/NIM 
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interface at question here. For example, Feibelman has long believed that the usual theory of refraction and reflection is 

inadequate at the microscopic level due to its discontinuity, locality, and incompleteness [31]. At the microscopic level, a 

non-local theory has to be invoked, which leads to non-zero surface potentials [31]. This paper proposed to capture the 

microscopic non-zero surface potentials by introducing the macroscopic electromagnetic description non-zero effective surface 

current and charge densities at the interface. In the special case of evanescent wave reflection and refraction at the interface of air 

and an ideal NIM, exact effective surface current and charge distributions can be derived [43]. Accordingly, the transferred 

electromagnetic field can be solved analytically using Green's function method of knowing the effective macroscopic field 

sources at the boundary. This self-consistent solution yields a transmission coefficient of 1 and reflection coefficient of 0 for all 

evanescent waves. The same transmission and reflection can be obtained at both interfaces of a NIM slab for evanescent waves. 

In particular, due to the zero reflection at the interfaces, no multipath interference will build up inside the slab, as originally 

predicated [1]. As a result, it is believed that the evanescent waves will not be amplified by the NIM slab, but rather decay 

through it. Therefore, it was concluded that, contrary to popular belief, negative index of refraction does not make perfect lenses, 

as Pendry previously proposed. 

In the following sections, the self-inconsistency in the original perfect lens theory that results from the underlying 

assumptions of the continuous tangential components of BOTH electrical and magnetic fields is presented.  In Section III, the 

exact distributions of the effective surface current and charge densities are derived, and from these macroscopic effective source 

terms, the solutions to the refracted waves are given, followed by the transmission and reflection coefficients.  It then can be 

shown that for all evanescent waves the transmission coefficient is 1 and the reflection coefficient is 0, which leads to the 

conclusion that the NIM slab does not make a perfect lens. Section IV focuses on the discussion of a popular alternative 

derivation of the original perfect lens theory that does not require the explicit reflection and transmission coefficients or the 

explicit summation of the multi-path interference of evanescent waves in the NIM slab, which, therefore, hides the explicit 

inconsistency of the original theory of the perfect lens as was pointed out in Section II. It is shown that the transport of evanescent 

waves in the NIM slab according to this implicit approach will still depend on the underlying assumptions of surface sources. 

Finally, the discussions are summarized in Section V, and comments on experimental studies that claim to verify the NIM perfect 

lens theory are presented.   

II. SELF-CONTRADICTION IN THE PERFECT LENS THEORY 

 

Fig. 1 Illustration of evanescent wave refraction at an interface between air and ideal NIM of 1n   : (a) Taking into account the non-zero effective surface 

sources, all evanescent waves have unit transmission and zero reflection; (b) Assuming continuous tangential components of both electrical and magnetic fields, 

the transmission and reflection coefficients diverge for all evanescent waves to infinitely large 

Consider the case of an interface between air and an ideal NIM with the relative permittivity 1   and relative permeability 

1   , as shown in Fig. 1. Light propagates from left to right along the z-axis. Following the notation in Ref. [1], the 

S-polarized evanescent wave is first considered for which the electric field is given, by: 

 0 0[0,1,0] exp( ),S z xE ik z ik x i t   E  (1) 

where the wave vector 
2 2

z xk i k k    and / | |xk c k  . The electric field of the reflected evanescent waves is 

obtained in the following: 
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 0 0[0,1,0] exp( ),S z xr E ik z ik x i t    E  (2) 

and the electric field of the transmitted evanescent waves is as follows: 

 1 0[0,1,0] exp( ).S z xt E ik z ik x i t   E  (3) 

The choice of the sign of zk  in NIM, according to Ref. [1] takes into account the causality requirements that both the 

reflected and transmitted evanescent waves must decay away from the interface. Snell's law of refraction has also been applied to 

impose that xk  remains the same across the interface. Maxwell's equations relate the electric field to the magnetic field in the 

media. In air, 
0i  H E , and in NIM ( 1   ), 

0i  H E , as shown in the following: 

 
0

0

0

[ ,0, ]exp( ),S z x z x

E
k k ik z ik x i t


    H  (4) 

 
0

0

0

[ ,0, ]exp( ),S z x z x

rE
k k ik z ik x i t


    H  (5) 

 
0

1

0

[ ,0, ]exp( ),S z x z x

tE
k k ik z ik x i t


    H  (6) 

Ref. [1] assumed the ordinary boundary conditions, namely, both the tangential components of E and H are continuous. From 

Eqs. (1 - 6), this obviously yields r+1= t  and 1r t  , which are self-inconsistent.  

For P-polarized evanescent waves, explicitly, for the input magnetic field, there is the following: 

 0 0[0,1,0] exp( ),P z xH ik z ik x i t   H  (7) 

The magnetic field of the reflected evanescent waves is as follows: 

 0 0[0,1,0] exp( ),P H z xr H ik z ik x i t    H  (8) 

and the magnetic field of the transmitted evanescent waves is as follows: 

 1 0[0,1,0] exp( ).P H z xt H ik z ik x i t   H  (9) 

Assuming bulk electric current density is zero, Maxwell's equations give 
0i  E H , as in the following: 

 
0

0

0

[ ,0, ]exp( ),P z x z x

H
k k ik z ik x i t


     E  (10) 

 
0

0

0

[ ,0, ]exp( ),H
P z x z x

r H
k k ik z ik x i t


     E  (11) 

 
0

1

0

[ ,0, ]exp( ),H
P z x z x

t H
k k ik z ik x i t


    E  (12) 

Similar to the S-polarization cases, self-inconsistent equations will again result from the ordinary continuous boundary 

conditions for both electrical and magnetic fields. Explicitly, for continuous tangential magnetic field boundary condition, one 

has 1 H Hr t  , which is inconsistent with the continuous tangential electric field boundary condition that requires 

that1 H Hr t   . 

These self-contradictory equations resulted in both reflection and transmission coefficients diverging and, according to Ref. 

[1]'s approach, resulted in the amplification of evanescent waves going through the NIM slab via the multipath interference 

build-up of the evanescent waves. 
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III. NON-ZERO EFFECTIVE SURFACE CURRENTS AND SURFACE CHARGES   

The usual theory of refraction and reflection based on the assumptions of continuous tangential components of both electrical 

and magnetic fields is inadequate and breaks down at a microscopic level due to its discontinuity, locality, and incompleteness 

[31]. Taking into account the non-local nature of the optical surface at the microscopic level, non-zero surface potentials may 

arise and result in various optical surface phenomena, including surface electromagnetic fields, which the air/NIM interface is 

capable of supporting [31]. At the macroscopic level, one can capture the effect of the non-zero surface potentials by introducing 

non-zero effective surface current and charge densities. When these effective field source terms are introduced, while the 

tangential component of the electric field is always continuous, the tangential component of the magnetic field may not be 

continuous if there is a non-zero effective surface current density. Similarly, the non-zero effective surface charge density will 

make the normal component of the electric field discontinuous at the macroscopic level. The effective source terms at the surface 

capture the effects of non-zero surface potentials at the microscopic level. In the following, the exact distributions of the effective 

surface current and charge densities are derived at the interface of air and ideal NIM of 1n   . Then, from these effective 

source terms, the refracted and transmitted waves can be calculated.  

For S-polarized light input, since the normal components of the electric fields are zero in both media, it can be concluded that 

the effective surface charge density   remains zero. However, the effective surface current density may not be zero in 

evanescent wave refraction cases. In fact, assuming the effective surface current density is K, there is the following for the 

tangential components of the magnetic fields: 

 1 0( )  n H H K  (13) 

where n  is the unit surface normal vector pointing from air (medium 0) to the NIM (medium 1). Using Eq. (4) to Eq. (6) for the 

magnetic fields, one can derive that 0xK  , and the following: 

 
0

0

( 1)exp( )z
y x

k E
K t r ik x i t


     (14) 

Since the boundary condition for the tangential component of the electric field is continuous, one still has 1r t  . 

Accordingly, one can conclude that for this special case, 

 
0

0

2
exp( )z

y x

k E
K ik x i t


   (15) 

This expression gives the exact distribution of the effective surface current and is zero only when the input field is zero. 

Following Green's function method [44-46], the vector potential in the NIM is as follows: 

 
 

0

exp | |
( ) ( )

4 | |

ik
dS





 



 
 

 
r r

A r K r
r r

 (16) 

and the electric field will be as: 

 iE A  (17) 

Eq. (16) can be integrated analytically, which yields 0x zA A   and the following: 

 
 2 2

0
0 2 20

exp
( , , ) exp( ) ( )z

y x x

jk zk E
A x y z ik x i t J k d

z


   

 


 

  


  (18) 

where 
0( )J x  is the Bessel function of the 0-th order. For | |xk k  and 0z  , there is the following [47]: 

 
2 20

2 2
( , , ) exp( )exp( )z

y x x

x

k E
A x y z ik x i t k k z

k k



    


 (19) 

Recall 
2 2

z xk i k k    for evanescent waves, as in: 
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 0( , , ) exp( )y x z

iE
A x y z ik x ik z i t


     (20) 

Therefore, using Eq. (17), for 0z   in the NIM, 0x zE E   and the following: 

 0( , , ) exp( )y x zE x y z E ik x ik z i t    (21) 

Comparing this to Eq. (3), t =1. Accordingly, 0r  . This analytical solution to the refraction and reflection of evanescent 

waves from air to the ideal NIM of 1n    is completely self-consistent and satisfactory. The conclusion that t =1 and 0r   

also agrees with the intuitive analysis where one can argue that since the wave impedance of air and the ideal NIM matches, no 

reflection of waves should be expected.  

A similar analysis can be conducted for P-polarized evanescent waves. From Eqs. (7-12), the continuous tangential 

component of electric field boundary condition yields 1 H Hr t   . The effective surface current densities in this case can also 

be determined by 0yK   and the following: 

 02 exp( )x xK H ik x i t   (22) 

For the effective surface charge density  , there is the following: 

 1 0( ) .   n D D  (23) 

Accordingly, from Eqs. (10-12) and 1  for air and 1   for the NIM, there is the following:  

 02
exp( )x

x

H k
ik x i t


    (24) 

It should be noted that these results are also self-consistent and satisfy the continuity equation 0i   K .   

The vector potential field is still given by Eq. (16) and relates to the magnetic flux and the magnetic field in NIM as in the 

following: 

 0   B H A  (25) 

Following similar steps to those above, there is 0z   in the NIM, 0y zA A   , and the following: 

 
0 0( , , ) exp( )x x z

z

i H
A x y z ik x ik z i t

k


     (26) 

and there is also the following: 

 0( , , ) exp( )y x zH x y z H ik x ik z i t     (27) 

Compared to Eq. (12), there is 1Ht    and accordingly, 0Hr  . 

A similar analysis can be conducted at the interface between the NIM and the air when evanescent waves impinge from the 

NIM side. The conclusion is the same in that all evanescent waves are transmitted and there is no reflection. Accordingly, a slab 

of NIM with 1n    on the macroscopic scale, i.e., with a thickness that is many times that of the wavelength, behaves like the 

same thickness of air for any evanescent wave input, and there is no amplification effect for the evanescent waves. On the other 

hand, one can design a poor man's lens made of alternating negative-positive permittivity layers having an effective medium with 

zero permittivity, and hence, zero index. The resulting waves, including both propagating and evanescent waves, will simply 

tunnel through as if that volume of material is not present and assuming very low losses, which can lead to the perception that 

there is an improvement in resolution at a distance when in fact the phenomenon is better explained in terms of an effective shift 

of the object being imaged closer to the detector plane. 

IV. IMPACT OF NON-ZERO EFFECTIVE SURFACE CURRENTS AND CHARGES 

As mentioned in previous sections, it is obvious that the original derivation of a NIM slab perfect lens [1] is based on a set of 

self-inconsistent equations of reflection and transmission coefficients. When the actual required non-zero effective surface 

current and charge densities are considered, the ideal NIM of 1n    does not provide the opportunity to amplify the 

evanescent waves or to make a perfect lens. An alternative derivation of the NIM slab perfect lens, however, does not explicitly 
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involve the self-inconsistent reflection and transmission coefficients, and sometimes is presented in favor of the NIM perfect lens. 

This approach is demonstrated here; it should be pointed out that it is still implicitly based on the underlying assumptions of zero 

effective surface current and surface charge densities. When the actual required non-zero effective surface current and charge 

densities were considered, the results were the same as those in previous sections in which no evanescent wave amplification was 

obtained through a NIM slab. 

 

Fig. 2 Illustration of evanescent wave transport through an infinitely large slab in x  direction of ideal NIM of 1n   . The NIM slab has a thickness of L  

and is sandwiched in air: (a) Taking into account the non-zero effective surface sources, all evanescent waves decay through the NIM slab; (b) Assuming 

continuous tangential components of both the electrical and magnetic fields, all evanescent waves are predicted to be amplified in the NIM slab 

Referring to Fig. 2, the infinitely large NIM slab has a finite thickness of L . For S-polarization waves, the electric field can 

be expressed as in the following in Region 1, where 0z  : 

 0 0[0,1,0]( ) exp( )z zik z ik z

S xe Re E ik x i t  E  (28) 

 in Region 2, where 0 < z < L: 

  

 1 0[0,1,0]( ) exp( )z zik z ik z

S xAe Be E ik x i t  E  (29) 

; and in Region 3, where z L : 

 2 0[0,1,0] exp[ ( ) ]S z xT E ik z L ik x i t   E  (30) 

 

Accordingly, the magnetic fields can be found using the following in Region 1: 

 
0

0

0

[ ( ),0, ( )] exp( )z z z zik z ik z ik z ik z

S z x x

E
k e Re k e Re ik x i t



     H  (31) 

as the following in Region 2:  

 
0

1

0

[ ( ),0, ( )] exp( )z z z zik z ik z ik z ik z

S z x x

E
k Ae Be k Ae Be ik x i t



     H  (32) 

and as the following in Region 3: 

 
0

2

0

[ ,0, ] exp[ ( ) ]S z x z x

E
T k k ik z L ik x i t


    H  (33) 
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The continuous tangential electrical field boundary condition at both z = 0  and z L  yields the following: 

 1 ,R A B    (34) 

and also the following: 

 .z zik L ik LAe Be T   (35) 

The continuous tangential magnetic field boundary condition at both 0z   and z L  yields the following: 

 1 ,R A B     (36) 

and also the following: 

 .z zik L ik LAe Be T    (37) 

Solving Eqs. (34-37), one obtains 0A  , 1B  , 0R  , and exp( )zT ik L  . Given 
2 2

z xk i k k    for evanescent 

waves, one derives Pendry's original result that exp(| | )zT k L , which implies that the NIM slab amplifies evanescent waves 

of all spatial frequency components.  

Although the approach demonstrated above does not explicitly involve the diverging reflection and transmission coefficients 

of evanescent waves at individual interface of air and the NIM, it still relies on the underlying assumptions that the tangential 

magnetic fields are continuous across the interface between air and the NIM. In turn, this assumes that there are no effective 

surface charges or current densities. Obviously, the solutions to R , T , A , and B  will change if there are non-zero effective 

surface currents and/or charge densities. For example, if one assumes the effective surface current density is given as 0xK  , 

0

0

2
exp( )z

y x

k E
K ik x i t


  , and accordingly, 0   for the interface between air and the NIM ( 0z  ), and 0xK  , 

0

0

2
exp( )zik Lz

y x

k E
K e ik x i t


    , and 0   at the interface z L , then Eqs. (36-37) become the following: 

 1 2,A B R     (38) 

and 

 2 ,z z zik L ik L ik LAe Be T e    (39) 

while Eqs. (34-35) and Eq. (37) stay the same. The solution, however, is now 0R  , zik LT e , 1A  , and 0B  . 

Incidentally, these results are in agreement with the results presented in Section III, which indicate that the NIM slab will not 

amplify evanescent waves. Rather, all evanescent waves will simply decay through the NIM slab and will have no reflection.  

This example demonstrates that the approach taken in this section cannot actually define R , T , A , or B  by itself. The 

exact surface conditions at the microscopic level or the alternative effective surface current and surface charge density 

distributions must be known to yield an unequivocal solution using this approach when surface electromagnetic fields are 

involved, such as in the case discussed here.  

Together with previous sections, the problem of evanescent wave refraction and reflection at an interface of air and an ideal 

NIM of 1   and 1  
 
were resolved in detail. It was discovered that the previous treatments neglect the effect of non-zero 

surface potentials due to the nonlocal nature of the surface optics. This paper proposed to capture the microscopic non-zero 

surface potentials by introducing the macroscopic electromagnetic description non-zero effective surface current and charge 

densities at the interface. The self-consistent treatment provided here takes into account the potentially non-zero effective surface 

current and charge densities and yields the result that all evanescent waves are transmitted, and there is no reflection. The same 

conclusion holds at both interfaces of a NIM slab for evanescent waves. In particular, the zero reflection at both interfaces of an 

NIM slab also diminishes the multipath interference inside the slab.  Consequently, there is no evanescent wave amplification in 

the NIM slab.   

V. CONCLUSIONS 

In summary, it was concluded that a fundamental inconsistency and mistake in the popular negative index perfect lens theory 

were identified. The widely accepted NIM perfect lens theory neglected possible non-zero surface potentials and non-local 
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effects at the surface between a normal medium of n =1 and an ideal negative index medium of 1n   . Capturing these 

microscopic level effects by non-zero effective surface current and surface charge densities at the macroscopic level, the 

boundary problem of the evanescent wave refraction and reflection self-consistently were resolved and the exact distributions of 

the non-zero effective surface current and surface charge densities were derived when the evanescent wave was considered in 

special cases of air/NIM interfaces. The self-consistent solution is able to predict a unit transmission and zero reflection for all 

evanescent waves at such interfaces. 

The conclusion here, however, is not in contradiction to other numerically simulated and experimentally demonstrated 

super-lens effects since the slab thickness in those studies was usually only a fraction of a wavelength, in which case surface 

electromagnetic fields in forms of surface plasma polaritons (SPP) can couple efficiently between the front and back interfaces. 

As such, the demonstrated super-lens effects, or the transport of evanescent wave components, may be purely due to the SPP 

coupling [48], rather than the evanescent wave amplification of the NIM slab.  
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