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Abstract- The conventional point source discharge permitting decision through the National Pollutant Discharge Elimination System 

(NPDES) is primarily based on the regulatory low flows such as hydrological (7Q10, 1Q10), biological (4B3, 4B1) and seasonal low-

flow conditions. These regulatory low flow conditions are often estimated based on long-term historical flow data and can be expected 

to meet regulatory water quality protection provided that long-term data are utilized. Since climate change has potential to change the 

future low flow in the stream, concerns arise regarding the benefit of using long-term data for regulatory low flow estimation. We 

conducted a study in the Ohio River Basin and some of the selected regions of the Mid-Atlantic and Great Lake to examine the 

relevance of long-term data for regulatory low estimation. First, we detected the climate change pattern, and then, the study was 

conducted at various hydro-climatic data network (HCDN) stations to analyze the sensitivity of estimated hydrological/biological 

conditions on the length of data records. We analyzed the long-term data records for regulatory low flow estimation using various 

spans of data records. Our analysis indicated that long-term data were not necessarily beneficial for regulatory low flow estimation. 

The 50th percentile area-normalized 7Q10 indicated that 50 to 60 years of data was sufficient to capture minimum low flows. The 

average normalized 7Q10 computed using more than 60 years of records started increasing. However, the mean and median 7Q10 

computed separately for summer and winter tended to increase for the last 40 years and decreased for the data used beyond 40 years 

of record. In summary, data of more than 60 years duration in any period over the historical period may not be needed to capture the 

lowest flow in this climatic region as the lowest flow either increases or remains constant after this period. Our analysis suggests that 

the large period of records may not be beneficial for regulatory low flow estimation.  

Keywords- NPDES permitting, Low Flow, 7Q10, 1Q10, 4B3, 1B3, Hydrologic and Biologic Condition 

I. INTRODUCTION 

The conventional point source discharge permitting decision through National Point Discharge Elimination System (NPDES) 

is primarily based on the hydrological, biological or seasonal low flow (regulatory flow) conditions even though these criteria 

are not universally accepted (Saunders III et al., 2004; Sharma et al., 2012). These regulatory low flow (7Q10, 1Q10, 4B3, 4B1) 

conditions are typically estimated based on the long term historical flow data and can be expected to meet regulatory water 

quality protection provided that long term data are utilized (Saunders III and Lewis Jr, 2003; Saunders III et al., 2004). Since 

overestimation of low flow is risky for water quality protection, appropriate estimation of low flow conditions is needed (Sharma 

et al., 2012). Low flows are often estimated using statistical analysis of the long-term observed data without considering potential 

impacts due to climate change. However, for the last few decades, scientists and researchers have been concerned with climate 

change and its potential impact on precipitation, temperatures (Angel and Huff, 1997; Field et al., 2014) and hydrological cycles 

(Bates et al., 2008; Gain et al., 2013). Although there is a discussion for the exact rate and degree of increasing  temperature and 

precipitation trends due to climate change (Michaels and Balling, 2000), there is a general consensus among scientists  that global 

climate change is occurring (Doran and Zimmerman, 2009; Oreskes, 2004, 2007; Walther et al., 2005).  

If the climate is changing, the extent to which long-term data is incorporated into regulatory low flow estimation should be 

reviewed. The exact methods for low flow estimation in a climate-change context have yet to be determined. Some questions 

that have yet to be answered include:  Are the long-term records of more than a 100-year period beneficial, as considered 

appropriate conventionally, for estimation of 7Q10 if the global climate is truly changing? What consequences will be 

encountered in terms of pollutant assimilation in the stream? Will additional treatment be needed in waste water treatment 

facilities in the future? How do we incorporate the global climate change conditions in the point source permitting process? In 

fact, hydrological conditions and biological conditions of the stream might be affected due to climate change leading to more 

critical conditions in the future. Therefore, further study related to climate change and its potential impact on regulatory low flow 

estimation is essential.  

Climate change studies are generally conducted using future projected climate data from various Global Circulation Models 

(GCMs) (Grotch and MacCracken, 1991; Hansen et al., 1983). Since climate models’ predictions are based on the input from 

the Intergovernmental Panel on Climate Change (IPCC) scenarios (which are not deterministic), a degree of uncertainty is 
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associated in climate model prediction (Stainforthet al., 2005). Different climate models under various IPCC scenarios may have 

some variations in future precipitation and temperature projection (Allen et al., 2000) leading to some uncertainty in future 

hydrological assessments (Maurer, 2007; Wilby and Harris, 2006). As a matter of fact, a climate change study based on the 

retrospective historical observed data is more relevant due to a relatively lesser degree of uncertainty associated with past records. 

In other words, studies using the data from the 19th century and its impact in global hydrology will offer an evidence for the 

potential climate change impact on low flow estimation, and possible consequences in NPDES permitting. Therefore, in this 

study, observed data for long-term periods are analysed to detect the impact of long-term observed data for regulatory low flow 

estimation.  

In the work presented here, we analyse historical climate patterns and re-analyse the regulatory low flow estimation in 

numerous ways to detect the stream low flows pattern. Research was conducted based on the long term observed data at the 

Hydro-Climatic Data Network (HCDN) because minimum anthropogenic influence was expected to be experienced in these 

stations (Slack and Landwehr, 1992). We chose these regulatory low flow criteria as these were the key basis for NPDES 

permitting in the USA.  

This work differs from past studies in examining climate variability and hydrological or biological low flow estimation 

(Saunders III et al., 2004) numerous ways: i) it uses a longer period of data; ii) it has analyses the separate low flow criteria for 

winter and summer; iii) this study detects a flow pattern to suggest the length of past historical record (e.g. 1975 in this study) 

that should be included for low flow estimation. 

During low flow periods, the majority of the streams are significantly affected by point sources such as discharge from the 

waste water treatment and industrial facilities due to reduced assimilating capacities of the stream. The non-point source 

contribution during low flow or dry periods is negligible. In fact, water quality problems in the streams are mainly encountered 

during dry periods (summer) (Van Vliet and Zwolsman, 2008). The release of a point source is based on the criteria (stream low 

flows) suggested by National Point Discharge Elimination System (NPDES). Therefore, the broad research objectives are to; (i) 

analyze the climate change and climate variability (e.g. El Niño Southern Oscillation) impact for the estimation of hydrologic 

and biologic low flows conditions, and ii) detect the climate change effect and prescribe the appropriate period of records needed 

for the estimation of hydrological and biological low flow conditions without confounding climate change effect. 

II. THEORETICAL BACKGROUND 

Hydrological and biological conditions are the two major criteria for point source discharge permitting. Since the Clean 

Water Act (CWA) passed in 1972(Act, 2008), the CWA has defined water quality in terms of scientifically-sound criteria for the 

protection of aquatic life as well as human health. Various states in the United States use aquatic life criteria (e.g., ammonia, 

copper) and other water quality concentrations (e.g., dissolved oxygen) in order to develop water quality standards. Based on 

these water quality standards, the states and the United States Environmental Protection Agency (USEPA) develop Total 

Maximum Daily Loads (TMDLs) and NPDES permit limits considering critical conditions (e.g. low flows). 

III. NPDES PERMITTING 

NPDES permitting in the United States has been administered by the USEPA or some authorized states. Permitting has been 

effective in monitoring point source discharge allowing for significant improvement of water quality. Point source mainly refers 

for industrial or municipal discharge, which cannot be released directly to the surface water without obtaining NPDES permit. 

The severity of water pollution is intensified during low flow periods as the assimilating capacity of the stream is reduced 

for contaminants released through industrial and waste water facilities. Therefore, waste load allocation, (a portion of TMDL) is 

allocated to a point source, considering the critical low flow approach (Boner and Furland, 1982). Under this approach, point 

source permitting is determined to meet numeric water quality criterion for selected low flows. There are two approaches for 

design flow computations: i) hydrologically-based design flow; ii) biologically-based design flow. 

A. Hydrologically-based Design Flow 

Originally introduced by the United States Geological Survey (USGS), this approach has been widely used by various states 

in the USA (Wiley, 2006). This design flow (e.g., 7Q10, 1Q10) is computed first by determining the single lowest flow event 

from each year of record, then by conducting a statistical analysis using the data from a series of years (Pyrce, 2004). For example, 

7Q10 is computed using the minimum consecutive average seven-days low flow of the recurrence interval of 10 years. For this 

type of low flow analysis, typically a log Pearson III distribution will be fitted once the lowest seven-days flow from each year 

is plotted using the Weibul plotting position (Riggs, 1972). 

B. Biologically-based design flow 

This method was originally introduced by the USEPA (Rossman and EPA, 1990). In contrast with hydrologically-based 

design flow, this method examines entire low flow events within a period of record; that is, several lowest flow events, which 

are encountered in one year, can be incorporated for statistical analysis to compute a biologically-based design flow (e.g., 4B3, 

1B3). Therefore, biologically-based design flow may include numerous low flow records from a single year while no event may 



Journal of Water Resource and Hydraulic Engineering  Oct. 2015, Vol. 4 Iss. 4, PP. 432-449 

 

10.5963/JWRHE0404018 

- 434 - 

be included from some years. For example, 4B3 is a four-day average flow event which can be expected once in three years. 

Since 4B3 may incorporate a number of low flow records from the same year and no record from any other year while examining 

all low flow events, it is different from 4Q3 because the latter uses only one record from a year. 

IV. STUDY AREA 

This study was conducted primarily on the Ohio River Basins; however, the study was extended to the few selected stations 

of the Mid-Atlantic and Great Lakes regions. All stations in the Ohio River Basin that were qualified to meet our criteria were 

included in this analysis. Since an identical pattern was detected in all the stations, only few a stations were included from the 

other two regions (Mid-Atlantic and Great Lakes regions) (Slack and Landwehr, 1992), in order to minimize the computational 

work. Analysis was conducted at 40 stations, as these were the only stations qualified to meet our set criteria, which will be 

further discussed later in the methodology section. 

 

Figure 1.Study area with hydro-climatic data network (HDCN) stations, which furnishes data for than 90 years period of record. The number in the outer 

edge indicates the latitude and longitude 

The Ohio River Basin is one of the largest river basins in the USA. The Ohio River Basin covers 204000 square miles, 

including portions of 14 states and is a significant contributor to the Mississippi River Basin. Though the Ohio River Basin is 

one of the the largest basins in the continental United States, limited studies have been conducted on this basin.  
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The basin lies between 340N and 410N latitude and 770W and 890W. It drains a major portion of eight states and some 

portion of six additional states. Indiana, Ohio and Pennsylvania are situated on the right bank, and are the major contributors for 

the River, whereas Kentucky and West Virginia are the principal states located on the left bank. The Ohio River Basin begins in 

Pittsburgh, PA at the confluence of the Allegheny and Monongahela Rivers, and after flowing 1579 km up to south west Cairo 

in Illinois, it eventually drains into the Mississippi River with substantial streamflow contributions due to uniformly distributed 

high precipitation across this region. This basin is one of the large contributors to the Mississippi River Basin (Turner and 

Rabalais, 2004). Although the Ohio River represents only 18% of the drainage area of the entire Mississippi River, it contributes 

60% of the total flow in the Mississippi River Basin (Drum and Frevert, 2010). The basin is characterized with warm and humid 

summers and a mixed winter ranging from severely snowy cold in the Northeast to moderate and occasional snowy winters in 

the South. The average annual precipitation varies significantly, from 2024 mm in the Eastern region to 506 mm in the Northwest. 

The basin consists of 46.3% agricultural land, 42% pasture and range land, and 8% woodlands (Moore, 1989).  

Of the two other regions (Great Lake Regions and Mid-Atlantic Region), the Great Lakes Region (Region 4) ultimately 

discharges into the Great Lakes system, including the lake surfaces, bays and islands, and St. Lawrence River. Similarly, the 

Mid-Atlantic Region (Region 2) ultimately discharges into the Atlantic Ocean within and between the states of New York and 

Virginia. 

V. CLIMATE VARIABILITY AND CLIMATE CHANGE IN STUDY AREA 

The severity of water pollution is intensified during low flow periods as the assimilating capacity of the stream is reduced 

for contaminants released through industrial and waste water facilities. Therefore, waste load allocation, (a portion of TMDL) is 

allocated to a point source, considering the critical low flow approach (Boner and Furland, 1982). Under this approach, point 

source permitting is determined to meet numeric water quality criterion for selected low flows. There are two approaches for 

design flow computations: i) hydrologically-based design flow; ii) biologically-based design flow. 

A. Climate variability 

Climate variability in the Ohio River Basin and nearby regions has been reported in several studies (Kunkel and Angel, 1999). 

For example, Kunkel and Angel (1999) reported the El Niño Southern Oscillation (ENSO) effect on snowfall in the Basin. 

Likewise, Brolley (Brolley, 2007) studied the impact of large scale climate patterns, including the ENSO, North Atlantic 

Oscillation (NAO) and Pacific Decadal Oscillation (PDO), that brought significant changes to the climate variability of this 

region. 

B. Climate Change 

The future climate model projection, over the 21st century, indicates the consistent increasing trend of precipitation in higher 

latitudes (Field et al., 2014). Similarly, there are several indications of impact of climate change of on the Ohio River Basin, the 

Mid-Atlantic Region (Najjaret al., 2000; Neff et al., 2000; Rogers and McCarty, 2000), and the Great Lake Regions (Lofgren et 

al., 2002). The global trend of climate change is consistent with the climate change trend in the Ohio River Basin (USACE, 

2015). For example, several indicate a trend of increasing precipitation in Northern America (Karl and Knight, 1998; Kunkel, 

2003; Peterson et al., 2008; Pryoret al., 2008), particularly, from September to November. Similarly, the increased trend in 

streamflow was observed in this region during the 20th century (Karl and Knight, 1998; Lettenmaieret al., 1994; Olsen et al., 

1999; Tomer and Schilling, 2009). The recent findings of the “Ohio River Basin Climate Change Pilot Study” are somewhat 

consistent with these earlier studies. The “Ohio River Basin Climate Change Pilot Study” suggests that the climate of the region 

from 1976 to 2040 will remain more or less the same, but high flow will start increasing and low flow will start decreasing after 

2040. In the context of these findings, it is important to evaluate the relevancy of using long-term historical climate data in the 

low flow estimation for point source discharge permitting. Also, it is essential to determine the optimal number of years needed 

to compute 7Q10, which ensures the necessary treatment for the sufficient assimilation of the pollutant in a climate change 

context. 

VI. METHODOLOGY 

There are two approaches for design flow computations: i) hydrologically-based design flow; ii) biologically-based design 

flow. The analysis was conducted at HDCN stations based on the long-term historical records to estimate the exact period of 

data record needed for stream water quality protection. Therefore, extensive analysis was conducted to evaluate the benefit of 

incorporating long term data for regulatory low flow estimation. For this, USEPA’s Dflow program (Rossman and EPA, 1990) 

was utilized, and low flows estimated at various lengths of data records were analysed. 

A. Methodology for Objective I 

The analysis was limited to the HDCN stations expecting very little or no anthropogenic influence in these stations (Slack 

and Landwehr, 1992). Stations with data gaps were eliminated for consideration in analysis. Additional criteria were used for 

station selections such as the station should furnish daily data with non-zero flow at any time, and the station should also offer 

more than 90 years of observed data.  
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The HCDN data for more than 90 years of record are available in the USGS website 

(http://pubs.usgs.gov/wri/wri934076/region05.html). First, we analysed the long-term streamflow data monitored through 

HCDN in all qualified stations of the Ohio River Basin. Next, we selected some of the stations of the Mid-Atlantic and Great 

Lake Regions. Analysis of the two additional regions was particularly essential for two reasons: i) firstly, low flow estimation 

based on the short term data may not capture the lowest flows, and risky for adequate protection of fish and aquatic life, ii) and 

secondly, incorporating long-term data for regulatory low flow estimation may not be appropriate because climate change may 

have a different trend over a century leading to the new hydrological conditions. In order to address such issues, and also to 

ensure climate variability for regulatory low flow estimation, optimal lengths of data records are needed to estimate regulatory 

low flow criteria.  

We analysed for the optimal period of data record needed to estimate low flow conditions using two different time frames: i) 

first, in a 10-year block; ii) and second, with a one-year lag. The second approach was similar to the approach discussed in the 

Saunders III et al. (2004). The outline of the methodology is briefly sketched in Figure 2. For the analysis using the first approach 

(Figure 2a), we used data of various lengths of records such as 10 years, 20 years, 30 years, and so on, up to 90 years, starting 

from 2013 to the retrospective year of 1913. That said, we calculated 7Q10 for each 10-year, 20-year, 30-year, 40-year and up 

to 90-year block from the current year (2013) at each stations (40 altogether). For example, first 7Q10 was computed using 10 

years data, the next value was based on 20 years of data and the 9th value was computed using 90 years of data. This approach 

was essential in revealing the climate variability that was experienced over the historical period. The computation of low flows 

was accomplished in two ways using: (i) separate summer and winter regulatory low flow criteria; (ii) single regulatory low flow 

criteria for an entire year. Many states have adopted summer and winter regulatory low flow criteria to develop NPDES 

permitting for various pollutants.  

For the second approach, we created a data block that was lagged by a year (Figure 2b). For example, 90 blocks of 10 years 

data was created using data from 2013 to 1913, with each block lagged by one year. We calculated various 7Q10 using 10-, 20-, 

and 30year data blocks and repeated this up to 100 years of data. Ninety different values of 7Q10 were computed using 10-year 

data in a single station that used a 10-year block. Each block was lagged by a year for the 100-year period of record. Likewise, 

80 different values of 7Q10 were computed for the same station using 20 years of data. In this way, 3600 different values of 

7Q10 were computed using different lengths of data records for 40 stations just by using the 10 years of data record. Similarly, 

2880 and 2520 numbers of 7Q10 were computed using 20 years and 30 years of data block, respectively. This entire process is 

repeated for 1Q10, 4B3 and 1B3. We normalized the regulatory low flow criteria (7Q10, 1Q10, 4B3, 1B3 flow divided by 

respective basin area) computed from the second approach to detect the sufficient period of data needed for low flow computation. 

The normalization of data made it easy to analyse the data from various sizes of basins in a common platform to identify the 

minimum period of data records needed to incorporate sufficient climate variability 

Analysing the low flow criteria was useful in determining the period of data records needed to sufficiently capture the extreme 

low flow conditions in this particular climate region. Also, it was useful to determine the farthest period of record in the historical 

period that should be incorporated for hydrologic and biologic low flow estimations. 
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Figure 2. Methodology for two approaches showing the different period of data period used for 7Q10 computation 

VII. RESULT AND DISCUSSION 

A. Climate Variability 

We analysed the streamflow during the growing and non-growing seasons at different months, over various phases of ENSO 

to detect if the basin experienced any teleconnection of streamflow with ENSO phases. The streamflow analysis was important 

to detect an ENSO signature with stream low flows so that hyrdological or biological low flow conditions could be correlated 

with these predictable climate forcing functions. Results of the analysis indicated that ENSO had better signature with streamflow, 

especially in February, March and April of the non-growing season, and also in September and October of the growing season 

(Figure 3). However, ENSO did not depict any significant impact on streamflow variation, except for a few months (Figure 3). 

This led a conclusion that a basin might encounter precipitation and streamflow variation only in some months due to a number 

of oceanic and atmospheric phenomenon including NAO and PDO, but not for the entire season.  
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                (b) 

Figure 3 Streamflow (USGS 3611500) with ENSO phases during a) non-growing season, and b) growing season. LN, EL and NU refer for La Niña, El 

Niño, and Neutral, respectively 

B. Climate Change 

Ten years of running averages of precipitation levels were plotted for 14 pre-selected stations from each state (Figure 4a and 

Figure 4b). The stations in each state were selected based on two criteria: i) first, the station should be within the watershed 

boundary; ii) and second, the station should furnish a continuous length of data records for long periods. Overall, there were no 

substantial differences in plotting from one state to another except for Ohio, Pennsylvania and Kentucky (Figure 4b). Station 

selected in Kentucky did not show a clear trend of increasing annual precipitation over the last century when using Mann-Kendall 

test (p-value=0.87). All other stations showed significant increasing trend with p-value<0.05 (Table 1). On the other hand, some 

of the stations (e.g., West Virginia, Tennessee, Virginia, Mississippi and Alabama) showed sharp increase in a precipitation trend 

(p-value < 0.002).  The rest of the states showed moderate increase in annual precipitation. In order to further confirm the climate 

change pattern, we plotted the long-term records of streamflow at the outlet of the Ohio River Basin (USGS gage 3611500) in 

Illinois (Figure 5). The increasing pattern of streamflow records was consistent with the increasing precipitation records of the 

region (Figure 4). In fact, all of the aforementioned states eventually contributed to the streamflow in the Ohio River Basin. We 

further analyzed the annual flow using Mann-Kendall test and the distinct pattern of increasing trend (p-value <0.05) in annual 

flow was detected for two USGS stations (Table 2).  Next, we evaluated consecutive seven-day low flows (minimum) of each 

year from 1929 to 2013. Interestingly, we detected different patterns in minimum seven-day low flows before and after 1975 

(Figure 6). While our analysis indicated an increased rate of annual streamflow, minimum consecutive seven-day low flows were 

found increasing until 1975, and decreasing after this period. The same trend was detected for two USGS stations while using 

Mann-Kendell test (Table 2). The increasing trend was not realized in USGS 1570500 while decreasing trend after 1974 was 

distinct (p-value <0.1) We should mention that seven-day low flows varied from 1975 for all three major River Basins of this 

region. Since the low flow pattern before and after 1975 were distinctly different (Figure 6), we analyzed the regulatory low flow 

estimations for various lengths of data record in order to further confirm whether historical data beyond 1975 are needed for the 

7Q10 computation.  
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Figure 4a.10 year average annual precipitation at selected climate stations of Alabama (AL), Mississippi (MS), Virginia (VA), West Virginia (WV), 

Georgia (GA), Tennessee (TN), New York (NY) and Indiana (IN) 
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Figure 4b.10 year average annual precipitation at selected climate stations of Ohio (OH), Pennsylvania (PA), Illinois (IL), Georgia (GA), North Carolina 

(NC) and Kentucky (KY). 

 

 
TABLE I MAN-KENDALL TEST TO DETECT THE TREND OF ANNUAL PRECIPITATION OF 14 STATES WITHIN OHIO RIVER BASIN 

 
Trend Detection for Annual Precipitation of 14 States within Ohio River Basin 

Stations Mean, mm 

Mean Absolute 

Deviation 

(MAD), mm 

Standard 

Deviation 

(SD), mm 

Mann-

Kendall S 

value 

Mann-

Kendall Z 

value 

Mann-

Kendall P 

value 

Trend 

COOP:011099, Alabama (AL) 1450 71 117 1212 5.8 0.000 Increasing 

COOP:220955, Mississippi (MS) 1405 75 95 1411 4.8 0.000 Increasing 

COOP:441209, Virginia (VA) 1133 37 49 1113 5.1 0.000 Increasing 

COOP:465002, West Virginia 

(WV) 
1042 22 44 467 3.0 0.002 Increasing 

COOP:090969, Georgia (GA) 1409 52 84 941 4.7 0.000 Increasing 

COOP:406371, Tennessee (TN) 1298 76 84 1599 5.6 0.000 Increasing 

COOP-300093, New York (NY) 1120 24 46 584 2.8 0.005 Increasing 

COOP:369050, Pennsylvania 

(PA) 
1079 33 48 521 2.4 0.015 Increasing 

COOP:331890, Ohio (OH) 1032 42 51 572 1.9 0.050 Increasing 

COOP:120177,  Indiana (IN) 993 44 64 1693 5.5 0.000 Increasing 

COOP:111436, Illinois (IL) 1017 44 60 893 3.0 0.002 Increasing 

COOP:315356, North Carolina 

(NC) 
1009 30 45 738 3.5 0.000 Increasing 

COOP:150254, Kentucky (KY) 1201 51 68 -33 -0.2 0.870 Neutral 
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When 7Q10 was computed using more than 50 or 60 years of data from 2010 in a retrospective period (historical period), 

7Q10 was almost constant (Figure 7). This result is not surprising, but rather consistent with our earlier plotting (Figure 6) 

because the earlier plotting of minimum seven-day low flows showed the increasing trend up to 1975 from the beginning, and 

then a decreasing trend (Figure 6). In fact, this is also manifested in Figure 7. The 7Q10 in Figure 7 is based on computed 7Q10 

beginning from 2010 back to the 100 years of the retrospective period (e.g 1910). This analysis indicated that retrospective data 

beyond 50 or 60 years were not needed for 7Q10 computation because of the fact that low flow had a different trend on low 

flows from 1975. This analysis was conducted for only hydrological conditions including separate summer and winter low flows 

(Figure 7) over the selected stations. Various states in the USA adopt summer and winter 7Q10, separately. Since some pollutants 

(e.g. ammonia) are released based on the different threshold of regulatory criteria for summer and winter, we first divided the 

low flows for summer and winter. Then, 7Q10 and 1Q10 were analyzed separately for summer, winter. Mean and median 

7Q10/1Q10 for the entire year has been plotted in Figure 7a, whereas the mean and median 7Q10/1Q10 analyzed for summer 

and winter has been plotted in Figure 7b and Figure 8, respectively. 

Overall, mean or median 7Q10/1Q10 was in a slightly increasing trend up to the historical 40 or 50 years and somewhat 

decreasing or constant trend beyond 50 years. This indicates that historical data beyond 50 years are not necessarily useful for 

7Q10 or 1Q10 computation as the trend is almost constant. By analysing the data with a 10-year block without overlapping the 

data period enabled us to further confirm the different trend of a low flow pattern, which was experienced on low flows estimation. 

     

 

 

 

Figure 5. Increased trend of annual streamflow in major river basins of study area; a) USGS 3611500, b) USGS 4264331, c) USGS 1570500 
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Figure 6. Consecutive average 7 days lows flows at:  a) USGS 3611500, b) USGS 4264331 and c) USGS 1570500 
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TABLE II MAN-KENDALL TEST TO DETECT THE TREND OF ANNUAL STREAMFLOW IN THE SELECTED USGS STATIONS OF THE OHIO RIVER BASIN, MID-ATLANTIC 

REGION AND THE GREAT LAKE REGION 

Trend Detection for Annual flow and Seven Days Low Flows 

Stations Mean flow, cfs 

Mean Absolute 

Deviation 

(MAD), cfs 

Standard 

Deviation 

(SD), cfs 

Mann-Kendall S 

value 

Mann-Kendall 

Z value 

Mann-Kendall P 

value 
Trend 

USGS-3611500 279121 50400 69245 574 2.2 0.03 Increasing 

USGS 4264331 254045 15000 26963 578 2.7 0.006 Increasing 
USGS 1570500 33677 5310 7707 279 1 0.27 Neutral 

Trend Detection for Seven Days Low Flows 

USGS-3611500 (Up to 1974) 50737 10229 17613 529 5.3 0 Increasing 

USGS-3611500 (After 1974) 67239 14343 21826 -199 -2.1 0.004 Decreasing 

USGS 4264331 (Up to 1975) 204361 20000 24300 213 2.5 0.014 Increasing 

USGS 4264331 (After 1975) 213235 7571 10585 -177 -2.3 0.021 Decreasing 

USGS 1570500 (Up to 1974) 3601 711 1226 68 0.8 0.45 Neutral 

USGS 1570500 (After 1974) 5197 1176 1664 -148 -1.7 0.09 Decreasing 
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(b) Hydrological conditions in cfs for summer period 

Figure 7 Mean and median 7Q10/1Q10 (cfs) for entire year (a), and summer period (b) using first approach 

 

         

          
Figure 8 Mean and median 7Q10/1Q10 (cfs) for winter lowflows computed using first approach 

One major research question is how many years of data are sufficient to capture the lowest flows. To answer this question, 

we analyzed the regulatory low flow estimations at different bands of 10 years to 100 years at one-year lagged interval (second 

approach). This analysis provided some evidence of the flow pattern. Figure 7 shows the 7Q10 computed using 10 years to 90 

years of data. However, as mentioned earlier, 10-year to 90-year periods of data were constructed with one-year lag time resulting 

in ninety 7Q10 at a single station. It is worthwhile to note that 10 years of data shows significant variability in 7Q10 estimation. 
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using 90 years of data. This indicates that less uncertainty and variation exists when longer periods of record are used in 7Q10 

computations. Even though the left panel of Figure 9a was based on the analysis at selected station (USGS 2387500), identical 

results were obtained in several other stations. Figure 9a (right panel) indicates the percentile 7Q10 generated using entire data 

sets for all stations; each circle represents the percentile varying from 10 (bottom circle) to 100 (top most circle). The figure 

indicates that data records of more than 60 years do not show much variability. A similar trend was obtained while analyzing 

1Q10 for a selected station (left panel of Figure 9b) and using the entire data sets (right panel of Figure 9b).Figure 10 indicates 

the normalized regulatory low flows estimated for various lengths of data records from 10 to 90 years.  

   

             
Figure 9. Top left panel shows the 7Q10 computed at selected station (USGS 2387500), and top right panel shows the 7Q10 computed at various 

percentiles from bottom (10 percentile) to top (100 percentile) for entire datasets (a); bottom left panel shows the 1Q10 at selected station (USGS 2387500), 
and bottom right panel shows the 1Q10 computed at various percentiles (10 to 100 percentile) from bottom to top for entire datasets (b) 
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Figure 10. Top panel shows mean and median 7Q10 (normalized with area) and bottom panel shows mean and median 1Q10 (normalized with area). 

 
The low flows after normalization (7Q10/Area) from various stations were plotted throughout the study area (Figure10). The 

top panel of Figure 10 shows the mean and median normalized 7Q10, while the bottom panel shows the mean and median 

normalized 1Q10. We found decreasing trends up to 60 years, especially for the median values. Similarly, normalized 1Q10 was 

also found to be decreasing when an increased period of data records was used in the computations. Furthermore, the median 

(50th percentile) data showed that, normalized 7Q10 and 1Q10 decreased up to 60 years and then started increasing. Please note 

that slightly different pattern and outcome was obtained from this approach; this was expected because both approaches used 

different methodology. It is worth noting that incorporating the data records of beyond 60 years may not lead to the estimation 

of lowest flows; rather, flows computed using data more than 60 years may overestimate 7Q10. This suggests that merely 

increasing the number of years does not necessarily capture the lowest flow for NPDES permitting to protect water quality. We 

found a consistently decreasing pattern and sharp decrease in 7Q10, while we plotted the maximum 7Q10 corresponding to the 

respective period of data records from 10 to 90 years (not shown). Essentially, the 100th percentile data represented the maximum 

possible 7Q10/1Q10 that corresponded to each period of records. A Few inferences can be drawn from this analysis: 7Q10 

computed from 10 years of records can result in possibly higher low flow estimations; however, long term records may not 

necessarily result in the lowest flow as indicated by the 50th-percentile data sets. Also, normalized 7Q10 for higher (100th 

percentile) flow tends to decrease sharply with the increased number of years (not shown).  

Interestingly, normalized 7Q10 showed a decreasing pattern up to a 50- or 60-year back to the historical period (literally, it 

includes the past 50 to 60 years of data from 2013). The mean and median Normalized 1Q10 from all aforementioned (40) 

stations that were computed using various periods of data records were plotted as shown in Figure 10. This is consistent with our 

analysis that a minimum of seven-day low flows start decreasing after 1975 (Figure 6). The normalized 7Q10 computed from 

the second approach was first in a decreasing trend and then in an increasing trend. This is mainly because we computed 7Q10 

using data of historical periods in a backward direction (Figure 2) even for the second approach. However, while computing low 

flows and seven day low flows, we used the data from the beginning of 19th century. Also, the trend is different than that of the 

first approach because the second approach used data records at a one year lagged interval. 

Similarly, we analyzed for normalized 4B3 and normalized 1B3 (Figure 11). Even though 4B3 and 1B3 does not need a 

longer period of data records as needed for 7Q10, we utilized the same period of data sets and computed all regulatory low flow 

criteria at a single stretch in order to save the computational time. The 4B3 was also found to be in a decreasing trend; however, 

this was not the case for 1B3 as it decreased for the first 40 years and inclined to increase after 40 years. For the median, a sharp 

decreasing trend was observed up to 60 years for both 4B3 and 1B3; the decreasing trend was especially prominent for 1B3. 

Beyond the 60-year periods of data, we found an increased trend.  
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Figure 11 Top panel shows mean and median 4B3 (normalized with area), and bottom panel shows mean and median 1B3 (normalized with area). 

Even though a decreasing trend of regulatory low flow was detected with the use of an increased period of records, it is worth 

mentioning that utilizing data of many years in the computations may not necessarily capture the lowest flow as suggested by 

the 50th-percentile (median) graph (Figure 10 and Figure 11). However, in all cases, we found that the regulatory low flow 

estimation was in a decreasing pattern for a data length considered up to 60 years of the historical period. 

VIII. SUMMARY AND CONCLUSION 

We investigated the general trend of precipitation pattern over the selected stations of 14 states within the Ohio River Basin. 

In most of the stations, an increasing trend of precipitation was observed. Also, the annual streamflow was analyzed at the outlet 

of the Ohio River Basin and selected Basins of two other regions: the Great Lakes Region; and the Mid-Atlantic Region. The 

average annual streamflow shows the increased trend of streamflow over the basins while seven-day low flows for each year 

does not reveal a continuous increasing trend, rather a decreasing trend after 1975. After investigating the climate change and 

climate variability of the basins, the regulatory low flow criteria was analyzed in two different ways: i) first analysis was 

conducted to compute 7Q10 using 10-year to 90-year blocks; ii) second analysis was conducted using 10 to 90 years of data at 

one-year lagged intervals. Analyses using the first approach indicated a distinct pattern of low flows before and after 1975.The 

analyses also indicated that data beyond 50 years in the historical period may not be needed for regulatory low flow estimation. 

Analyses using the second approach indicated that more than 60-year periods of data records may not be needed to capture the 

lowest flows for regulatory low flow estimation. A similar trend was detected while replicating the same experiment with 1Q10, 

4B3 and 1B3, which indicates that incorporating long term data sets are not necessarily beneficial for regulatory low flow 

estimation because of the different low flow patterns since the late 19th century. This analysis is useful in order to estimate 

appropriate future regulatory low flow criteria, as the regulatory low flow criteria based on historical data sets may not truly 

represent the same in the future. Overall, the findings of the analysis can be summarized as follows: 

• Precipitation and streamflow were found to consistently increase, however low flows were found to decrease 

somewhere after 1975. 
• Consideration of shorter periods of data will increase the degree of uncertainty. 
• Long-term data is needed for regulatory low flow estimation even though 7Q10 can be estimated using 10 years of 

data. 
• Longer periods of record will decrease the variability and uncertainty but may not necessarily capture the lowest 

flows. 
• Data of 60 years in any historical period is sufficient to capture the lowest flows for stream water quality protection as 

more than 60 years periods of record either tends to increase or remains constant. 
Global climate change and climate variability over the last several decades indicate the increasing trend of temperature 

variability and changes in precipitation patterns. These global changes may affect the large scale hydrological cycle (Risleyet al., 
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2011). As such, the conventional point source discharge permitting based on the historical climate data may not be sufficient to 

protect fish and aquatic life in the future. Increased temperatures due to climate change may decrease the assimilation capacity 

of the stream. In such cases, fish and aquatic life may experience additional stresses due to confounding variables that include: 

i) decreases in the assimilative capacity of the stream and a decrease in the dissolved oxygen (DO) level due to the increased 

water temperature; ii) decreases in the stream low flows leading to the decrease in reaeration and dissolved oxygen; iii) increases 

in stream temperature and pH. 

Since certain types of fish and aquatic life are sensitive to the increased temperatures and pH, point source permitting criteria, 

which are mostly based on hydrological and biological low flow conditions, should be re-examined for future use. Also, it is 

essential to adequately address the climate variability of the region, while estimating regulatory low flow criteria, to ensure 

sufficient assimilation of the pollutants because the estimation of low flows has potential implications in the assimilation capacity 

of the stream that is required to dilute pollutants, and also for the treatment needed in waste water treatment plants. 
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