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Abstract-This paper describes the derivation of the expected payoff function of polymatrix games according to the induction method. 

It also presents a new algorithm for calculating mixed Nash equilibrium (NE) in polymatrix games. Results indicate that the new 

algorithm can compute mixed NEs for polymatrix games within polynomial time. This paper is a continuation result of previous 

research which describes that the expected payoff function of 2-player games in normal form is identical to the mathematical 

representation of the fuzzy average of two linguistic values of a linguistic variable; this paper extends the identification of 2-player 

games to polymatrix games. 
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I. INTRODUCTION 

A game in normal form, also known as strategic game, is a static model which describes interactive situations among 

several players. According to this model, for non-cooperative games, all players make their decisions simultaneously and 

independently. A polymatrix game is a particular class of n-player game in normal form, in which the payoff for each player is 

obtained as a sum of individual payoffs gained against each other player. 

Finding NEs in game theory is a fundamental problem. For two-player games, the Lemke-Howson algorithm [1] is still 

state-of-the-art, despite its 50 year age. Howson [2] extended the Lemke-Howson algorithm to polymatrix games, positing that 

polymatrix games are linear combinations of two-player games, which have linear structures. However, the Lemke-Howson 

algorithm cannot be directly applied to other games due to the fact that NE is no longer a linear complementarity problem 

when n is greater than two. Rosenmuller [3] and Wilson [4] independently extended the Lemke-Howson algorithm to 

determine NEs for n-player games. 

A different method to compute NEs was introduced by Scarf [5], called the simplicial subdivision algorithm. This 

algorithm is widely used to determine NEs for n-player games. Dickhaut and Kaplan [6] proposed a search algorithm which 

enumerated all support profiles in order to determine all NEs. Govindan and Wilson [7] proposed another method based on the 

global Newton method combined with homotopy to compute NEs for n-player games. Govindan and Wilson [8] published 

another new method which merges the Lemke-Howson algorithm with the global Newton method. Blum, et al., [9] improved 

the method which was proposed by Govindan and Wilson [8] and applied it to both graphical games and multi-agent influence 

diagrams. Porter, et al., [10] presented two algorithms for finding NEs: one for two-player games and one for n-player games. 

Cai, et al., [11] demonstrated that calculating NEs for zero-sum polymatrix games is equivalent to solving linear programming, 

and showed that von Neumann’s minimax theorem for two-player zero-sum games can be generalized to polymatrix games. 

Belhaiza [12] demonstrated that every perfect equilibrium of a polymatrix game is un-dominated, and that every un-dominated 

equilibrium of a polymatrix game is perfect. 

A recent sequence of papers indicates that computing one (any) NE is PPAD (Polynomial Parity Arguments on Directed 

graphs)-complete for two-, three-, or four-player games in strategic form [13-16]. Chen and Deng [14] demonstrated that 

computing NEs for two-player games is PPAD-complete. Daskalakis, et al., [15] showed that determining NEs for four-player 

games is PPAD-complete. Chen and Deng [13] and Daskalakis and Papadimitriou [16] independently demonstrated that 

calculating NEs for three-player games is PPAD-complete. All known algorithms require exponential time in the worst case. 

Chen, et al., [17] reported that the problem of computing a (1/n)-well-supported NE in a polymatrix game is PPAD-complete. 

Fuzzy theory has been applied to game theory [18-20]. Chakeri and Sheikholeslam [18] proposed a method of determining 

fuzzy NEs in crisp and fuzzy games. Garagic and Cruz [19] extended the concept of non-cooperative game theory to fuzzy 

non-cooperative games under uncertainty phenomena. Wu and Soo [20] applied fuzzy game theory to multi-agent coordination. 

In this paper, fuzzy theory is used as a tool to reduce the complexity of calculating NEs in polymatrix games. 

Results: 

1. This article describes the derivation of expected payoff function in polymatrix games, and presents the reason why the 

expected payoff of each player in non-cooperative games is obtained as a sum of individual payoffs gained against each 

other player. 

2. Associated with the derivation, a new algorithm for computing NEs for polymatrix games is presented.  The algorithm’s 

ability to calculate NEs in polymatrix games within polynomial time is also demonstrated. 
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This article is organized as follows. Section 2 presents preliminaries which include the definitions of n-player games, fuzzy 

numbers, and the fuzzy average. Section 3 describes the formula of the expected payoff function for n-player polymatrix 

games, and a theorem for computing mixed NEs. Section 4 describes the proposed algorithm in detail. Section 5 presents three 

examples, and section 6 presents conclusions and ideas for future work. 

II. PRELIMINARIES 

Below are described some basic concepts in game theory and fuzzy set theory. 

A. The Strategic Form of an n-player Game 

An n-player game in strategic form: an n-player game in strategic form is described by a tuple 

)}{,}{,( NiiNii uSNG  with the following: 

(1) A finite set of players N = {1, 2, …, n}. 

(2) A set ),...2,1)(,...,( 1 nissS ikii   of strategies for each player Ni . Without losing generality, suppose that all players 

have the same number of strategies in this paper. 

(3) A utility function RSui :  for each player, where 
iNi SS   is the space of pure strategies. 

The utility function 
iu  is a real value function which maps the space of all players’ strategies into a real value. 

Best Response: Let ),...,,...,(: 111 niii SSSSS   . Player i’s best response is a mixed strategy SSi 
*  such that

),(),(
*

iiiiii SSuSSu    for all strategies SSi  . 

Nash Equilibrium: A strategy profile ),...,,( 21 nSSSS   is an NE if for all players i, 
iS  represents the best response to 

iS
. 

B. Fuzzy Numbers 

A fuzzy number is a fuzzy set which is defined in R. There some various types of fuzzy numbers [21], including triangular 

fuzzy numbers (TFNs), trapezoidal fuzzy numbers, etc. TFNs only are reviewed here. 

A TFN is denoted as (a, b, c), where RcRbRa  ;;  )( cba  , and the membership function of TFN (a, b, c) is 

described as follows. 
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There are two special TFNs. One is (a, a, c), such that a = b; the other is (a, c, c), such that b = c. The membership 

functions of TFN (a, a, c) and TFN (a, c, c) are described as follows. 
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C. The Fuzzy Average 

The fuzzy average [22] is defined as the average of linguistic values of a linguistic variable (x, T(x), U, G, M) [23, 24], 

where x is the name of the variable; T(x) is the term set of x; U is the universe of discourse, which is usually defined as the 

interval [0, 1]; G is the syntactic rule which generates the terms in T(x); M is a semantic rule, which is typically a mapping 

from the set T(x) to a set of fuzzy numbers defined in U. The fuzzy average of two values of a linguistic variable is described 

as follows. 

Suppose that the two values of a linguistic variable are ),),(,( 1,111 MGUxTx  and ),,),(,( 2222 MGUyTy , where

},...,,{)( 211 nxxxxT  , },...,,{)( 212 myyyyT  ; ]1,0[1 U ; ]1,0[2 U . 
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},,...,,{)(: 2111 nAAAxTM  },,...,,{)(: 2112 mBBByTM   where 
iA (i=1,2,…,n) and 

jB (j=1, 2,…,m) are triangular 

fuzzy numbers (TFNs) which are defined on ]1,0[1 U ; ]1,0[2 U , )(x
iA  and )(y

jB  are the membership functions of 

TFNs 
iA  and 

jB , respectively. The fuzzy average is defined as: 

)()()()(
1 1

, yRxrxyxu BAij

n

i
BA

m

j
ji

  
 

 

where 

)},(),...(),({)( 111 21
xxxx

nAAAA   ))(()( xx AnA   ; 

)}(),...(),({)( 111 21
yyyy

mBBBB   , ))(()( yy BmB   ; 

)}...2,1(0;1|{:)(
1

nizzzz ii

n

i
in 



, 
1Ux  and 

2Uy ;  

n is the number of entries in )(1 xT ; m is the number of entries in )(2 yT ; and )( ijrR   is the consequence matrix [22]. It has 

been proven that the fuzzy average converges to the arithmetic mean [22]. )(x
iA  is interpreted as the weight of element 

)(1 xTxi  . For a given 
1Ux  and 

2Uy , the vector )(xA , )(yB  is interpreted as the probability distribution over )(1 xT ,

)(2 yT , respectively. 

In game theory, the set of strategies ),...2,1)(,...,( 1 nissS ikii   can be interpreted as the term set )( iST  in the concept of 

linguistic variables. For example, for a rock-paper-scissors game, a player’s strategy set ),,( sprS   (where r, p, and s stand 

for rock, paper and scissors, respectively) can be considered as a term set of {r, p, s} in linguistic variables, such that

},,{)(1 sprST   and },,{)(2 sprST  . The probability distribution over the set of strategies for each player can be represented 

by )(xA  and )(yB . 

For two-player games in normal form, when a player’s strategy set is represented by the term set and the payoff matrix is 

the same as the consequence matrix, it was proved that the expected payoff function is identical to the fuzzy average [25, 26]. 

III. EXPECTED PAYOFF FUNCTION OF POLYMATRIX GAMES 

The derivation of the expected payoff function of polymatrix games is described in this section. 

For an n-player non-cooperative game )}{,}{,( NiiNii uSNG  , player i’s strategy set 
iS = ),...,( 1 iki ss  corresponds 

to a probability distribution 
iP  over 

iS , where 
iP = ),...,( 21 ikii ppp , )( iki PP  ; )...2,1( ni  . For example, for two 

players in a rock-paper-scissors game, strategy set )2,1)(,,(  isprS iiii
 for each player. A mixed strategy is described by 

probability distributions; for instance )
4

1,
4

1,
2

1(1 P  represents a strategy over the strategy set 
1S . The probability that 

player 1 chooses rock, paper, scissors is 0.5, 0.25 and 0.25, respectively. When 
1P  is a unit vector, then the mixed strategy 

becomes pure strategy. To summarize, the strategy set
iS always corresponds to a probability distribution 

iP  over the strategy. 

In this paper, the expected payoff function is described by probability distributions rather than using strategy sets. That is, 

the expected payoff function is defined as a map from a set of probability distribution functions (PDFs) over S to a real value. 

For example, a two-player game in normal form given by G  )}{,}{,2( 22  iiii uS , where )2,1)(,...,( 1  issS ikii  is a 

set of strategies for player i; )2,1( iui
 is the expected payoff function. The function is described as follows. 

T
PAPPPu 2121211 ),(   

T
PAPPPu 1212122 ),(   

where )2,1();(},...,{ 1  iPppP ikikii
 represents the probability distribution over 

iS ; 
12A , 

21A  is the kk   payoff matrix 

for player 1 and player 2, respectively. 

12A  and 
21A  are also known as a bi-matrix. The first number in the index of a payoff matrix indicates to which player the 

payoff matrix belongs. The order of the indices of 
12A  and 

21A  indicates which player competes with which player. For 

example, 
12A  is player 1’s payoff matrix by competing with player 2; 

21A  is player 2’s payoff matrix by competing with player 

1. 
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Suppose a new player, denoted as player 3 with strategy set 
3S , is added into the game. Associated with 

3S , a probability 

distribution over 
3S  is denoted as 

3P . 

Since the game is non-cooperative, each player is an independent individual. Player 3 must compete with each existing 

player and vice versa. As a result, the following four combinations are formed. 

23,13,32,31 PlayerPlayerPlayerPlayerPlayerPlayerPlayerPlayer  . 

Assume that 
312313 ,, AAA  and 

32A  are the payoff matrices representing the above four competitions. Then one can obtain 

the following payoff sub-functions. 

,),( 31313113

T
PAPPPu   ,),( 32323223

T
PAPPPu   

,),( 13131331

T
PAPPPu   

T
PAPPPu 23232332 ),(  . 

In order to obtain the expected payoff function for the three-player game, rewrite the expected payoff functions ),( 211 PPu  

and ),( 122 PPu  from the original two-player game as follows. 

T
PAPPPu 21212112 ),(  , 

T
PAPPPu 12121221 ),(  . 

Since the game is non-cooperative, each player makes decision independently. The expected payoff function for each 

player becomes as follows. 

TT
PAPPAPPPuPPuPPuPPPu 31312121311321121113211 ),(),(),(:),,(    

TT
PAPPAPPPuPPuPPuPPPu 32321212322312212223122 ),(),(),(:),,(    

TT
PAPPAPPPuPPuPPuPPPu 23231313233213313332133 ),(),(),(:),,(    

If the above procedure is repeated, one can obtain the following theorem. 

Theorem 3.1 

Given an n-player non-cooperative game }}{,}{,{ NiiNii uSNG  , where 
iNi SS  , ),...2,1)(,...,( 1 nissS ikii  , 

),...,,{ 21 Nuuuu   is a vector of expected payoff functions of the n-player games. If ),...2,1( niPi   is player i’s probability 

distribution over 
iS , where ),...2,1(),(},...,,{ 21 niPPpppP ikiikiii  , then the expected payoff function for player i 

takes the following form. 
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(1) 

where );,...,2,1,( ijNjiAij   is a kk   matrix (k is the number of strategies), which represents player i’s payoff matrix. 

The induction method is utilized to prove theorem 3.1. 

Proof: 

When n = 2, 

T
PAPPPu 2111211 ),(   

T
PAPPPu 1212122 ),(   

These are exactly the expected payoff functions of two-player games in normal form. 

Suppose that the Formula (1) holds when n=L, such that: 
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(2) 



International Journal of Computer Science and Artificial Intelligence                                        Oct. 2015, Vol. 5 Iss. 1, PP. 1-10 

- 5 - 

DOI: 10.5963/IJCSAI0501001 

One player is added with strategy set 
1LS , and its probability distribution 

1LP  over 
1LS . Then, the game becomes an 

L+1 player game. Because the game is non-cooperative game, there are 2L combinations between the new player and the 

existing L players, such that: 

 ),...2,1(1 LiLplayeriplayer  payoff matrix ),...2,1(1 LiAiL 
 and  ),...2,1(1 LiiplayerLplayer  

payoff matrix ),...2,1(1 LiA iL 
. 

As a result, a total of 2L payoff sub-functions are generated. 

 ),...2,1(,),( 1111 LiPAPPPu
T

LiLiLiiL  
 (3) 
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(4) 

For each existing player, the expected payoff function becomes (2) + (3), such that: 
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Therefore, from (4) and (5), the following is obtained. 
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(6) 

Formula (6) indicates that when N = L+1, Formula (1) holds. 

As a result, Formula (1) represents player i’s expected payoff function for an n-player polymatrix game. 

Theorem 3.1 provides a general formula of the expected payoff function for every player in an n-player polymatrix game in 

normal form. According to Formula (1), the following theorem is obtained. 

Theorem 3.2 

For an n-player polymatrix game )}{,}{,( NiiNii uSNG  , if: 

(1) Formula (1) is piecewise continuously differential regarding 
iP , then 

(2) Equation (7) has finite solutions. 

 
),...2,1(,0

),(
Ni

P

PPu

i

iii 


   
(7) 

(3) The solution },...,,{ 21 ikiii pppP   satisfies ),...2,1(),( NiPP iki  . 

Therefore, the n-player polymatrix game has mixed NEs, and the solutions of (7) represent the mixed NEs of the n-player 

polymatrix game.  

Two steps are required to prove this theorem. First, Equation (7) has become a system of linear equations when PDF 
iP  is 

replaced by certain semantic rules. Second, the solutions of (7) are proved to be mixed NEs. 

Proof: 

Semantic rules are defined to represent the probability distributions 
iP  and 

iP
 in (1), rather than using exponential PDFs 

to describe them. 

 )}(),...(),({)(
21

xxxxP
ikiii PPPPi    (8) 

 )}(),...(),({)(
21

yyyyP
ikiii PPPPi 

   (9) 

where )( iki PP  ),...2,1,( ni  ; )(),( yx
ii PP 

  is the vector of the membership functions of TFNs, which represents the 

probability distributions over 
iS  and 

iS
 respectively. 

Since the payoff function is a real value, one obtains the following, 
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(10) 

Based on the properties of TFNs, 
dx

xd
iP )(

 is a constant vector, and )(y
iP

  is a vector of the piecewise linear functions of 

y. Therefore, Equation (10) becomes a system of linear equations when the elements of payoff matrix 
ijA  are constant. 

Based on condition (2), the linear system has finite solutions. If (1) is proven to be a concave function regarding 
iP , then 

the solution of Equation (7) represents the maximum value of (1). As a result, the solution of Equation (7) is an NE. 

In order to prove that (1) is a concave function, the following inequality must satisfy for ]1,0[t . 

),(),()1(),)1(( iiiiiiiiii PPtuPPutPtPPtu    

In fact, one can obtain the following from (1): 

 ),(),()1(),)1(( iiiiiiiiii PPtuPPutPtPPtu    (11) 

This indicates that the function ),( iii PPu 
 is a concave function regarding 

iP . Therefore, the solution is a mixed NE of 

the polymatrix game. 

The proof of theorem 3.2 provides the following proposition. 

Proposition: 

Given a polymatrix game )}{,}{,( NiiNii uSNG  , the expected payoff function is described by Formula (1), and the 

probability distributions are defined as (8) and (9); then, computing mixed NEs in the polymatrix games can be achieved in 

polynomial time by solving (7). 

Proof: 

As described in the proof of theorem 3.2, when PDFs 
iP  and 

iP
 are replaced with (8) and (9), Equation (10) becomes a 

system of linear equations. Because solving a system of linear equations can be completed within polynomial time [27], 

therefore, solving equation (10) can be completed within polynomial time. Thus, computing mixed NEs in polymatrix games 

can be completed in polynomial time by using the proposed algorithm. 

IV. THE ALGORITHM OF COMPUTING MIXED NES IN POLYMATRIX GAMES 

The new algorithm is an extension of the algorithm for two-player games [25, 26]. The basic concept is the relationship 

between the expected payoff function of two-player games in normal form and the concept of the fuzzy average. It was proved 

that the expected payoff function of two-player games in normal form is identical to the fuzzy average of two linguistic values 

when the strategy sets in two-player games are represented with the term sets in linguistic variables; the payoff matrix is 

replaced with the consequence matrix, and the probability distribution over the strategy set for each player is represented with 

the semantic rule M in linguistic variables [25]. The algorithm to calculate mixed NEs in polymatrix games is described as 

follows. 

1. Given an n-player polymatrix game )}{,}{,( NiiNii uSNG   in normal form, the following steps build n linguistic values 

))(,,),(,( NiMGUSTS iiiii  . 

i) Define the term sets by using the strategy sets, such as )(},{)( NiSST ii  . 

ii) Define ]1,0[iU . 

iii) Divide domain 
iU into k - m )( km   partitions, where k is the number of strategies, such as  mikiii UUUU  ,...,, 21

. 

iv) Define proper semantic rules )()(: NiPSTM iii  , where 
iP  is defined as (8). 

2. Construct the expected payoff function (1) using the given payoff matrices, and the probability distributions (8) and (9). 

3. Make Nmk )(   combinations of domains by combining each sub-domain in 
iU  for all players, such as 

121111 ... nUUUD  , 
221112 ... nUUUD  , ……,

mnkmk UUUD   ...2111
, 

11221111 ... nnmk UUUUD  
,

21221112 ... nnmk UUUUD  
,……, 

……… 
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mnkmknmkmkmk
UUUUD N 

 121)(
... . 

4. Solve (7) in each domain ))(,...,2,1( N

j mkjD  . 

5. Verify that the solution of (7) belongs to its domain. If the solution is verified, then accept the solution; otherwise, ignore it. 

V. EXAMPLES 

This section provides three examples to verify the proposed algorithm. 

Example 1. Find mixed NEs in the three-player matching of pennies. 

 Player 3 takes head  Player 3 takes tail 

Player 2 takes head Player 2 takes tail Player 2 takes head Player 2 takes tail 

Player 1 takes head 0, 0, 0 1, -2, 1 Player 1 takes head 1, 1, -2 -2, 1, 1 

Player 1 takes  tail -2, 1, 1 1, 1, -2 Player 1 takes tail 1, -2, 1 0, 0, 0 

Player 1’s payoff matrices are described by 












1

1

,2

,0
12A , 








 


0

2

,1

,1
13A  

Player 2’s payoff matrices are described by 
1221

1

2

,1

,0
AA

T








 
 , 

1323
0

1

,2

,1
AA

T











  

Player 3’s payoff matrices are described by 












2

1

,1

,0
31A , 










0

1

,1

,2
32A  

The expected payoff function of each player is as follows. 

TT
PAPPAPPPu 31312121111 ),( 

 

TT
PAPPAPPPu 32321212222 ),( 

 

TT
PAPPAPPPu 23231313333 ),( 

 

The semantic rule M is defined as follows. 

The probability distributions 
21 , PP  and 

3P  over 
321 SSS  = {head, tail} are defined as follows. 

),( 21111 BBP  , ),( 22122 BBP  , ),( 23133 BBP   

where 
131211 BBB  = (0, 1, 1); 

232221 BBB  = (0, 0, 1) are TFNs defined in domain ]1,0[]1,0[]1,0[  . According to 

theorem 3.2, one can obtain the following. 

 
0

10

2

1

1

11

1

2

0
),(

),( 2111

1

111 




















 




























 

z

z

y

y

dx

dB

dx

dB

P

PPu
 

(12) 

 
0

10

2

1

1

11

1

2

0
),(

),( 2212

2

222 




















 





























 

z

z

x

x

dy

dB

dy

dB

P

PPu
 

(13) 

 
0

10

1

1

2

12

1

1

0
),(

),( 2313

3

333 

















































 

y

y

x

x

dz

dB

dz

dB

P

PPu
 

(14) 

Equations (12), (13) and (14) form a linear system with variables x, y and z as follows. 















1

1

1

yx

zx

zy

 

It has unique solution )
2

1,
2

1,
2

1(),,( zyx .  
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Therefore, this three-player matching of pennies has a mixed NE ),,(
*

3

*

2

*

1 SSS  with *

1P = (0.5, 0.5), *

2P = (0.5, 0.5) and *

3P = 

(0.5, 0.5). 

The matching pennies game also has two pure NEs (1, 0), (1, 0), (1, 0) and (0, 1), (0, 1), (0, 1), such that all players play 

heads with probability 1 or all players play tails with probability 1. 

Example 2. Find mixed NEs in the following three-player game. Here, player 1 chooses between the rows U and D, player 2 

chooses between the columns L and R, and player 3 chooses between the matrices A and B. 

This example is cited Tayfun Sonnez’s presentation [28]. 

 Player 3 chooses A 

 
Player 3 chooses B 

Player 2 chooses L Player 2 chooses R Player 2 chooses L Player 2 chooses R 

Player 1 chooses U 5, 5, 1 2, 1, 3 Player 1 chooses U 0, 2, 2 4, 4, 4 

Player 1 chooses D 4, 7, 6 1, 8, 5 Player 1 chooses D 1, 1, 1 3, 7, 1 

According to Tayfun’s presentation, this game has only one pure NE (U, R, B); let us use the new algorithm to verify that 

this game has only a pure NE. 

Player 1’s payoff matrices are 










1

2

,4

,5
12A , 










3

4

,1

,0
13A  

Player 2’s payoff matrices are 
T

A 









8

1

,7

,5
21

,
T

A 









7

4

,1

,2
23

 

Player 3’s payoff matrices are 
T

A 









5

3

,6

,1
31

,
T

A 









1

4

,1

,2
32

 

The same semantic rule M is used as defined in Example 1, such that ),( 21111 BBP  , ),( 22122 BBP  , ),( 23133 BBP  . 

where 
131211 BBB  = (0, 1, 1); 

232221 BBB  = (0, 0, 1) are TFNs defined in domain ]1,0[]1,0[]1,0[  . 

By solving (7) for three players, one can obtain the following solution. 

1,
5

2
,

5

3
 zyx  

Since ]1,0[y , this game does not have a mixed NE. 

Even though different semantic rules are employed, one can obtain the same result. For example, if the sematic rules are 

used as follows: 

),( 21111 BBP  , ),( 22122 BBP  , ),( 23133 BBP  , 

where 
131211 BBB  = (0, 0, 1); 

232221 BBB  = (0, 1, 1) are TFNs defined in domain ]1,0[]1,0[]1,0[  . 

By solving (7) for three players, one can obtain the following solution. 

0,
5

7
,

5

2
 zyx  

Since ]1,0[y , this game does not have a mixed NE. 

Example 3. Find mixed NEs for the following two-player game, which represents a wireless sensor network with the 

following bi-matrix. 

 Player 2 

Player 1 

 Transmitting Listening Sleeping 

Transmitting -4, -4 4, 4 -4, 1 

Listening 4, 4 1, 1 1, 2 

Sleeping 1, -4 2, 1 2, 2 
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T

AA



































 



214

214

144

221

114

444

2112
 

In this example, the number of strategies is three; we define m = 2, and divide the domain )2,1](1,0[  iU i
 into two parts 

[0, 0.5] and [0.5, 1.0].  

There are four combinations of domains for both players, as follows. 

Domain1: )5.0,0(x and )5.0,0(y ; Domain2: )5.0,0(x and )0.1,5.0(y  

Domain3: )0.1,5.0(x and )5.0,0(y ; Domain4: )0.1,5.0(x and )0.1,5.0(y  

The semantic rule M is defined as follows. 

)3,2,1;2,1()(:  jiPSTM ijii
, where ),,( 1312111 BBBP  , ),,( 2322212 BBBP  , )5.0,0,0(1 iB , )0.1,5.0,0(2 iB  and

)2,1)(0.1,0.1,5.0(3  iBi
. 

At each domain, solve the following equations. 

 




































0)(
),(

0)(
),(

1212

22

222

2121

11

111

T

T

PAP
PP

PPu

PAP
PP

PPu

 

 

(15) 

Domain 1: )5.0,0()5.0,0(  ; there is a solution )
11

4,
11

4(),( yx  in this domain. The mixed NE ),,( slt  demonstrates the 

following probability distribution )0,
11

8,
11

3(21  PP  for both players. 

Domain 2: )1,5.0()5.0,0(  ; there is a solution )
16

11,
8

3(),( yx  in this domain. The mixed NE ),,( slt  demonstrates 

the following probability distributions )0,
4

3,
4

1(1 P  and )
8

3,
8

5,0(2 P . 

Domain 3: )5.0,0()1,5.0(  ; there is a solution )
8

3,
16

11(),( yx  in this domain. The mixed NE ),,( slt  demonstrates the 

probability distributions )
8

3,
8

5,0(1 P  and )0,
4

3,
4

1(2 P . 

Domain 4: )1,5.0()1,5.0(  ; (15) does not have a solution in this domain. 

VI. CONCLUSIONS 

This paper describes the derivation of the expected payoff function of polymatrix games, and presents the reasons why the 

expected payoff of each player in a polymatrix game is obtained as a sum of individual payoffs gained against each other 

player. Corresponding to the expected payoff function, a new algorithm to compute mixed NEs in polymatrix games is 

proposed. This paper proves that the new algorithm is able to compute NEs in polymatrix games within polynomial time.  

Future work may be to compare the new algorithm with existing algorithms such as the extended Lemke-Howson method, 

the global Newton method, etc., and to extend the new algorithm to dynamic game theory. 
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