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Abstract-This paper describes the derivation of the expected payoff function of polymatrix games according to the induction method.
It also presents a new algorithm for calculating mixed Nash equilibrium (NE) in polymatrix games. Results indicate that the new
algorithm can compute mixed NEs for polymatrix games within polynomial time. This paper is a continuation result of previous
research which describes that the expected payoff function of 2-player games in normal form is identical to the mathematical
representation of the fuzzy average of two linguistic values of a linguistic variable; this paper extends the identification of 2-player
games to polymatrix games.
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l. INTRODUCTION

A game in normal form, also known as strategic game, is a static model which describes interactive situations among
several players. According to this model, for non-cooperative games, all players make their decisions simultaneously and
independently. A polymatrix game is a particular class of n-player game in normal form, in which the payoff for each player is
obtained as a sum of individual payoffs gained against each other player.

Finding NEs in game theory is a fundamental problem. For two-player games, the Lemke-Howson algorithm [1] is still
state-of-the-art, despite its 50 year age. Howson [2] extended the Lemke-Howson algorithm to polymatrix games, positing that
polymatrix games are linear combinations of two-player games, which have linear structures. However, the Lemke-Howson
algorithm cannot be directly applied to other games due to the fact that NE is no longer a linear complementarity problem
when n is greater than two. Rosenmuller [3] and Wilson [4] independently extended the Lemke-Howson algorithm to
determine NEs for n-player games.

A different method to compute NEs was introduced by Scarf [5], called the simplicial subdivision algorithm. This
algorithm is widely used to determine NEs for n-player games. Dickhaut and Kaplan [6] proposed a search algorithm which
enumerated all support profiles in order to determine all NEs. Govindan and Wilson [7] proposed another method based on the
global Newton method combined with homotopy to compute NEs for n-player games. Govindan and Wilson [8] published
another new method which merges the Lemke-Howson algorithm with the global Newton method. Blum, et al., [9] improved
the method which was proposed by Govindan and Wilson [8] and applied it to both graphical games and multi-agent influence
diagrams. Porter, et al., [10] presented two algorithms for finding NEs: one for two-player games and one for n-player games.
Cai, et al., [11] demonstrated that calculating NEs for zero-sum polymatrix games is equivalent to solving linear programming,
and showed that von Neumann’s minimax theorem for two-player zero-sum games can be generalized to polymatrix games.
Belhaiza [12] demonstrated that every perfect equilibrium of a polymatrix game is un-dominated, and that every un-dominated
equilibrium of a polymatrix game is perfect.

A recent sequence of papers indicates that computing one (any) NE is PPAD (Polynomial Parity Arguments on Directed
graphs)-complete for two-, three-, or four-player games in strategic form [13-16]. Chen and Deng [14] demonstrated that
computing NEs for two-player games is PPAD-complete. Daskalakis, et al., [15] showed that determining NEs for four-player
games is PPAD-complete. Chen and Deng [13] and Daskalakis and Papadimitriou [16] independently demonstrated that
calculating NEs for three-player games is PPAD-complete. All known algorithms require exponential time in the worst case.
Chen, et al., [17] reported that the problem of computing a (1/n)-well-supported NE in a polymatrix game is PPAD-complete.

Fuzzy theory has been applied to game theory [18-20]. Chakeri and Sheikholeslam [18] proposed a method of determining
fuzzy NEs in crisp and fuzzy games. Garagic and Cruz [19] extended the concept of non-cooperative game theory to fuzzy
non-cooperative games under uncertainty phenomena. Wu and Soo [20] applied fuzzy game theory to multi-agent coordination.
In this paper, fuzzy theory is used as a tool to reduce the complexity of calculating NEs in polymatrix games.

Results:

1. This article describes the derivation of expected payoff function in polymatrix games, and presents the reason why the
expected payoff of each player in non-cooperative games is obtained as a sum of individual payoffs gained against each
other player.

2. Associated with the derivation, a new algorithm for computing NEs for polymatrix games is presented. The algorithm’s
ability to calculate NEs in polymatrix games within polynomial time is also demonstrated.
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This article is organized as follows. Section 2 presents preliminaries which include the definitions of n-player games, fuzzy
numbers, and the fuzzy average. Section 3 describes the formula of the expected payoff function for n-player polymatrix
games, and a theorem for computing mixed NEs. Section 4 describes the proposed algorithm in detail. Section 5 presents three
examples, and section 6 presents conclusions and ideas for future work.

Il. PRELIMINARIES

Below are described some basic concepts in game theory and fuzzy set theory.

A. The Strategic Form of an n-player Game

An n-player game in strategic form: an n-player game in strategic form is described by a tuple
G=(N, {S;}i.n. {u;}i.y) with the following:
(1) A finite set of playersN ={1, 2, ..., n}.
(2) AsetS; =(sy,....s;)(i=12,..n) of strategies for each player i € N . Without losing generality, suppose that all players

have the same number of strategies in this paper.

(3) A utility function u, : S — R for each player, where S =[1,_, S; is the space of pure strategies.

The utility function u, is a real value function which maps the space of all players’ strategies into a real value.

Best Response: Let S :=(S,,....5;4,S;,1,.-S,) . Player i’s best response is a mixed strategy S,"es such that
u,(S,",S.)=u,(s;,s.,) forall strategies S, €S .

Nash Equilibrium: A strategy profile S =(S,,S,,...,S,) is an NE if for all players i, S; represents the best response to
S

B. Fuzzy Numbers

A fuzzy number is a fuzzy set which is defined in R. There some various types of fuzzy numbers [21], including triangular
fuzzy numbers (TFNSs), trapezoidal fuzzy numbers, etc. TFNs only are reviewed here.

A TFN is denoted as (a, b, c), where aeR;beR;ceR (a<b<c), and the membership function of TFN (a, b, c) is
described as follows.

<
|
3}

—_ if xe[a,b

2 e[a,b]
u() =12 it xe(b,c]

c-b

0 otherwise

There are two special TFNs. One is (a, a, ¢), such that a = b; the other is (a, c, c), such that b = ¢. The membership
functions of TFN (a, a, ¢) and TFN (a, c, c) are described as follows.

,u(x)=—ix+i ; (a <o), v(x)=ix—i ; (a<c).
c— c-a - c-a

C. The Fuzzy Average

The fuzzy average [22] is defined as the average of linguistic values of a linguistic variable (x, T(x), U, G, M) [23, 24],
where x is the name of the variable; T(x) is the term set of x; U is the universe of discourse, which is usually defined as the
interval [0, 1]; G is the syntactic rule which generates the terms in T(x); M is a semantic rule, which is typically a mapping
from the set T(x) to a set of fuzzy numbers defined in U. The fuzzy average of two values of a linguistic variable is described
as follows.

Suppose that the two values of a linguistic variable are (x,T,(x),U,,G,;.M,) and (y,T,(y),U,,G,,M,) , where
Tl(x):{xl!XZ""’Xn}! Tz(y):{yl!yZ""!ym}; U, =[0, 1J; U, =[0, 1].
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M, T, >{ALA,,...,.A}, M, T, (y) >{B,,B,,....B,,}, where A (i=1,2,...,n) and B, (=1, 2,...,m) are triangular
fuzzy numbers (TFNs) which are defined on U, =[0, 1]; U, =[0, 1], #, (X) and M, (y) are the membership functions of
TFNs A and B, , respectively. The fuzzy average is defined as:

n m
u(x y) = zizl Hp, (X)X,UBJ- X = Ha(X)xRx 15 (y)
i=1j=
where
HA ) =Luep (%) e, (X))o pen, (X0} Ha(X) €Ay (ua(X);
#e (Y) ={utg, (Y1) tts, (Y1)t (Y1)} He (V) e, (ug(Y);

A, @) ={z,| 3 z, =Lz, >0@=12.n)}, xeU, and yeU,;
i=1

n is the number of entries in T,(x) ; m is the number of entries in T,(y); and R = (r;) is the consequence matrix [22]. It has
been proven that the fuzzy average converges to the arithmetic mean [22]. x, (x) is interpreted as the weight of element

X, €T, (x) . Foragiven xeU, and yeU,, the vector u,(x), u(y) is interpreted as the probability distribution over T, (x)
T, (y) , respectively.

In game theory, the set of strategies S, = (s, ,...,s; )(i =1,2,..n) can be interpreted as the term set T (S,) in the concept of
linguistic variables. For example, for a rock-paper-scissors game, a player’s strategy set S =(r, p,s) (wherer, p, and s stand

for rock, paper and scissors, respectively) can be considered as a term set of {r, p, s} in linguistic variables, such that
T,(S)={r, p,s} and T,(S) ={r, p,s}. The probability distribution over the set of strategies for each player can be represented

by Ha(X) and He(y) -

For two-player games in normal form, when a player’s strategy set is represented by the term set and the payoff matrix is
the same as the consequence matrix, it was proved that the expected payoff function is identical to the fuzzy average [25, 26].

I11. EXPECTED PAYOFF FUNCTION OF POLYMATRIX GAMES

The derivation of the expected payoff function of polymatrix games is described in this section.

For an n-player non-cooperative game G =(N, {S;}i.y. {U;}i.y), player i’s strategy set S, = (Sil,...,Sik) corresponds
to a probability distribution P, over S;, where P, = (p,, Pis.--Pi)+ P €A (P); (i=212..n). For example, for two
players in a rock-paper-scissors game, strategy set S, = (r, p;, s;)(i =1,2) for each player. A mixed strategy is described by
probability distributions; for instance P, = ( %% %) represents a strategy over the strategy set S, . The probability that
player 1 chooses rock, paper, scissors is 0.5, 0.25 and 0.25, respectively. When P, is a unit vector, then the mixed strategy
becomes pure strategy. To summarize, the strategy set S, always corresponds to a probability distribution P, over the strategy.

In this paper, the expected payoff function is described by probability distributions rather than using strategy sets. That is,
the expected payoff function is defined as a map from a set of probability distribution functions (PDFs) over S to a real value.

For example, a two-player game in normal form given by G = (2, {S;}..,, {u;}i,), where S; =(S;;,...,5; )i =12) is a
set of strategies for player i; u, (i =1,2) is the expected payoff function. The function is described as follows.

u, (R, R) =R x A, x PzT
u,(P,,R)="PR, ><A21><F>1T

where P, ={p,,.....p; }e A, (P); (i =1,2) represents the probability distribution over S, ; A,, A, is the kxk payoff matrix
for player 1 and player 2, respectively.

A, and A, are also known as a bi-matrix. The first number in the index of a payoff matrix indicates to which player the
payoff matrix belongs. The order of the indices of A, and A, indicates which player competes with which player. For
example, A, is player 1’s payoff matrix by competing with player 2; A,, is player 2’s payoff matrix by competing with player
1.
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Suppose a new player, denoted as player 3 with strategy set S, is added into the game. Associated with S, , a probability
distribution over S, is denoted as P, .

Since the game is non-cooperative, each player is an independent individual. Player 3 must compete with each existing
player and vice versa. As a result, the following four combinations are formed.

Player 1— Player 3, Player 2 — Player 3, Player 3— Player 1, Player 3 — Player 2.

Assume that A,, A, A, and A, are the payoff matrices representing the above four competitions. Then one can obtain
the following payoff sub-functions.

U, (P, P) =P x A, ><F)3T! Uy (P, Py) =P, x Ay XPaT’
Uy (P, P) = P3><A31><P1T, U32(P31P2)=P3XA32XP2T-

In order to obtain the expected payoff function for the three-player game, rewrite the expected payoff functions u, (P, P,)
and u, (P,, R,) from the original two-player game as follows.

u, (P, P,)=P xA, ><PzT )
Uy (P, P) =P, xA, XPlT .

Since the game is non-cooperative, each player makes decision independently. The expected payoff function for each
player becomes as follows.

(R, Py R) = (R, Py) = Uy (R, B) + Uy (R, R) = R x A, x BT + R x Ay xRy

U, (P, P Ry) =y (P, Py) = Uy (P, B) + Uy (P, P) = Py x A X PlT + P, x Ay x PsT

Us(Ps, P, Py) = Uy (P, Pg) = Uy (P, P) +Ugy (Py, Py) = Py x Ay x PlT + Py x Ay x PzT
If the above procedure is repeated, one can obtain the following theorem.

Theorem 3.1

Given an n-player non-cooperative game G ={N,{S;};.\.{u;}icn}, Where S=T1,., S;, S; = (S-S )i =12,..n) ,
u={u,,u,,....uy) is a vector of expected payoff functions of the n-player games. If P.(i =1,2,..n) is player i’s probability
distribution over S, , where P, ={p,, Pi».---.Pi} P €A, (P), (i=12,..n), then the expected payoff function for player i
takes the following form.

0(P.Py) = 1 Px A <P+ i PxA;xP (i=12..N) (1)
j=1 j=i+l
where A, (i, j=12,...,N; j=i) isa k xk matrix (k is the number of strategies), which represents player i’s payoff matrix.
The induction method is utilized to prove theorem 3.1.
Proof:
Whenn =2,
u(P,P)=P x A, xP,’
U, (P,,P) =P, x A, xP'
These are exactly the expected payoff functions of two-player games in normal form.
Suppose that the Formula (1) holds when n=L, such that:
u; (P, P,) :i Pox< A <P+ ZL: PxA;xPT(i=12,..L) @)
j=1 j=i+l
-4-

DOI: 10.5963/IJCSAI10501001



International Journal of Computer Science and Artificial Intelligence Oct. 2015, Vol. 5 Iss. 1, PP. 1-10

One player is added with strategy set S, ,, and its probability distribution P,_,, over S, ;. Then, the game becomes an

L+1 player game. Because the game is non-cooperative game, there are 2L combinations between the new player and the
existing L players, such that:

player i— player L+1 (i=12,..L)= payoff matrix A ,(@{i=12..L) and player L+1— player i (i=12,..L)=
payoff matrix A ,;;(i=12,..L).

As a result, a total of 2L payoff sub-functions are generated.

Ua (R PL) =R ALy <Py, (i=12.1) ©)
U (Pl B) =Up (Pl R) + U (P P) + o+ U (PLyg R
_S _S T 4)
= z U (P Py) = Z Pl X ALy x P
j=1 i=1
For each existing player, the expected payoff function becomes (2) + (3), such that:
i-1 . L . . (5)
u; (B, P;) :Z PxA; <P, + Z BxA;jxP +BxA 4 xP 4 (i=12,..1)
=1 j=i+l
Therefore, from (4) and (5), the following is obtained.
i—1 L+1 (6)
W(R.P)=> RxAxP + > RBxAxP, (i=12,..L+1)
j=1 j=i+l

Formula (6) indicates that when N = L+1, Formula (1) holds.
As a result, Formula (1) represents player i’s expected payoff function for an n-player polymatrix game.

Theorem 3.1 provides a general formula of the expected payoff function for every player in an n-player polymatrix game in
normal form. According to Formula (1), the following theorem is obtained.

Theorem 3.2
For an n-player polymatrix game G =(N, {S;}.v, {U;}in). i
(1) Formula (1) is piecewise continuously differential regarding P, , then

(2) Equation (7) has finite solutions.
m=o(i=12,,,|\j) )
aPi ) ] )
(3) The solution P, ={p;;, Pis.-... Py } Satisfies P, e A, (P,), (i=12,..N).

Therefore, the n-player polymatrix game has mixed NEs, and the solutions of (7) represent the mixed NEs of the n-player
polymatrix game.

Two steps are required to prove this theorem. First, Equation (7) has become a system of linear equations when PDF P, is
replaced by certain semantic rules. Second, the solutions of (7) are proved to be mixed NEs.

Proof:

Semantic rules are defined to represent the probability distributions P, and P in (1), rather than using exponential PDFs
to describe them.

P= Hp, ) :{/UPi1 (X)uupI2 (X):---/UP,K X3} (8)
Pi=wp, (V) ={te, (V) ttp,, (¥)so ttp, (V)} )

where P, e A, (P) (i,=12,..n); pp (X), p (Y) is the vector of the membership functions of TFNs, which represents the

probability distributions over S; and S_; respectively.

Since the payoff function is a real value, one obtains the following,
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[ du N d b (10)
au( P _ Xty (¥)+ Z %(X)XAJX#PJV):O

| j=1 j=i+l

dup (X)
dx

y. Therefore, Equation (10) becomes a system of linear equations when the elements of payoff matrix A, are constant.

Based on the properties of TFNs, is a constant vector, and p (y) is a vector of the piecewise linear functions of

Based on condition (2), the linear system has finite solutions. If (1) is proven to be a concave function regarding P, , then
the solution of Equation (7) represents the maximum value of (1). As a result, the solution of Equation (7) is an NE.

In order to prove that (1) is a concave function, the following inequality must satisfy for t [0, 1].
u (A-1P, +tR,P;) > A-t)u; (P, P,;) +tu; (R, P;)
In fact, one can obtain the following from (1):
U (A-t)R +tR,P;) =A-t)u (R, P;) +tu (R, P;) 1)

This indicates that the function u, (P, P;) is a concave function regarding P, . Therefore, the solution is a mixed NE of
the polymatrix game.

The proof of theorem 3.2 provides the following proposition.
Proposition:

Given a polymatrix game G=(N, {S3}.,, {u}._.\). the expected payoff function is described by Formula (1), and the
probability distributions are defined as (8) and (9); then, computing mixed NEs in the polymatrix games can be achieved in
polynomial time by solving (7).

Proof:

As described in the proof of theorem 3.2, when PDFs P. and P, are replaced with (8) and (9), Equation (10) becomes a

system of linear equations. Because solving a system of linear equations can be completed within polynomial time [27],
therefore, solving equation (10) can be completed within polynomial time. Thus, computing mixed NEs in polymatrix games
can be completed in polynomial time by using the proposed algorithm.

IV.THE ALGORITHM OF COMPUTING MIXED NES IN POLYMATRIX GAMES

The new algorithm is an extension of the algorithm for two-player games [25, 26]. The basic concept is the relationship
between the expected payoff function of two-player games in normal form and the concept of the fuzzy average. It was proved
that the expected payoff function of two-player games in normal form is identical to the fuzzy average of two linguistic values
when the strategy sets in two-player games are represented with the term sets in linguistic variables; the payoff matrix is
replaced with the consequence matrix, and the probability distribution over the strategy set for each player is represented with
the semantic rule M in linguistic variables [25]. The algorithm to calculate mixed NEs in polymatrix games is described as
follows.

1. Given an n-player polymatrix game G = (N, {S}..n, {u}..y) in normal form, the following steps build n linguistic values

(S,,T(S,)U,,G,,M,)ieN).
i) Define the term sets by using the strategy sets, such as T(S;) ={S;},(ie N).
if) Define U, =[0, 1].
iii) Divide domain U into k- m (m < k) partitions, where k is the number of strategies, suchas U, ={U,;,U ..U}
iv) Define proper semantic rules M, :T(S;) — P, (i e N), where P; is defined as (8).
2. Construct the expected payoff function (1) using the given payoff matrices, and the probability distributions (8) and (9).
3. Make (k—m)N combinations of domains by combining each sub-domain in U, for all players, such as
D, =U,, xU,; x..xU,, D, =U;; xU,, x..xU 5, ...... ,D,_, =U,, xU,, x..xU

nk—m ?

D =U;, xU,, x..xU_ ,,xU,,D =U;; xU, x.xU, ,xU ... ,

k—m+1 k—-m+2
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D(k,m)N =U g XU g xeoxU gy xU g

4. Solve (7) in each domain p, (j=12,...(k —m)").

5. Verify that the solution of (7) belongs to its domain. If the solution is verified, then accept the solution; otherwise, ignore it.

V. EXAMPLES
This section provides three examples to verify the proposed algorithm.

Example 1. Find mixed NEs in the three-player matching of pennies.

Player 3 takes head

Player 2 takes head

Player 2 takes tail

Player 3 takes tail

Player 2 takes head

Player 2 takes tail

Player 1 takes head

0,0,0

1,-2,1

Player 1 takes head

1,1,-2

-2,1,1

Player 1 takes tail

-2,1,1

1,1,-2

Player 1 takes tail

1,-2,1

0,0,0

Player 1’s payoff matrices are described by A , :( 0’2 ﬂ ,

(1, -2
A PR

Player 2’s payoff matrices are described by A, — [0'
1

Player 3’s payoff matrices are described by A, = (0‘ 1

The expected payoff function of each player is as follows.
W (P,P, ) =P xA,xP,  +P xA,;xP,’

U, (P, PL) =P, x Ay <P +P, x A xP,’
u;(P;,P3)="PR; ><A31><P1T +Py;x Ay, ><P2T

The semantic rule M is defined as follows.

A 21
L —2)'32_ L 0

The probability distributions P,, P, and P, over S, =S, = S, = {head, tail} are defined as follows.

R :(Bn’ 821)1 P, = (BIZ' Bzz) » Py = (BlS' st)

where B, =B, =B,;= (0, 1, 1); B,, =B,, =B,;= (0, 0, 1) are TFNs defined in domain [0,1]x[0,1]x[0,1]. According to

theorem 3.2, one can obtain the following.

aul(Pl,le):(olBll dBZl)X[ ( 0 1}{ y }{1 —ZJX( z _:o
R, dx " dx -2 1) {1-y) 1 o0) 1-z)

GLIZ(PZ,P?Z):(dBlZ dez)X 0 1 « X + L -2 X ? —:0
P, dy ' dy -2 1) \1-x) 1 O 1-z) |

ouy(RuPg) @By dByy [0 13 (x ) (=2 1) (y )]
oP, dz ' dz 1 -2) \1-x 1 0) 1-y) |

Equations (12), (13) and (14) form a linear system with variables x, y and z as follows.

y+z=1
X+ z=1
X+Yy =1
It has unique solution (X, Y, z) = (% , %%) .
-7-
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Therefore, this three-player matching of pennies has a mixed NE (s,”,s,",s,") with p"= (0.5, 0.5), p,"= (0.5, 0.5) and p,"=

(0.5, 0.5).

The matching pennies game also has two pure NEs (1, 0), (1, 0), (1, 0) and (0, 1), (0, 1), (0, 1), such that all players play

heads with probability 1 or all players play tails with probability 1.

Example 2. Find mixed NEs in the following three-player game. Here, player 1 chooses between the rows U and D, player 2

chooses between the columns L and R, and player 3 chooses between the matrices A and B.

This example is cited Tayfun Sonnez’s presentation [28].

Player 3 chooses A

Player 2 chooses L

Player 2 chooses R

Player 3 chooses B

Player 2 chooses L

Player 2 chooses R

Player 1 chooses U

551

2,1,3

Player 1 chooses U

0,22

4,4,4

Player 1 chooses D

4,7,6

1,8,5

Player 1 chooses D

1,11

3,71

According to Tayfun’s presentation, this game has only one pure NE (U, R, B); let us use the new algorithm to verify that

this game has only a pure NE.

Player 1’s payoff matrices are A, :(5‘ ZJ, A, :(0' 4j

4, 1

1 3

T T
Player 2’s payoff matrices are A, = @ ;] A, = @ :J

T T
Player 3’s payoff matrices are A, = [(15 :] VA, = G 3

The same semantic rule M is used as defined in Example 1, such that P, =(B,,,B,), P, =(B,,B,), P; =(Bj5,By).
where B, =B,, =B,=(0,1,1); B, =B,, =B, =(0, 0, 1) are TFNs defined in domain [0,1] x[0,1] x[0,1].
By solving (7) for three players, one can obtain the following solution.

3 2
X=—,y=——,z=1
5 Y 5

Since y ¢[0, 1], this game does not have a mixed NE.

Even though different semantic rules are employed, one can obtain the same result. For example, if the sematic rules are
used as follows:
P = (Bul B21) P = (BlZ' Bzz) Py = (BIS’ st) )
where B, =B,, =B,,=(0,0,1); B, =B,, =B, =(0, 1, 1) are TFNs defined in domain [0,1] x[0,1] x[0,1].

By solving (7) for three players, one can obtain the following solution.

2 7
X = g y= E z=0
Since y ¢[0, 1], this game does not have a mixed NE.

Example 3. Find mixed NEs for the following two-player game, which represents a wireless sensor network with the
following bi-matrix.

DOI: 10.5963/IJCSAI10501001
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Transmitting Listening Sleeping
Player 1 T_ransmitting -4, -4 4,4 -4,1
Listening 4,4 1,1 1,2
Sleeping 1,-4 2,1 2,2
-8-
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—4 4 -4 -4 4 1\
A,=| 411 Ay=| 412
122 —41 2

In this example, the number of strategies is three; we define m = 2, and divide the domain U, =[0,1](i =12) into two parts
[0, 0.5] and [0.5, 1.0].

There are four combinations of domains for both players, as follows.
Domainl: x (0, 0.5)andye (0, 0.5); Domain2: x (0, 0.5)and y e (0.5, 1.0)
Domain3: x e (0.5, 1.0)andy e (0, 0.5); Domain4: x e (0.5, 1.0)and ye (0.5, 1.0)
The semantic rule M is defined as follows.
M;:Ti(§)) >R (=12j=123), where P, =(By,By,.By) . P, =(By.By.By) , B;=(0005), B, =(00510) and
B,; =(0.51.01.0)(i =12) .
At each domain, solve the following equations.
ow(R,Py) _ 0 T
=—(P P")=0
0 (gPlP ) agl(lXAizx " (15)
U (F3, P T
—2 2l = (P R')=0
P, 8P2(2><A21>< 1)
Domain 1: (0, 0.5)x(0, 0.5); there is a solution (X, y)= (%1,%1) in this domain. The mixed NE (t,1,s) demonstrates the
following probability distribution p = p, = (%1, %1,0) for both players.

Domain 2: (0, 0.5)x(0.5, 1); there is a solution (x, y) :(%,1}{6) in this domain. The mixed NE (t,1,s) demonstrates
the following probability distributions p = (%,%,0) and p, = (0, % , %) .

Domain 3: (0.5, 1)x(0, 0.5); there is a solution (X, Y) = (1%6,%) in this domain. The mixed NE (t,1,s) demonstrates the
probability distributions p, = (o,%,%) and p, :(%,%,0) :

Domain 4: (0.5, 1)x(0.5, 1); (15) does not have a solution in this domain.

VI.CONCLUSIONS

This paper describes the derivation of the expected payoff function of polymatrix games, and presents the reasons why the
expected payoff of each player in a polymatrix game is obtained as a sum of individual payoffs gained against each other
player. Corresponding to the expected payoff function, a new algorithm to compute mixed NEs in polymatrix games is
proposed. This paper proves that the new algorithm is able to compute NEs in polymatrix games within polynomial time.

Future work may be to compare the new algorithm with existing algorithms such as the extended Lemke-Howson method,
the global Newton method, etc., and to extend the new algorithm to dynamic game theory.
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