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Abstract-In this paper, reinforcement learning techniques are proposed for the control of autonomous microgrids. A type of 

approximate dynamic programming method is used to solve the Bellman equation, namely heuristic dynamic programming. The 

proposed control strategy is based on actor-critic networks. The control strategy is designed using a dynamic model of islanded 

microgrids and makes use of an internal oscillator for frequency control. The proposed control technique is based on a value 

iterations algorithm which is implemented online. Using only partial knowledge of the microgrid dynamics, the simulation results 

showed that the proposed control technique stabilizes the system and is robust to the load disturbances. 

Keywords- Distributed Generation; Microgrid; Reinforcement Learning; Approximate Dynamic Programming, Heuristic Dynamic 
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I. INTRODUCTION 

Distributed Generation (DG) units such as photovoltaic arrays, wind turbine generators, and micro turbines are increasingly 

used to reduce the cost of energy prices and the environmental problems. High DG penetration levels has brought about the 

concept of ’microgrid’. A microgrid (MG) is an integrated energy system consisting of loads, distribution grid, and DG units 

that can operate in [1]: 

 a grid-connected mode, 

 an islanded (autonomous) mode, and 

 transition between the two modes. 

Under normal conditions, when a microgrid operates in a grid-connected mode, each DG unit within the microgrid utilizes 

the well-known dq-current control strategy [2] to regulate its real/reactive power components. Autonomous operation of a 

microgrid, however, requires sophisticated control strategies and protection systems. Depending on the electrical proximity of 

the DG units and their dedicated loads, several topologies for microgrids can be defined, e.g., parallel connection, ring, and 

radial connection of DGs. Each DG unit within a microgrid is connected to the point of common coupling (PCC) where the 

dedicated loads are also connected [3]. When all the PCCs are along a transmission line with nonzero impedance between the 

PCCs, a radial configuration is obtained. It turns out that the control of the MG is a key aspect which aims towards the stable 

operation of the microgrid [4], and has been the focus of researchers over the past few years. During the islanded operation, the 

main task of a MG is to deliver quality power by regulating the output voltage. A MG with its own control structure should be 

able to regulate any disturbances in its load towards zero to ensure the stability of the system [5]. The dq–current control 

strategy for multiple DG units in an islanded microgrid, which is based on frequency/power and voltage/reactive power droop 

characteristics of each DG unit, is well known and extensively reported [2]-[27]. In this approach, each DG unit is equipped 

with two droop characteristics: 

1) Frequency as a linear function of real power, and 

2) Voltage magnitude as a linear function of reactive power. 

Based on these droop characteristics, frequency is dominantly controlled by real power flow, and voltage magnitude is 

regulated by reactive power flow of the DG unit. This approach does not directly incorporate load dynamics in the control loop. 

Thus, large and/or fast load changes can result in poor dynamic response or even voltage/frequency instability. A control 

strategy for autonomous operation of a DG unit and its dedicated load is introduced in [6]. This method is intended for a fairly 

fixed load and cannot accommodate large perturbations in the load parameters. 

Multilevel control [17] of MGs is extensively studied in the literature. It is widely used and consists of primary, secondary 

and tertiary control levels [18]. A pseudo-decentralized control architecture is proposed in [19] that can be used for the 

optimization of Wireless Communication Networks (WCNs) with the help of a Global Supervisory Control (GSC) and local 

controllers. A networked control scheme based on a system of systems is proposed for microgrids in [20]. A MG with multiple 

DG units is treated as system of systems, and an output feedback control scheme is applied. A communication network that is 

subjected to packet dropouts and delays is used for the application of control. A two-level coordinating control approach for 

islanded MG is presented in [21]. An MG with n parallel connections of DG units connected to a common load is considered 
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for the study, and parallel connections are conveniently controlled in a two level coordinating scheme as the MG forms an 

interconnected control system. Control of autonomous MGs with a local load is introduced in [6]. It develops a dynamic model 

of MG and presents a classical control approach to design the controller. A robust servomechanism controller for autonomous 

MGs is presented in [23]. This approach uses the same dynamic model developed in [6] and uses an optimal control design 

procedure to guarantee robust stability. 

On another research front, reinforcement learning (RL) is concerned with how an agent can pick its actions in a dynamic 

environment to transit to new states in such a way that optimizes the sum of cumulative reward [7]. RL has been successfully 

employed for several difficult problems such as control of inverted pendulums and adaptive control of chemical processes. In 

the context of power systems, RL has been used in security and stability control, automatic generation control [32, 33, 34], 

voltage and reactive power control [35]. It is an area of machine learning that allows development of online algorithms to 

obtain solutions to problems related to optimal control for dynamic systems that are described by difference equations [8, 9]. It 

involves two techniques known as Value Iteration (VI) and Policy Iteration (PI) [10, 11]. Policy iteration and value iteration 

algorithms have been developed for continuous time systems in [12, 13, 14]. Reference [9] proposed Adaptive Dynamic 

Programming (ADP) to solve dynamic programming problems. There are several different types of ADP, namely Heuristic 

Dynamic Programming (HDP), Dual Heuristic Dynamic Programming (DHP), Action-Dependent HDP (ADHDP) and Action-

Dependent Dual HDP (ADDHP) [8, 9]. Actor-critic networks are one type of RL method. The actor component applies actions 

or control policies to their environment, while the critic component assesses the values of these actions. Based on this 

assessment, the actor policy is updated at each learning step [10, 11]. 

In this paper, a novel approach for the control of MG using RL techniques is proposed. The dynamic model of an islanded 

MG proposed in [6] is adopted to carry out the research. An HDP algorithm based on actor-critic value iteration is used to 

develop the control of MGs [24]. A value assessment of the control actions is performed by the critic component so that the 

actor action is updated at each learning step [7]. Online learning algorithms are used in the implementation of control 

techniques. To the best of author’s knowledge, this is the first time that RL techniques have been applied to the concepts of 

MGs. 

The paper is organized as follows. Section 2 provides a brief background of the dynamic model of islanded microgrid used 

to carry out this study. Section 3 formulates the control algorithm based on an on-line adaptive learning algorithm. Section 4 

presents simulation results to verify the performance of the proposed controller. 

II. AUTONOMOUS MICROGRID SYSTEM 

The autonomous or islanded mode of MG can be caused by network faults/failures in the utility grid due to scheduled 

maintenance [25, 26] and economical optimization and management constraints [1].  

 

Fig. 1 Schematic diagram of microgrid 

The schematic single-line diagram of an electronically coupled microgrid model is depicted in Fig. 1. A switch at a point of 

common coupling (PCC) will isolate the MG from the utility grid [27]. The islanded system consists of inverter based DG 

units supplying a load via series filters and step-up transformers. The dc voltage source represents the generating unit, and Rt 

and Lt represents the series filter. A local load, represented by a three-phase parallel RLC network, is connected at the PCC. 

The system parameters are given in Table 1, see the Appendix. During islanded operation, the main task of a MG is to deliver 

quality power by regulating any disturbances in the load. The MG with its own control structure should be able to maintain the 

load voltage level at a desired, prespecified set point. 

A. State-Space Model 

Consider the system described in Fig. 1. The dq standard state variables forms are given by [16]: 
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Casting the foregoing autonomous MG system into the standard time state-space representation results in: 

. 

It follows that the system matrices are given by: 

 

 

(6) 

where the state vector is 

 
 

(7) 

To facilitate further analytical development, model (6) will be discretized. 

III. REINFORCEMENT LEARNING TECHNIQUES 

Reinforcement Learning (RL) [7], also known as action-based learning, refers to interactions of an actor with its 

environment so as to improve its actions/control policies depending on the evaluative information received from the 

environment. RL can be implemented using an Actor-Critic architecture. The role of actor/critic is indicated before. The key 

feature of RL is that it provides an adaptive control which converges to the optimal control [29]. 

In the sequel, we will consider the Heuristic Dynamic Programming (HDP) algorithm to minimize a prescribed 

performance index. A simple HDP system consists of two sub-networks, namely, actor and critic networks. These networks 

have feedforward and feedback components. 

A. Heuristic Dynamic Programming 

Heuristic Dynamic Programming (HDP) is based on adaptive critics [30], which use value function approximation to solve 

dynamic programming problems. Fig 2 shows the structure of HDP design, which consists of a system to be controlled and two 

sub-networks, namely, Actor and Critic networks [31]. The control structure does not require the desired control signals to be 

known. Both the cost function and the control policy are approximated at each step by these two networks. 

B. Discrete-Time Bellman Equation 

Consider the following discrete-time system in state-space form: 

  (8) 

which is an appropriate discrete version of system (6), where the states xk R
n and control input uk   Rm, and k is the discrete 

time index. It is assumed that system (8) is stabilizable on some set R
m. 
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Fig. 2 Block diagram of actor-critic 

Definition 1: Stabilizable System: A system is said to be stabilized on a set ∈ Rn if there exists a control input u ∈ Rm 

such that the closed loop system given by xk+1 is asymptotically stable on  . 

A function h (.): Rn 


 
R

m from the state space to the control space is known as the control policy such that for every state 

xk, there is a control uk = h (xk). This describes the actor mathematically, as it is the one generating control policy in RL 

techniques. That is, the actor takes states xk as input and gives control output uk. It is desired to find the control policy u(xk) 

that minimizes the following performance measure/value function 

 

 

(9) 

where 0<Qj=Qj
T   R 

nxn   and 0<Rj=RjT   R 
mxm, so that the performance measure is well-defined.  

Definition 2: Admissible Control [36]: A control policy uk = h (xk) is said to be admissible if it stabilizes system (8) and 

yields a finite performance V (xk).    

For any admissible control uk = h (xk), V (xk) is known as cost or value and can be selected based on minimum energy, 

minimum cost requirements, etc. (9) can be written as follows: 

 

 
(10) 

Therefore, by using current control policy uk the cost can be evaluated by solving the above difference equation. Strictly 

speaking, the Bellman equation is a functional equation consisting of dynamical systems state and a value or optimal return 

function.  

According to Bellman's optimality principle [37], the optimal value and the optimal policy can be obtained by  

 

 

(11) 

The key concept in developing RL techniques is to assess the current policy value by using the Bellman equation. To solve 

the above equation, one must know the policy at (k+1) to determine the state at k; therefore, the Bellman optimality equation is 

a dynamic programing scheme. In this paper, we are interested in value iteration techniques, an iterative method for 

determining optimal control. This technique does not require an initial stabilizing policy. It is significant to note that only 

partial microgrid dynamics are required. 

C. Value Iteration Algorithm 

In this section, an on-line value optimality iteration algorithm for autonomous microgrid systems is developed and used to 

solve the discrete-time Bellman equation (9). It can be considered as a simple backup operation that integrates policy 

improvement and truncated policy evaluation steps.  The value iteration algorithm is summarized by Algorithm 1 in the 

Appendix. 

D. Actor-Critic Networks Implementation 

The performance function (9) is now approximated by a critic network, and the control policy (11) is approximated by an 

actor network. Let Wc   R 
nxn and Wa   R 

nxm be the critic and actor weights, respectively. Therefore, the performance 

function and control policy approximations can be written as follows: 
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(13) 

Hence, the network approximation error of the actor is given as:    

 

 
(14) 

The control policy is given in terms of critic network, such that: 

 

 
(15) 

On expressing this target control in terms of critic weights, one obtains: 

 

 
(16) 

The squared approximation error is given by: 

. 

The change in the actor weights is given by the gradient descent method. Therefore, the actor update rule is given as 

follows: 

 

 
(17) 

where 0 < a is the actor learning rate. Let  

. 

be the target value of the critic network, and the value update is given by (11). Therefore, we have: 

 

 
(18) 

The network approximation error of the critic is: 

. 

Similarly, the squared approximation error is given by: 

. 

The change in the critic weights is given by the gradient descent method. Therefore, the critic update rule is given as 

follows: 

 

 
(19) 

where 0 < c is the critic learning rate.   

Algorithm 2 in the appendix implements the actor-critic network solution foe value iteration of Algorithm 1. 

Remark 1: It is important to note that the value iteration depends on the solution of the simply recursive equation (19), 

which is easy to compute and is called partial backup in reinforcement learning. Value iteration successfully mixes one sweep 

of policy evaluation and one sweep of policy improvement in each of its sweeps. 

IV. ACTOR-CRITIC ONLINE IMPLEMENTATION 

The following diagram is used for solving the microgrid control problem by online tuning of actor-critic networks. In this 

algorithm, we start with the given initial conditions for the system states. The algorithm makes use of real-time data measured 

along the system trajectories and tunes the actor-critic structure to generate the suitable control policy. 
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Fig. 3 Simulink blocks for algorithm-2 implementation 

V. PERFORMANCE EVALUATION OF PROPOSED CONTROLLER 

The parameters for the online Algorithm 2 were chosen as a = 0.2, c = 0.2, Q = I4x4 and R I. Fig. 3 describes the Simulink 

structure for implementation of Algorithm 2 for the system. The generated control is fed online to the system, and at time t = 

0.1 seconds, a pulse disturbance is introduced in the system states. Fig. 4 shows the response of all four states. By observing 

the figure, it can be concluded that the online Algorithm 2 yields stability and proves synchronization of the weights.   
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Fig. 4 Responses of the system states 

Figs. 5-7 show the simulation results of Algorithm 2. Figs. 5 and 6 depict the tuning profile for the critic and actor weights, 

respectively. Fig. 7 shows the error dynamics of the microgrid system. 
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Fig. 5 On-line critic weights 

 

Fig. 6 On-line actor weights 
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Fig. 7 On-line error dynamics 

VI. CONCLUSIONS 

A reinforcement learning technique for the control of autonomous microgrids based on heuristic dynamic programming is 

proposed. The strategy is based on a value iteration algorithm and is implemented using actor-critic networks. Based on this 

structure, an offline learning algorithm is developed to solve the bellman equation. From the simulation results, it is evident 

that the converging weights of the actor-critic system stabilizes the system and regulates the output voltage to a nominal value. 

The proposed control strategy is also robust against any disturbances in the states and load. Only partial knowledge about the 

dynamics is required. The input matrix is needed.  
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APPENDIX 

TABLE 1 SYSTEM PARAMETERS 

 

Algorithm 1 (Value Iteration Algorithm for Autonomous Microgrid) 

1) Initialization: Select any arbitrary initial values for the policy uk and V (xk), not necessarily admissible or stabilizing. 

2) Value Update: Solve the Bellman equation to get Vℓ+1(xk) as follows 

 

 
(20) 

where ℓ is the iteration index. 

3) Policy Improvement: The control policy uk is updated as follows 

 
 

(21) 

where the gradient is defined as 
1

1

1

( )
( ) .k

k

k

V x
V x

x







 


 

Algorithm 2 (Actor-Critic Online Implementation of Algorithm 1) 

1) The weights of actor Wa and critic Wc are initialized randomly. Initializing Wc = I4×4 and Wa = rand1×4. 

2) Loop Iterations Begins 

 The iteration loop begins with l  as iteration index 

 Start with given initial values for the system states. 

 The control policy ˆ l

ku  

 k is evaluated using equation (13) 

 The dynamics of the system 1

l

kx  are evaluated using (8) 

 The performance measure 1
ˆ ( )l

kV x   is calculated using equation (12) 

 The critic network is updated based on equation (19) 

 The actor network is updated based on equation (17) 
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 On convergence of 
1ˆ ˆ( ) ( )l l

k kV x V x  , end loop. 
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