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Abstract-In this paper, reinforcement learning techniques are proposed for the control of autonomous microgrids. A type of
approximate dynamic programming method is used to solve the Bellman equation, namely heuristic dynamic programming. The
proposed control strategy is based on actor-critic networks. The control strategy is designed using a dynamic model of islanded
microgrids and makes use of an internal oscillator for frequency control. The proposed control technique is based on a value
iterations algorithm which is implemented online. Using only partial knowledge of the microgrid dynamics, the simulation results
showed that the proposed control technique stabilizes the system and is robust to the load disturbances.
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l. INTRODUCTION

Distributed Generation (DG) units such as photovoltaic arrays, wind turbine generators, and micro turbines are increasingly
used to reduce the cost of energy prices and the environmental problems. High DG penetration levels has brought about the
concept of 'microgrid’. A microgrid (MG) is an integrated energy system consisting of loads, distribution grid, and DG units
that can operate in [1]:

¢ agrid-connected mode,
+ anislanded (autonomous) mode, and
+  transition between the two modes.

Under normal conditions, when a microgrid operates in a grid-connected mode, each DG unit within the microgrid utilizes
the well-known dg-current control strategy [2] to regulate its real/reactive power components. Autonomous operation of a
microgrid, however, requires sophisticated control strategies and protection systems. Depending on the electrical proximity of
the DG units and their dedicated loads, several topologies for microgrids can be defined, e.g., parallel connection, ring, and
radial connection of DGs. Each DG unit within a microgrid is connected to the point of common coupling (PCC) where the
dedicated loads are also connected [3]. When all the PCCs are along a transmission line with nonzero impedance between the
PCCs, a radial configuration is obtained. It turns out that the control of the MG is a key aspect which aims towards the stable
operation of the microgrid [4], and has been the focus of researchers over the past few years. During the islanded operation, the
main task of a MG is to deliver quality power by regulating the output voltage. A MG with its own control structure should be
able to regulate any disturbances in its load towards zero to ensure the stability of the system [5]. The dg—current control
strategy for multiple DG units in an islanded microgrid, which is based on frequency/power and voltage/reactive power droop
characteristics of each DG unit, is well known and extensively reported [2]-[27]. In this approach, each DG unit is equipped
with two droop characteristics:

1) Frequency as a linear function of real power, and
2) Voltage magnitude as a linear function of reactive power.

Based on these droop characteristics, frequency is dominantly controlled by real power flow, and voltage magnitude is
regulated by reactive power flow of the DG unit. This approach does not directly incorporate load dynamics in the control loop.
Thus, large and/or fast load changes can result in poor dynamic response or even voltage/frequency instability. A control
strategy for autonomous operation of a DG unit and its dedicated load is introduced in [6]. This method is intended for a fairly
fixed load and cannot accommodate large perturbations in the load parameters.

Multilevel control [17] of MGs is extensively studied in the literature. It is widely used and consists of primary, secondary
and tertiary control levels [18]. A pseudo-decentralized control architecture is proposed in [19] that can be used for the
optimization of Wireless Communication Networks (WCNs) with the help of a Global Supervisory Control (GSC) and local
controllers. A networked control scheme based on a system of systems is proposed for microgrids in [20]. A MG with multiple
DG units is treated as system of systems, and an output feedback control scheme is applied. A communication network that is
subjected to packet dropouts and delays is used for the application of control. A two-level coordinating control approach for
islanded MG is presented in [21]. An MG with n parallel connections of DG units connected to a common load is considered
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for the study, and parallel connections are conveniently controlled in a two level coordinating scheme as the MG forms an
interconnected control system. Control of autonomous MGs with a local load is introduced in [6]. It develops a dynamic model
of MG and presents a classical control approach to design the controller. A robust servomechanism controller for autonomous
MGs is presented in [23]. This approach uses the same dynamic model developed in [6] and uses an optimal control design
procedure to guarantee robust stability.

On another research front, reinforcement learning (RL) is concerned with how an agent can pick its actions in a dynamic
environment to transit to new states in such a way that optimizes the sum of cumulative reward [7]. RL has been successfully
employed for several difficult problems such as control of inverted pendulums and adaptive control of chemical processes. In
the context of power systems, RL has been used in security and stability control, automatic generation control [32, 33, 34],
voltage and reactive power control [35]. It is an area of machine learning that allows development of online algorithms to
obtain solutions to problems related to optimal control for dynamic systems that are described by difference equations [8, 9]. It
involves two techniques known as Value Iteration (V1) and Policy lIteration (PI) [10, 11]. Policy iteration and value iteration
algorithms have been developed for continuous time systems in [12, 13, 14]. Reference [9] proposed Adaptive Dynamic
Programming (ADP) to solve dynamic programming problems. There are several different types of ADP, namely Heuristic
Dynamic Programming (HDP), Dual Heuristic Dynamic Programming (DHP), Action-Dependent HDP (ADHDP) and Action-
Dependent Dual HDP (ADDHP) [8, 9]. Actor-critic networks are one type of RL method. The actor component applies actions
or control policies to their environment, while the critic component assesses the values of these actions. Based on this
assessment, the actor policy is updated at each learning step [10, 11].

In this paper, a novel approach for the control of MG using RL techniques is proposed. The dynamic model of an islanded
MG proposed in [6] is adopted to carry out the research. An HDP algorithm based on actor-critic value iteration is used to
develop the control of MGs [24]. A value assessment of the control actions is performed by the critic component so that the
actor action is updated at each learning step [7]. Online learning algorithms are used in the implementation of control
techniques. To the best of author’s knowledge, this is the first time that RL techniques have been applied to the concepts of
MGs.

The paper is organized as follows. Section 2 provides a brief background of the dynamic model of islanded microgrid used
to carry out this study. Section 3 formulates the control algorithm based on an on-line adaptive learning algorithm. Section 4
presents simulation results to verify the performance of the proposed controller.

Il. AUTONOMOUS MICROGRID SYSTEM

The autonomous or islanded mode of MG can be caused by network faults/failures in the utility grid due to scheduled
maintenance [25, 26] and economical optimization and management constraints [1].

Fig. 1 Schematic diagram of microgrid

The schematic single-line diagram of an electronically coupled microgrid model is depicted in Fig. 1. A switch at a point of
common coupling (PCC) will isolate the MG from the utility grid [27]. The islanded system consists of inverter based DG
units supplying a load via series filters and step-up transformers. The dc voltage source represents the generating unit, and R,
and L, represents the series filter. A local load, represented by a three-phase parallel RLC network, is connected at the PCC.
The system parameters are given in Table 1, see the Appendix. During islanded operation, the main task of a MG is to deliver
quality power by regulating any disturbances in the load. The MG with its own control structure should be able to maintain the
load voltage level at a desired, prespecified set point.

A. State-Space Model

Consider the system described in Fig. 1. The dq standard state variables forms are given by [16]:
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Casting the foregoing autonomous MG system into the standard time state-space representation results in:
z(t) = Acx(t) + Beu(t); yt = Cez(t); ult) =vy
It follows that the system matrices are given by:

—% wo 0 IL IL, 0
wn Bl _9,. RCws _w 0 . 0
A — “o =un L R - T _
1 1 B 1
¢ 0 -¢ 7C I 1
where the state vector is
o = L Dy Lid Vi ™

To facilitate further analytical development, model (6) will be discretized.

1. REINFORCEMENT LEARNING TECHNIQUES

Reinforcement Learning (RL) [7], also known as action-based learning, refers to interactions of an actor with its
environment so as to improve its actions/control policies depending on the evaluative information received from the
environment. RL can be implemented using an Actor-Critic architecture. The role of actor/critic is indicated before. The key
feature of RL is that it provides an adaptive control which converges to the optimal control [29].

In the sequel, we will consider the Heuristic Dynamic Programming (HDP) algorithm to minimize a prescribed
performance index. A simple HDP system consists of two sub-networks, namely, actor and critic networks. These networks
have feedforward and feedback components.

A. Heuristic Dynamic Programming

Heuristic Dynamic Programming (HDP) is based on adaptive critics [30], which use value function approximation to solve
dynamic programming problems. Fig 2 shows the structure of HDP design, which consists of a system to be controlled and two
sub-networks, namely, Actor and Critic networks [31]. The control structure does not require the desired control signals to be
known. Both the cost function and the control policy are approximated at each step by these two networks.

B. Discrete-Time Bellman Equation
Consider the following discrete-time system in state-space form:
Tpa1 = Axy + Buy ()

which is an appropriate discrete version of system (6), where the states x, € R"and control input u, € R™, and k is the discrete
time index. It is assumed that system (8) is stabilizable on some set Q € R™.
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Fig. 2 Block diagram of actor-critic

Definition 1: Stabilizable System: A system is said to be stabilized on a set Q) € R" if there exists a control inputu € R™
such that the closed loop system given by X,.1 is asymptotically stable on €2 .

A function h (.): R"=> R™from the state space to the control space is known as the control policy such that for every state
Xk, there is a control ux = h (x,). This describes the actor mathematically, as it is the one generating control policy in RL
techniques. That is, the actor takes states xi as input and gives control output uy. It is desired to find the control policy u(xy)
that minimizes the following performance measure/value function

X

Vi) = Z -F)("..l’.(‘")'l.-/ | /l"rh'u_, ). 9)

i=k =
where 0<Q;=Q;" € R™" and 0<R;=Rj" € R ™", so that the performance measure is well-defined.

Definition 2: Admissible Control [36]: A control policy ux = h (x,) is said to be admissible if it stabilizes system (8) and
yields a finite performance V (x).

For any admissible control ux = h (xi), V (X) is known as cost or value and can be selected based on minimum energy,
minimum cost requirements, etc. (9) can be written as follows:

V(er) = =(xfQup + uf Rug) + V(2pyr),V(0) =0 (10)

ro| ==

Therefore, by using current control policy uy the cost can be evaluated by solving the above difference equation. Strictly
speaking, the Bellman equation is a functional equation consisting of dynamical systems state and a value or optimal return
function.

According to Bellman's optimality principle [37], the optimal value and the optimal policy can be obtained by

. , B | . . _
Vize) = rnzn?‘—-l.rlT.Q.rg. + u_z,—Ru;,-) + Vi (zpe1)
7§ .2 2 g (11)

UZ = —R“‘BTVI-"H-;\._I )

The key concept in developing RL techniques is to assess the current policy value by using the Bellman equation. To solve
the above equation, one must know the policy at (k+1) to determine the state at k; therefore, the Bellman optimality equation is
a dynamic programing scheme. In this paper, we are interested in value iteration techniques, an iterative method for
determining optimal control. This technique does not require an initial stabilizing policy. It is significant to note that only
partial microgrid dynamics are required.

C. Value Iteration Algorithm

In this section, an on-line value optimality iteration algorithm for autonomous microgrid systems is developed and used to
solve the discrete-time Bellman equation (9). It can be considered as a simple backup operation that integrates policy
improvement and truncated policy evaluation steps. The value iteration algorithm is summarized by Algorithm 1 in the
Appendix.

D. Actor-Critic Networks Implementation

The performance function (9) is now approximated by a critic network, and the control policy (11) is approximated by an
actor network. Let W, € R ™ and W, € R ™™ be the critic and actor weights, respectively. Therefore, the performance
function and control policy approximations can be written as follows:
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Hence, the network approximation error of the actor is given as:

L'\l“” ) = e ( ”'u) Uk (14)

Wy

The control policy is given in terms of critic network, such that:
up = —R7BT VV(zpsy) (15)
On expressing this target control in terms of critic weights, one obtains:
up = —R-'BTWT 2, (16)
The squared approximation error is given by:

V(zk V(zx
%(Quk('” ))Tcllk(lk ).
The change in the actor weights is given by the gradient descent method. Therefore, the actor update rule is given as
follows:
wiHOT — Wil _ 5 (Wi 2y — wf ) (24)T) an
where 0 <2, < 1 is the actor learning rate. Let
LV i(xe)
Y HA A
be the target value of the critic network, and the value update is given by (11). Therefore, we have:

Viey)
(] —

I
|
r :;

(.r{ Qrp + uil /(ui I\ - \"’I:J';_. o1) (18)

The network approximation error of the critic is:

¢X ) = ¥ ) _ Y wn) |

Similarly, the squared approximation error is given by:

1, ~V{z) V()
) (Cay )TQ.:-,, )

The change in the critic weights is given by the gradient descent method. Therefore, the critic update rule is given as
follows:

WHDT — wiT _ 5 [pY ®) — ol W g ]y, (19)

where 0 <. < 1 is the critic learning rate.
Algorithm 2 in the appendix implements the actor-critic network solution foe value iteration of Algorithm 1.

Remark 1: It is important to note that the value iteration depends on the solution of the simply recursive equation (19),
which is easy to compute and is called partial backup in reinforcement learning. Value iteration successfully mixes one sweep
of policy evaluation and one sweep of policy improvement in each of its sweeps.

IV.ACTOR-CRITIC ONLINE IMPLEMENTATION

The following diagram is used for solving the microgrid control problem by online tuning of actor-critic networks. In this
algorithm, we start with the given initial conditions for the system states. The algorithm makes use of real-time data measured
along the system trajectories and tunes the actor-critic structure to generate the suitable control policy.
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Fig. 3 Simulink blocks for algorithm-2 implementation

V. PERFORMANCE EVALUATION OF PROPOSED CONTROLLER

The parameters for the online Algorithm 2 were chosen as 4, =0.2, A, = 0.2, Q = l44 and R I. Fig. 3 describes the Simulink
structure for implementation of Algorithm 2 for the system. The generated control is fed online to the system, and at time t =
0.1 seconds, a pulse disturbance is introduced in the system states. Fig. 4 shows the response of all four states. By observing

the figure, it can be concluded that the online Algorithm 2 yields stability and proves synchronization of the weights.
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Figs. 5-7 show the simulation results of Algorithm 2. Figs. 5 and 6 depict the tuning profile for the critic and actor weights,
respectively. Fig. 7 shows the error dynamics of the microgrid system.
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VI.CONCLUSIONS

A reinforcement learning technique for the control of autonomous microgrids based on heuristic dynamic programming is
proposed. The strategy is based on a value iteration algorithm and is implemented using actor-critic networks. Based on this
structure, an offline learning algorithm is developed to solve the bellman equation. From the simulation results, it is evident
that the converging weights of the actor-critic system stabilizes the system and regulates the output voltage to a nominal value.

The proposed control strategy is also robust against any disturbances in the states and load. Only partial knowledge about the
dynamics is required. The input matrix is needed.
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APPENDIX

TABLE 1 SYSTEM PARAMETERS
QUANTITY VALUE
H; 1.5 m {}
Ly 300 p H
Vi 1500 vV
FPWAM Carrier Frequency 1980 Hz
LOAD PARAMETERS
FH 76 1)
L 111.9 mH
C 62855 [ F
H; 0.3515 11
GRID PARAMETERS
I 1 1)
L. 10 p H
Nominal Frequency f, 60 Hz
Nonunal Voltage (rms) 13.8 kV
INTERFACE TRANSFORMER PARAMETERS
Type Wye/Delta
Rafing 2.5 MVA
Voltage Ration 0.6/13.8 kV

Algorithm 1 (Value Iteration Algorithm for Autonomous Microgrid)
1) Initialization: Select any arbitrary initial values for the policy u, and V (xx), not necessarily admissible or stabilizing.

2) Value Update: Solve the Bellman equation to get V**}(xk) as follows

—

VEL(z) = - (J.‘[(.Q;rk + uf?l?u,{,) - V‘(l‘kH) (20)

Do |

where 0 is the iteration index.

3) Policy Improvement: The control policy uk is updated as follows
u[,;“ =—-R'BT AV “‘Y(;l‘;;+1)f'-l (21)
6V (Xk+1)

k+1

where the gradient is defined as VV (X, ;) =

Algorithm 2 (Actor-Critic Online Implementation of Algorithm 1)
1) The weights of actor W, and critic W, are initialized randomly. Initializing Wc¢ = l;.4 and Wa = rand; .
2) Loop Iterations Begins
e The iteration loop begins with | as iteration index

o Start with given initial values for the system states.
e The control policy GL
e ks evaluated using equation (13)

e The dynamics of the system Xl'<+l are evaluated using (8)

e The performance measure V! (Xk+1) is calculated using equation (12)

e The critic network is updated based on equation (19)

e The actor network is updated based on equation (17)
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e On convergence of ”\7(Xk)'+1 —\7(Xk)I H end loop.

Mohamad I. Abouheaf was born in Smanoud, Egypt. He received his B.Sc. and M.Sc. degrees in Electronics and
Communication Engineering, Mansoura College of Engineering, Mansoura, Egypt (2000, 2006). He worked as an
assistant lecturer with the Air Defense College, Alexandria, Egypt (2001-2002). He worked as a Planning Engineer
for the maintenance department, Suez Oil Company (SUCO), South Sinai, Egypt, (2002-2004). He worked as an
Assistant Lecturer with the Electrical Engineering Department, Aswan College of Energy Engineering, Aswan, Egypt
(2004-2008). He received his Ph.D. degree in Electrical Engineering, University of Texas at Arlington (UTA),
Arlington, Texas, USA (2012). He worked as a Postdoctoral Fellow with the University of Texas at Arlington
Research Institute (UTARI), Fort Worth, Texas, USA (2012-2013). He worked as Adjunct Faculty with the Electrical
Engineering Department, University of Texas at Arlington (UTA), Arlington, Texas, USA (2012-2013). He was a
member of the Advanced Controls and Sensor Group (ACS) and the Energy Systems Research Center (ESRC), University of Texas at
Arlington, Arlington, Texas, USA (2008-2012). Currently, he is Assistant Professor with the Systems Engineering Department, King Fahd
University of Petroleum and Minerals (KFUPM), Dhahran, Saudi Arabia. His research interests include optimal control, adaptive control,
reinforcement learning, fuzzy systems, game theory, microgrids, and economic dispatch.

Magdi S. Mahmoud obtained B. Sc. (Honors) in communication engineering, M. Sc. in electronic engineering and
Ph. D. in systems engineering, all from Cairo University in 1968, 1972 and 1974, respectively. He has been a
professor of engineering since 1984. He is now a Distinguished Professor at KFUPM, Saudi Arabia. He was on the
faculty at different universities worldwide including Egypt (CU, AUC), Kuwait (KU), UAE (UAEU), UK (UMIST),
USA (Pitt, Case Western), Singapore (Nanyang) and Australia (Adelaide). He lectured in Venezuela (Caracas),
Germany (Hanover), UK ((Kent), USA (UoSA), Canada (Montreal) and China (BIT, Yanshan).

He is the principal author of thirty-six (36) books, inclusive book-chapters and the author/co-author of
more than 520 peer-reviewed papers. He is the recipient of two national, one regional and several
university prizes for outstanding research in engineering and applied mathematics. He is Fellow,
Institution of Electrical Engineers (IEE), UK, Senior Member, Institute of the Electrical and Electronic Engineers (IEEE), USA.
Member, Council of Engineering Institutions, UK. Member, Egyptian Engineers Society, EGYPT, Member, Kuwaiti
Engineers Society, KUWAIT. Member, Operations Research Society of Egypt, Egypt Member, Sigma XI, USA, Member,
National Academy of Sciences, New York, USA.

He is currently actively engaged in teaching and research in the development of modern methodologies to distributed
control and filtering, networked-control systems, triggering mechanisms in dynamical systems, fault-tolerant systems and
information technology.

S. Azher Hussain was born in Hyderabad, India. He received a Bachelor of Engineering (BE) degree in Electrical & Electronics Engineering

from Osmania University and Master of Science (M. Sc.) degree in Systems Engineering from King Fahd University of Petroleum and
Minerals. His research interests include control of microgrid, neural networks and adaptive control.

- 136 -
DOI: 10.5963/1JEE0505001



