
International Journal of E-Business Development Feb. 2013, Vol. 3 Iss. 1, PP. 10-19

- 10 -

Conformance Testing Framework for Service
Oriented Interconnection Technologies

A NoTA Case Study
Janne Keränen1, Tomi Räty2, Petri Jurmu3, Matti Mäki4, Olli-Pekka Puolitaival

VTT Technical Research Centre of Finland, Kaitoväylä 1, Oulu, Finland

5

1janne.s.keranen@vtt.fi; 2tomi.raty@vtt.fi; 3petri.jurmu@vtt.fi; 4matti.maki@vtt.fi; 5

olli-pekka.puolitaival@vtt.fi

Abstract-This paper presents a conformance testing framework
for testing service oriented interconnection technologies. The
framework is founded on previous research and elaborates the
research track based on a market analysis. The conformance
testing framework focuses on a case study, which concentrates
on testing Network on Terminal Architecture (NoTA) NoTA is
a service-oriented interconnection architecture that aims to
facilitate communication between applications running on
terminal devices. The conformance testing framework
presented in the paper aims to ensure that the NoTA
subsystems are interoperable with other NoTA subsystems.
The conformance testing framework includes a testing process,
testing tool chain framework, tool evaluations, and detailed
descriptions for NoTA stack testing approaches. All these will
be presented in the paper and are reflected to existing research
literature. The research is based on the conceptual analysis of
the related publications and technologies, and the results are
derived by the presented testing framework with the
constructive research.

Keywords- Service-Oriented Architecture; Interconnection;
Conformance Testing; Testing Framework

I. INTRODUCTION

An increasing number of communication technologies
belonging to different providers are making networks
complex and difficult to manage [1]. In the future, software
will be used as a service running somewhere in remote on
any convenient physical or virtual device [2]. These new
Internet applications and services have increased in
heterogeneity and complexity in service provisioning, and
these services require interconnected, high-end resources [3].
This will put a high demand on information transport
services by requiring reliable, ubiquitous, and seamless end-
to-end connectivity [2]. Service-oriented design can be the
answer to problems facing the providers of services for
information transport [1]. This trend is expected to have a
strong impact on the business models in the information and
communication technologies value chain [1]

Service-oriented architectures (SOA) and solutions have
been utilized in numerous different occasions and
application domains to address these challenges. A service-
oriented approach was used for interconnecting data-centric
sensor networks with internet protocol (IP) networks based
on device profiles for web services gateway because the
newly developed wireless sensor network protocols are not
compatible with common network protocols like IP [4]. In
another research a service oriented intelligent middleware
service framework (MSF) enables integrated e-logistics

infrastructure and networks, and provides seamless
dynamically created communication and interconnections
among logistics participating middleware systems

.

[5].
Service-oriented network architecture can also be used to
bridge informational gap between user applications and
optical networks providing technology-agnostic multi-
granular optical network services for clouds [6]. SOA can
also be enhanced with real-time capabilities for industrial
automation addressing problems that arise in deploying a
middleware layer for supporting SOAs in next-generation
industrial automation platforms [7]

Service-oriented interconnection technologies are
technologies that aim to enable and facilitate
intercommunication of different devices, services, platforms
and networks. Network on Terminal Architecture (NoTA)

.

[8]

Because a lack of trust prevents service computing’s
mainstream adoption, a key issue is providing users and
system integrators the means to build confidence that a
service delivers the expected quality of service. The service
provider can test a component only independently of the
applications in which it will be used, and the system
integrator is not able to access the source code to retest it.
This calls for specific testing to guarantee the service-level
agreements with consumers.

is a service-oriented interconnection technology that aims to
make service and application development independent of
underlying physical transport layers by offering a common
low-level interface for terminal devices. These service-
oriented interconnection technologies try to help in
interoperability and integration problems between
intercommunicating components, but the sheer amount of
vendors implementing these components create new
interoperability problems.

These concerns apply to NoTA technology, which aims
to facilitate multi-device and multi-platform communication
between embedded devices. NoTA is a platform
independent interconnect and therefore the NoTA stack will
be implemented and optimized separately for many different
platforms. Each device vendor develops their own version
of the NoTA protocol stack to optimize the performance of
their device. The developed device using NoTA must
conform to the NoTA architecture and be interoperable with
other NoTA devices and subsystems. Due to independent
subsystem vendors and computing platforms in the NoTA
ecosystem, the interoperability of NoTA subsystems is not
self-evident.

[9]

[10]

International Journal of E-Business Development Feb. 2013, Vol. 3 Iss. 1, PP. 10-19

- 11 -

In this paper, we present an advanced version of the
conformance testing framework originally presented in [10],
and elaborate the approach based on market analysis
information presented in Chapter III. The framework aims
to facilitate NoTA subsystems interoperability, and their
conformance with the NoTA architecture. Compared to the
previous research [10]

The paper is structured as follows. Chapter II gives an
overview of related research concentrating in testing in
service-oriented interconnection technologies. Chapter III
presents the NoTA market analysis and conclusions which
were the basis for development decisions. We depict our
conformance testing frameworks testing process in Chapter
IV. Conformance testing tool chain framework and
corresponding tool evaluations are discussed in Chapter V.
Different NoTA testing approaches including detailed
descriptions of NoTA stack testing and other aspects to
consider along with NoTA DIP presentation are discussed in
Chapter VI. Discussion about the developed conformance
testing framework is presented in Chapter VII.

, the conformance testing tool chain is
lifted to a higher abstraction level, and the NoTA stack
testing is presented with much more detail. There’s also tool
evaluations provided to give guidelines about appropriate
tools to be used with the framework.

II. RELATED RESEARCH

This chapter illustrates recent examples of testing in
service-oriented architectures and interconnection
technologies. The purpose is to provide a scope and basis
for comparison by reviewing how testing is organized in
other application domains. The comparison and conclusion
is presented in final Chapter VII.

Researchers in [11, 12] present a framework for testing and
validation of both functional and non-functional behaviour
of service-based applications. The framework is based on
SOA principles. The proposed framework comprises a set of
tools that can be used together with existing service
development environments. The framework aims at
automating the testing process and currently framework
consists of five tools composed as integrated services. The
framework provides end-to-end testing of three layers: 1)
service layer, 2) service composition and coordination, and
3) business process.

The research team in

[11, 12]
[13] presents a framework for

testing the I/O behaviour in SOA environment. The
framework derives minimal testable I/O pairs from a service
component’s behaviour specifications. These minimal
testable I/O pairs are mapped to reusable primitives and then
synthesized into test models in the discrete event system
specification formalism to meet different test objectives.
The framework supports automatically constructing the test
models and composing them for test scenarios. The
framework is developed in the context of testing service
collaborations on net-centric implementations of service
oriented architectures.

The paper

[13]
[14] proposes a ConfigTest mechanism to

support testing dynamic reconfiguration. Dynamic
reconfiguration in SOA means that testing need to be

adaptive to the changes of the service-oriented applications
at runtime. The ConfigTest approach enables the online
change of test organization, test scheduling, test deployment,
test case binding, and service binding. The paper also
presents test broker architecture framework which supports
runtime testing with collaborative agents in a coordinated
and distributed environment. The test broker decouples test
case definition from its implementation and usage.

The research team in

[14]
[15] presents a performance

evaluation method for evaluating the feasibility of new
NoTA applications on multi-core based mobile device
platforms. NoTA application components were refined to
encompass processes and platform services and functions to
form layered application architecture. The NoTA
application architecture modelling methodology was linked
with a workload modelling approach used with a
performance simulation approach.

Service-Oriented Architecture (SOA) services often use
traditional validation approaches. This can be expensive,
because each service and all possible service combinations
must be tested separately. Tsai et al. address the problem
with an open testing framework which uses group testing
technique, and eliminates test cases with overlapping
coverage. The aim is to reduce testing effort while retaining
effectiveness by using an adaptive testing process.

[15]

[16]

Namli et al. describe an automated test execution
framework for Health Level Seven (HL7) based systems,
which utilize a variety of transport protocols and message
choreographies. The framework provides a test description
language with high-level constructs allowing dynamic set up
of test scenarios, and can accommodate different HL7
protocols with messaging adaptors.

III. NOTA MARKET ANALYSIS

[17]

After our previous research concerning conformance
testing in service oriented interconnection technologies in
NoTA [10]

NoTA is not yet enough popular and visible to potential
subsystem vendors. NoTA is perceived as a potential
concept, but the business case is not clear. The main
problem with NoTA subsystem markets is that there are not
enough system integrators, who buy the NoTA subsystems.
Subsystem developers cannot make large investments
without seeing clear enough businesses in NoTA, which
means that more NoTA system integrators should involve in
the NoTA community. NoTA has good potential, but the
technological penetration would occur not until around 2015.
The commercial boom would be around 2020. There are
some industries where NoTA could penetrate faster, such as
automotive industry.

, we decided to delve deeper into the current
market situation in the field of NoTA. The aim was to
gather knowledge of the current NoTA ecosystem and
testing markets. This knowledge was used to draw analysis
of the current NoTA market situation, which in turn was
used as a basis for future NoTA testing platform
requirements and design decisions. According to our queries
among industry professionals, following aspects were found
about the current NoTA markets situation.

International Journal of E-Business Development Feb. 2013, Vol. 3 Iss. 1, PP. 10-19

- 12 -

Another viewpoint that arose was the assumption that
the majority of the NoTA subsystem vendor companies
want to do their testing solutions by themselves, and are not
willing to subcontract any of the NoTA testing work.
However, this issue would change over time if the NoTA
markets start to develop more. For example, Digital Living
Network Alliance (DLNA) was assessed as a reference
technology to find out how testing services are arranged in
other fields of technology. It became clear that there already
exists a strong inner circle of big testing companies that
dictate the testing markets in the field of DLNA.

Regarding the NoTA testing viewpoints, there is need
for NoTA stack testing separately, and also for the whole
NoTA subsystem testing. Currently, the emphasis is
especially on the stack, since there are not yet many NoTA
services to test. In the future, there will also be room for
NoTA performance testing. Focus to operate as a testing
framework provider between NoTA subsystems developers
and system integrators was deemed reasonable. It also
became clear that it is essential to develop the NoTA know-
how. It can also be seen that NoTA is just one service-
oriented interconnection technology among others, and the
developed conformance testing framework could also be
used with other technologies. At the moment, we are seeing
NoTA as the core use case in our future conformance testing
framework development, but with the modification that
NoTA is just one technology among others. The focus of
future development of the NoTA platform will be directed
to a more generalized direction. The current NoTA testing
approach is also brought to a more detailed level. The aim is
to develop the current NoTA testing platform to a direction
that would be most useful for the NoTA ecosystem and
manufacturers.

IV. NOTA CONFORMANCE TESTING PROCESS

The conformance testing process aims to assure that the
subsystem conforms to NoTA specification and architecture.
The process is a high-level depiction of what to do when a
NoTA subsystem vendors and integrators engage in testing
activities. The reasoning for the process is that NoTA
subsystem vendors develop their own version of the NoTA
stack in order to optimize their hardware and software
performance. However, the NoTA subsystem must conform
to the NoTA stack specification in order to be interoperable
with other NoTA subsystem modules. The conformance
testing process helps subsystem developers to reduce
subsystem investment risks by offering a way to test the
custom NoTA stack of the subsystem developers against the
NoTA specification, and to assure the interoperability of the
whole subsystem with other NoTA subsystems. [10]

• added value for NoTA subsystem vendor: 1) proof
that the NoTA subsystem conforms to the NoTA
specification and architecture, and 2) proof that the NoTA
subsystem services meets its functional requirements and
conform to their specifications.

 The
main objectives of the conformance testing process are to
offer:

• added value for NoTA subsystem integrator: 1)

confidence that the NoTA subsystem is interoperable with
other NoTA subsystems, and 2) faster time-to-market due
shortened integration & testing.

The conformance testing process, its inputs and outputs,
and its phases are illustrated in Fig. 1, and are described in
the following chapters:

NoTA Subsystem
Specification

NoTA Subsystem
Test Plan

NoTA Architecture
Specification

NoTA Subsystem
Requirements

Process
Inputs

NoTA Subsystem
Test Design

NoTA Subsystem
Test Log

NoTA Subsystem
Test Failure

Report

NoTA
Subsystem

Implementation

NoTA Subsystem
Test Summary

Report

Process
Outputs

Conformance Testing Process

Test Execution

Fig. 1 Conformance testing process for NoTA

A. Process Inputs

[10]

NoTA subsystem vendor offers subsystem’s
Spesifications, NoTA Subsystem Requirements and NoTA
Subsystem Implementation to the party implementing the
conformance testing process. The separate NoTA subsystem
Requirements document captures the non-functional
requirements of the subsystem. The NoTA Subsystem
Implementation is the actual subsystem, which comprises of
hardware and/or software.

B. Process Outputs

[10]

The party implementing the conformance testing process
produces a Test Summary Report, which includes all
executed test cases, their results, and tracing to NoTA
Subsystem Requirements. The Test Summary Report will
include an overall report of the NoTA subsystems
conformity and interoperability. The Test Summary Report
is delivered to the NoTA subsystem vendor along with the
NoTA subsystem.

C. Conformance Testing Process Phases

[10]

This chapter describes the phases in the conformance
testing process for NoTA. The party implementing the
conformance testing process executes these phases. The
phases were originally presented in [10]

• NoTA Architecture Specification (Device
Interconnect Specification) provides the NoTA specification
that sets the overall constraints for testing. The NoTA
community provides the specification and is responsible for
maintaining it.

.

• NoTA Subsystem Test Plan provides a high-level
overview of the testing activities for the corresponding
subsystem. It has NoTA Architecture Specification, NoTA
Subsystem Specification, and NoTA Subsystem
Requirements as it inputs. The test plan provides the basis
for NoTA Subsystem Test Design. The NoTA subsystem
vendor is responsible in delivering the required input
documents.

International Journal of E-Business Development Feb. 2013, Vol. 3 Iss. 1, PP. 10-19

- 13 -

• Test design defines the technical details of the test
system setup, which must be addressed: the required
hardware and software, testing tools, SUT adapters, test
methods, and test cases. Test design phase receives NoTA
Subsystem Test Plan as its input, and provides a framework
for executing tests.

• Test execution tests the system for failures,
according to the test design. Test execution phase receives
NoTA Subsystem Test Design and NoTA Subsystem
Implementation as its inputs, and creates NoTA Subsystem
Test Log and NoTA Subsystem Test Failure Report as its
outputs.

• Test reports phase summarizes and gives details of
test results. The phase receives NoTA Subsystem Test Log
and NoTA Subsystem Test Failure Report as its inputs, and
creates NoTA Subsystem Test Summary Report as its
output.

There exist a few possible problems in the NoTA testing
process: 1) the NoTA technology must itself confirm the
interoperability of NoTA architecture subsystems, but at the
same time the specification must be flexible and not too
rigid to allow development of the NoTA community. This
raises the question that how to ensure consistency between
NoTA specifications. One approach could be annual internal
specifications update conferences between NoTA ecosystem
members. 2) The purpose of NoTA is to enable flexible
interconnectivity inside and between devices. This causes
concern over unambiguity and generality of the NoTA
interface, because subsystem internal functionalities may
affect how you can use the interface. 3) Another question
concerning the process is that are the actual testing activities
performed in subsystem vendor premises and participated to
vendor product development lifecycle, or are testing
activities performed outside the vendor premises.

V. TESTING TOOL CHAIN FRAMEWORK

Due to conclusions drawn from NoTA market analysis,
we are now seeing NoTA as one use case in our future
framework development, where NoTA is just one
technology among others. Therefore, the new focus of the
tool chain development is to define a framework and
requirements for a general purpose conformance testing tool
chain that supports the testing process defined in the
previous research [10]

Service-oriented technologies are a new area from
viewpoint of testing and therefore traditional, formal testing
methods and systems seem not to fit as such

.

[9, 14]

SUT implementation

SUT specifications

Test Report
Customer Testing

Partner

. Therefore
we have outlined a novel testing tool framework that
elaborates the types of tools needed in different phases of
the testing process defined in the Chapter IV (Fig. 1). The
main purpose is to support the transactions and deliverables
described in the process with the conformance testing tool
chain. However, since the focus of the conformance testing
tool chain is shifted to a more general direction, the NoTA-
specific details will be omitted. Since there is no specific
target SUT technology, the main concern is to take into
account the general level deliverables that are transferred
between the testing partner and the potential customer, and

how those deliverables affect to the process and the tool
chain. In Fig. 2, rough, high-level transactions are illustrated.
The customer must provide specifications about the system
to be tested (the SUT), the actual SUT implementation for
testing, and the customer must assist the testing partner in
SUT specific technical issues. The testing partner produces
and delivers a comprehensive test report to the customer. In
a technology specific scenario there would be more
transactions to be identified, and as a comparison, the NoTA
conformance testing process (Fig. 1) identifies additional
transactions: NoTA Acceptance Label and SIS
specifications.

Fig. 2 Transactions between customer and testing partner

A. High-Level Architecture of the Tool Chain Framework

The diagram in Fig. 3 depicts the high-level architectural
concept diagram of the tool chain framework. The yellow
figures represent documents that flow between the tools,
which are manifested in green box figures. The blue figures
are data entities flowing between the tools and documents.
The grey disk represents the SUT implementation.

SUT
Specifications

SUT

Test
Requirements

Test
Management

Tool

SUT
Model

Test Design
Tool

Test
Automation

Tool

Test
Results

Test
Report

Test
Cases

Fig. 3 A high-level architectural diagram of the tool chain framework

The transactions in Fig. 3 possess some features of the
process flow in Fig. 1, but Fig. 3 also depicts the required
tools, and their placements in the process. The framework
states that there are three major tool requirements: 1) test
design tool, 2) test automation tool, and 3) test management
tool. It should be noted that these three major tool
classifications may include many smaller testing tools, e.g.,
the test automation tool may possess separate test execution
and test logging application. In addition, the test design tool
could be, e.g., model-based testing, or some other method
that may include a lot of manual labour, or scripting.

The testing tool chain framework is a high level
architecture and it is aimed to provide a wide testing tool
support in order to able to test SUTs thoroughly. The SUT
specifications consist of any SUT specification documents
or other resources that are used to ensure that the SUT
conforms to its specifications (and to the functional
requirements).

The tool chain framework provides an interface for

International Journal of E-Business Development Feb. 2013, Vol. 3 Iss. 1, PP. 10-19

- 14 -

exporting test reports and test logs. The tool chain
components are to be integrated so that the actual testing
process and activities can be executed without any extra
development efforts. Extra development effort means that
the interfaces of the tools must be customized. However,
this does not include possible test harness and test adapter
development.

The SUT specifications declare the structure, the
functional behaviour, and the interfaces of the SUT software.
The SUT specifications provide the basis for test
requirements.

The test design tool provides an interface for entering
test requirements and resources for designing tests. The test
design is automated by using, e.g., model-based testing
(SUT model), scripting, etc. The test design tool produces a
comprehensive set of test cases that exercise the SUT
thoroughly. These test cases contain the stimulus, and the
test oracle, and they must be traceable back to SUT
requirements.

The test cases have to clearly separate the data of
different tests (precondition, expected results, test input
data). Each test case has to contain a single event sequence,
which performs a single task (for example, dial a number)
and can be reused in other test sequences.

The test management tool provides interfaces for
entering test requirements and test cases designed with the
test design tool. The test management tool must be usable:
simple, simple guidelines, visible, transparent, not many
changing parts. The test management tool produces a test
report. In the report, the test management tool must be able
to: produce analytical and statistical data of the test cases,
return to previous test results and compare results of
different test runs, and have version control of test
cases/scripts.

The test automation tool contains test preconditions to
run the SUT and other equipment to appropriate state for the
start of the real test. The test automation tool initialises test
control, SUT, and other equipment to be controlled. The test
automation tool provides comprehensive logging of the test
execution and SUT actions during testing, a test
harness/adapter in order to adapt to the SUT interfaces. The
test automation tool must provide a mechanism to control
the SUT and feed it with test input data, and provide log as a
report of the test results. The test report must contain:

• All the executed tests and their traces to SUT
requirements.

• A test failure report that analyses the reasons for
the failed cases and their relation to the SUT requirements.

• Comprehensive graphs about test coverage and
failed tests, differences of current and previous runs.

• Information, which is collected during testing: time,
tester, failed and succeeded tests.

• The tested SUT software version and modifications,
which have been tested.

• Information of used testware (documents and

systems used in testing) such as test plans, test cases, test
databases, test output, test documentation and test reports.

B. Tool Evaluations

This chapter presents tool evaluations made to assess
possible tools to be used in the conformance testing tool
chain framework. First, a general presentation of the tool is
provided, and then the tool is assessed in the context of
conformance testing tool chain framework.

1) Topcased

Topcased is an eclipse-based open-source toolkit. It has
features for creating diagrams using AADL, SysML and
UML. In addition to modelling, Topcased provides model
transformation and code generation features. Topcased is
most often used to model UML, which is a standardized,
general-purpose modelling language that includes graphical
notation used to create an abstract model of a system. The
purpose of the Topcased in the conformance testing tool
chain would be to offer modelling services in cases where
the tool chain would use model-based test generation. The
Topcased modelling tool would enable the usage of third
party UML models in MBT. Topcased can be used to design
and convert third party UML models into a form that can be
used in, e.g., Conformiq Qtronic. This would be a definite
asset, if the potential client uses UML models in their SUT
specifications. In these cases, the usage of Topcased would
accelerate the model development. Obviously, the Topcased
tool would be feasible only in testing scenarios where the
MBT methodology is present.

[18]

2) MaTeLo Usage Model Editor/Testor

The MaTeLo tools (Editor/Testor) are bound to each
other, and one can’t be used without the other. The MaTeLo
tools utilize Markov chain models, which can be created
with MaTeLo Usage Model editor. Markov chain notation is
a state diagram notation where transitions are related to SUT
I/O and the activation frequency of states. MaTeLo Testor is
a model-based test generator, which utilizes MaTeLo test
models. MaTeLo Testor generates test cases according to
user selected test criteria, and automatically generates the
needed number of test scenarios conformed to the most
probable usage of the system. Test suite export options are
limited to following formats: XML/HTML, TTCN-3 and
TestStand. MaTeLo tools are a reasonable option for tool
chain scenarios where MBT methodology is used. MaTeLo
tools are specialized in complex embedded and IT systems
in various sectors and industries such as automotive,
transportation, energy, and telecommunications. MaTeLo
generates test suites using probabilities set to transitions of
the test model. This leads to test cases where some
transitions with high probability are selected frequently and
other ones with low probability are selected rarely. In
MaTeLo test generation, every test case is generated
uniquely and therefore parts of the test model which are
already covered in the previous test cases do not affect to
later generated test cases. This leads to randomly generated
test suites in which several test cases can contain the same
input feeds multiple times and therefore, by using MaTeLo
it is hard to generate test suites which would cover the

[19]

International Journal of E-Business Development Feb. 2013, Vol. 3 Iss. 1, PP. 10-19

- 15 -

whole test model with minimum (reasonable) amount of test
cases.

3) Qtronic

Conformiq Qtronic is a model-based testing tool which
supports offline model-based test generation from models
defined in QML, which is a UML/Java oriented modelling
language developed by Qtronic. Qtronic supports third party
UML model import, and provides model validation
operations. The test reports can be exported in XML and
HTML. Qtronic provides its own modelling tool, Qtronic
modeller, along with the tool package delivered. Qtronic
generates test suites according to user selected test criteria
(e.g., coverage criteria or lookahead depth), and Qtronic
Script adapter can be used in rendering test suites in e.g.
TTCN-3 format. Qtronic is mostly used in protocol and
communication systems testing, and is an efficient tool for
designing tests. Therefore Qtronic is a reasonable option for
test scenarios utilizing model-based testing. The QML
modelling language is somewhat limited, which should be
noted when designing test models. The SUT in question
may possess qualities that can be hard to describe in QML.
Also, just like in any MBT case, the MBT brings most
benefits in cases where regression testing plays a big role in
the overall SUT development process.

[20]

4) TTworkbench

TTworkbench from Testing Technologies is an
integrated test development and execution environment
(IDE) for all kinds of test automation projects.
TTworkbench is a TTCN-3 based tool and it can be
deployed for testing scenarios in a wide range of different
industries. The two main views in the TTworkbench
working environment are the development perspective and
execution management perspective. The development
perspective comprises mainly of the CL Editor, which is a
text editor that provides capabilities for editing TTCN-3
Core Language based test suites. Another major component
of the Development perspective is TTthree, which provides
the generation of Java sources from test suite specifications
based on the TTCN-3 Code Language, as well as the
compilation of Java sources into byte code class files and
their packaging into a single jar archive file. The TTthree is
used in developing adaptation and codec interfaces to adapt
the TTCN-3 test system to the needs of the SUT. The
execution management perspective, also known as the
TTman, builds the whole execution management
perspective used in executing tests against the SUT.
TTworkbench is a flexible tool due to its modularity, and
offers efficient test automation features. TTworkbench is a
strong option for the test execution platform of choice when
constituting the conformance testing tool chain.

[21]

5) CUnit

CUnit is an open source unit testing framework for C
language. CUnit is a lightweight system for writing,
administering, and running unit tests. It provides a basic
testing functionality with a flexible variety of user interfaces.
CUnit proved to be too small (feature-wise) for the
conformance testing tool chain. The CUnit tool is intended

to be used in unit testing during early phases of
development, and this often means that the developer
oneself executes the unit tests. However, there could be
some special cases where the CUnit could be utilized, such
as detailed debugging after finding a bug from a SUT. The
main problem with the CUnit is the lack of adequate test
automation, management and logging. Another downside of
the tool is that it is limited to development done in C
language only.

[22]

6) OpenTTCN Tester 2010

OpenTTCN Tester 2010 is a TTCN-3 testing tool
developed by OpenTTCN. OpenTTCN Tester allows test
editing, compilation, and execution as well as adapter
development in ANSI C, Java and C#/Microsoft .NET
Framework. OpenTTCN Tester resembles TTworkbench.
OpenTTCN Tester recently changed their operating
environment to Eclipse (as in TTworkbench), and the layout
and major software component functionalities are quite
similar to TTworkbench. OpenTTCN Tester 2010 lacks
some features (e.g., test execution perspective and
management, extensive textual logging, graphical test
logging) found in TTworkbench, and is therefore limited
compared to the TTworkbench. OpenTTCN Tester is a good
test automation platform option, but offers no extra value.

[23]

7) Testia Tarantula

Testia Tarantula is a test management tool developed by
Prove Testia. The Tarantula test management tool enables to
manage tests that have been previously designed. Tarantula
includes requirement specifications management feature that
allows generating a requirements matrix, which is a metric
to know the functional coverage of the SUT. Tarantula can
deliver metrics that will help in evaluating the quality of the
SUT. Metrics are graphics and tables indicating success
rates, progression/regression and much other data. Tarantula
also possesses bug tracking features. Tarantula is a
respectable option for the test management tool role in the
conformance testing tool chain framework.

[24]

VI. NOTA TESTING APPROACHES

The following chapter present aspects, discussion and
requirements for utilizing the conformance testing tool chain
framework in NoTA testing. The NoTA use case aims to
sketch and develop extensive NoTA testing framework and
test cases for NoTA subsystems, DIP stack layers, and
AN/SNs.

To understand NoTA testing, we first must present the
NoTA architecture. NoTA was introduced in [25] and [26].
NoTA is an architecture for communication between system
modules, which are called subsystems. The purpose of the
NoTA architecture is to provide a unified way to define
module interfaces in embedded devices. The NoTA
architecture concept applies ideas from SOA world, but
NoTA implement them in a device context. [25] The
architecture concept and technologies of NoTA are
operating system independent and portable to different
platforms [8]

The logical NoTA architecture consists of two types of

.

International Journal of E-Business Development Feb. 2013, Vol. 3 Iss. 1, PP. 10-19

- 16 -

nodes: 1) Application Nodes (AN), and 2) Service Nodes
(SN). These nodes are implemented with software, hardware
or combination of both. The communication between nodes
is managed using Device Interconnect Protocol (DIP). The
DIP consists of two major interconnect layers: 1) High
Interconnect (H_IN) and 2) Low Interconnect (L_IN),
which is divided into two sub layers: 1) L_INup and 2)
L_INdown. A full working NoTA system comprises of
NoTA subsystems. A NoTA subsystem contains an
implementation of the DIP stack and a certain set of
nodes. [26, 8] The parts of the NoTA architecture are
illustrated in Fig. 4.

Fig. 4 NoTA architecture

NoTA DIP is intended to be a platform independent
protocol and therefore it is ported for numerous different
platforms. Different DIP stack versions may have unique
optimizations or custom implementations in order to adapt
to different platforms and processors. Conformance testing
is needed to ensure the proper functionality of the optimized
NoTA DIP stack, and the interoperability between all
different stack implementations. The test requirements are
drawn from NoTA DIP specification, and the test
requirements provide the basis for test cases. In practice, the
testing can also be implemented against an ‘optimal’
reference implementation of the DIP stack. It would be also
interesting to gain comparative test data of the different
implementations of the NoTA DIP stack. Possible
deviations in the performance, such as in
overhead/throughput would be of interest.

[25, 26]

When considering NoTA testing, the first thing to take
into account is the testing target. The testing target can be
either whole DIP stack, all stack layers separately layer
(H_IN, L_INup, L_INdown), ANs and SNs, and the whole
subsystem (Fig. 4). The testing target affects directly if the
testing can be done in a testing host or as remote testing. If
the SUT NoTA DIP stack is optimised for SUT target
platform, it cannot be installed to our testing host. If the
NoTA subsystem is already compiled, or resides in a closed
embedded device, it must be tested remotely. It should also
be noted that there might be requirements for testing many
simultaneous ANs and SNs in order to be able to assess the
overall NoTA subsystem functionality. Because NoTA as a
technology is intended to operate on multiple platforms,
another major requirement for a feasible testing system is
reusability for different platforms.

Functional testing of NoTA nodes requires that node
specifications are received from NoTA vendor. Also, the
test automation tool must be able to communicate with the
SUT through NoTA stack using H_IN interface. In order to
the test system to be reusable, all node-specific functionality
must reside in the test cases, not in the SUT adapter. The
NoTA testing platform must be able to simulate SUT

dependent ANs/SNs.

NoTA subsystem interoperability testing requires that
subsystems’ specifications are received from NoTA vendors,
including node specifications and possible modifications in
the stacks. The test automation tool must adapt to
environment with multiple NoTA subsystems, must be able
to inspect communication between the subsystems, and
simulate the functionality of one or more subsystems under
testing.

A. Negative and Performance Testing

The main testing type for NoTA testing is
functionality/conformance testing of all the testing targets.
The testing of functionality can also be, e.g., negative
testing. The purpose of the negative testing is to cause the
stack to crash. A protocol stack is not allowed to crash
under any circumstances. If the stack crashes, the test debug
messages indicate in which part of the stack the error
occurred. Negative testing for NoTA is test execution where:
broken messages, too long messages, a broken message in
between unbroken ones, sudden change in parameters are
inserted in the NoTA message flow to inspect how the DIP
stack operates in cases of anomalies. The negative testing
can also be anomalies in connections: suspensions during
connection initialization, many simultaneous connections,
illegal connections, sudden connection creations and
terminations in row, buffer overflows, and sudden
disconnections.

Even though the conformance testing does not cover
necessarily performance, a certain degree of performance
testing is required to assure that the NoTA DIP stack has an
adequate performance to operate with other NoTA DIP
stack implementations. This kind of performance limit
testing can cover: amount of time spent during discovery,
amount of time spent in creating connections (e.g., versus
TCP stack), bit rates with data with different packets sizes,
differences between different L_INdown performances
(TCP/IP, Bluetooth), time used when changing L_INdown
on the fly, load/stress testing, and finding the performance
limits of a stack. Another aspect of performance testing is
drawing comparison between different stacks with
throughput / round-trip delay testing. The performance
testing is challenging because the NoTA stacks have
different platforms and different host devices. Drawing
objective comparable data is difficult. Security testing of the
NoTA stack becomes topical in a context, where there might
be many simultaneous NoTA resource managers.

B. NoTA DIP Stack Testing Approaches

In order to be able to test the NoTA DIP stack layers,
there must be NoTA specifications available. Since there are
no official specifications for the L_INdown layer, the testing
of L_INdown layer requires specific interoperability testing
arrangements. Regarding the other layers of NoTA, the
specifications must provide finite state machines and APIs
for each stack layer, and for each used socket. The
specifications must also provide data type definitions of the
input and output messages.

International Journal of E-Business Development Feb. 2013, Vol. 3 Iss. 1, PP. 10-19

- 17 -

Stack layer testing is implemented a in a testing host PC,
or in an embedded device with the aid of remote stubs. The
stubs are platform specific, and may require a transport
specific dongle. The inner state of stack layers must be
monitored during testing, which requires test probes to
enable the capture of messages from, and between stack
layer interfaces. This requires a modified test version of the
NoTA DIP stack.

1) Whole DIP Stack Testing Approach:

In the whole DIP stack testing approach (Fig. 5) the test
execution platform sends input message via a
communication medium and receives output via test node
connection. Then the test executor compares real output
value to the expected output value and makes decision of
test case validity. Test executor can also send data to the
node side and collect the return value from the other side.
Therefore this approach makes it possible to test NoTA
stack carefully and have good test coverage. This is a
generic aspect of test automation and is very adaptable in
conceptual level. Requirements for whole DIP stack testing:
1) test executor connection to H_IN and L_INdown layers,
2) node stub implementation, and 3) test executor
connection to test node stub.

Fig. 5 Whole DIP stack testing approach

2) DIP Stack Layer Testing Approaches:

Layer testing is very close to stack testing in conceptual
level. In practice however it is quite different because each
layer of the stack has distinct interfaces. To test the DIP
stack layers separately, they must be run as separate
standalone layers. This also entails that the test automation
tool must enable testing hooks that surround each part of the
stack. This can be enabled e.g. via an adapter interface of
the test automation tool. Interface requirements for
L_INdown testing (Fig. 6): 1) testing of L_INdown requires
a L_INdown-specific SUT adapter, 2) upper part of the
testing hook uses L_INdown interface, and 3) lower part of
the testing hook simulates various communication methods
(TCP, Bluetooth, USB).

Fig. 6 L_INdown testing approach

Interface requirements for L_INup testing (Fig. 7): 1)
testing of L_INup requires a L_INup-specific SUT adapter,
2) upper part of the testing hook uses L_INup interface, and
3) lower part of the testing hook provides L_INdown
interface.

Fig. 7 L_INup testing approach

Interface requirements for H_IN testing (Fig. 8): 1)
testing of H_IN requires a H_IN-specific SUT adapter, 2)
upper part of the testing hook uses H_IN interface (node-test
adapter might be reused), and 3) lower part of the testing
hook provides L_INup interface.

Fig. 8 H_IN testing approach

VII. CONCLUSIONS

We presented a conformance testing framework that
included testing process, testing tool chain framework, tool
evaluations and detailed approaches for NoTA stack testing.
Service-oriented technologies are a new area from
viewpoint of testing and therefore traditional, formal testing
methods and systems seem not to fit as such [9, 14], and
therefore we have outlined a novel testing tool framework
that elaborates the types of tools needed in different phases
of the testing process. The work presented in this paper
elaborated previous research in [10]

These viewpoints include: 1) NoTA has good potential,
but the technological penetration would occur not until
around 2015, and NoTA subsystem vendors want to do their
testing solutions by themselves. This is why we raised the
abstraction level of the framework to include also other
service-oriented technologies, and kept the NoTA is just one
service-oriented interconnection technology among others.

 with a novel generalized
testing tool chain framework and elaborated stack testing
approaches that were engaged due to conclusions drawn
from NoTA market analysis. The new paradigm of the
conformance testing framework answers to the viewpoints
raised by industry professionals.

International Journal of E-Business Development Feb. 2013, Vol. 3 Iss. 1, PP. 10-19

- 18 -

The framework solution can also be utilized by the
subsystem vendors. 2) It became clear that it is essential to
develop the NoTA know-how. There is need for NoTA
stack testing separately, and in the future also NoTA
performance testing. To address these challenges, we
elaborated the NoTA stack testing approaches, and also
discussed the challenge of performance testing. 3) The focus
of the testing framework to operate as a testing service
provider between NoTA subsystems developers and system
integrators was deemed reasonable. This viewpoint was
retained.

When compared to existing research, the proposed
solution in [11, 12] has an extensive set of tools, but the
disadvantage in the solution is that the implementation of
the framework is based on enterprise service bus, and it
focuses on testing web services and service-based
applications. The same applies for the [13], where the
research concentrates on testing service collaborations on
net-centric implementations of service oriented architectures,
and [14] proposes a mechanism to support testing dynamic
reconfiguration in web services testing. In turn our
framework, which besides mere applications concerns also
the service architecture implementation and its components.
In addition our tool framework approach can be adapted to
needs of different application domains. The solution in [13]
bares resemblance to one presented in this paper since as it
regards the SUTs I/O at behavioral level with testable I/O
pairs. The work in [15]

The testing framework in

 presents a performance evaluation
method for evaluating the feasibility of NoTA applications,
which is a far more developed performance testing concept
than the discussion presented in this paper.

[16] does not consider any test
execution methodologies, contrary to our work. The
adaptive testing process in [16] relies on selecting the most
efficient test cases, but does not define any roles or
responsibilities associated in the testing process. The work
in [17]

The future work and more detailed assessment of
markets could involve the following challenges: 1) what
kind of testing could be most useful from the stack
development perspective, 2) should there be a defined stack
testing process, and 3) are the stack layers tested first one by
one or do they form bundles.

 does not present a testing process or guidelines to
define e.g., what happens in testing between the HL7 parties
and what data is exchanged. Our conformance testing
process for NoTA considers the different actors and data
flows associated in a testing process. Our process defined
for NoTA is not directly applicable for other domain areas,
but still provides a solid foundation.

An issue to be noted when considering the utilization of
the testing tool chain framework is that when considering
the tool chain components for NoTA DIP stack testing, it
should be thought through that is the dependency of
proprietary testing tools necessary, and is there any interface
conflicts between the tools.

REFERENCES

[1] C. Fortuna and M. Mohorcic, “Dynamic composition of

services for end-to-end information transport,” Wireless
Communications, IEEE, vol. 16, no.4, pp. 56-62, Aug. 2009.

[2] L. Siegele, “A Special Report on Corporate IT,” The
Economist, vol. 389, no. 8603, Oct. 2008.

[3] C. E. Abosi, R. Nejabati, and D. Simeonidou, “A service
plane architecture for future optical Internet,” International
Conference on Optical Network Design and Modeling,
ONDM 2009, 2009, pp. 1-6, 18-20 Feb. 2009.

[4] C. Hua and J. Chen, “Service-Oriented Transparent
Interconnection between Data-Centric WSN and IP
networks,” International Conference on Electrical and Control
Engineering, ICECE, 2010, pp. 1884-1887, 25-27 June 2010.

[5] L. Zongwe, J. S. Li, C. J. Tan, F. C. H. Tong, A. Kwok, E. C.
Wong, and H. B. Wang, “Intelligent Middleware Service
Framework,” IEEE International Conference on Service
Operations and Logistics, and Informatics, SOLI '06, 2006, pp.
1113-1118, 21-23 June 2006.

[6] G. Zervas, V. Martini, Y. Qin, E. Escalona, R. Nejabati, D.
Simeonidou, F. Baroncelli, B. Martini, K. Torkmen, and P.
Castoldi, “Service-Oriented Multigranular Optical Network
Architecture for Clouds,” IEEE/OSA Journal of Optical
Communications and Networking, vol. 2, no. 10, pp. 883-891,
Oct. 2010.

[7] T. Cucinotta, A. Mancina, G. F. Anastasi, G. Lipari, L.
Mangeruca, R. Checcozzo, and F. Rusina, “A Real-Time
Service-Oriented Architecture for Industrial Automation,”
IEEE Transactions on Industrial Informatics, vol. 5, no. 3, pp.
267-277, Aug. 2009.

[8] (2011) NoTA - Nokia Developer. [Online]. Available:
http://projects.developer.nokia.com/NoTA.

[9] G. Canfora and M. Di Penta, “Testing services and service-
centric systems: challenges and opportunities,” IT
Professional, vol. 8, no. 2, pp. 10-17, March-April 2006.

[10] J. Keranen, T. Raty, P. Jurmu, M. Maki, and O-P. Puolitaival,
“Conformance Testing in Service-Oriented Interconnection
Technologies in NoTA,” Eighth International Conference on
Information Technology: New Generations, ITNG, 11-13
April 2011, pp. 304-309.

[11] V. Pavlov, B. Borisov, S. Ilieva, and D. Petrova-Antonova,
“Framework for Testing Service Compositions,” 12th
International Symposium on Symbolic and Numeric
Algorithms for Scientific Computing, SYNASC, 23-26 Sept.
2010, pp. 557-560.

[12] S. Ilieva, V. Pavlov, and I. Manova, “A Composable
Framework for Test Automation of Service-Based
Applications,” Seventh International Conference on the
Quality of Information and Communications Technology,
QUATIC, 29 Sept. - 2 Oct. 2010, pp. 286-291.

[13] H. Xiaolin, B. P. Zeigler, H. H. Moon, and E. Mak, “DEVS
Systems-Theory Framework for Reusable Testing of I/O
Behaviors in Service Oriented Architectures,” IEEE
International Conference on Information Reuse and
Integration, IRI 2007, 13-15 Aug. 2007, pp. 394-399.

[14] B. Xiaoying, X. Dezheng, D. Guilan, T. Wei-Tek, and C.
Yinong, “Dynamic Reconfigurable Testing of Service-
Oriented Architecture,”31st Annual International Computer
Software and Applications Conference, COMPSAC 2007, vol.
1, 24-27 July 2007, pp. 368-378.

[15] S. Khan, J. Saastamoinen, J. Huusko, and J. Nurmi,
“Performance evaluation of distributed NoTA applications on
multi-core platforms,” IEEE 2nd International Conference on
Networked Embedded Systems for Enterprise Applications,
NESEA, 8-9 Dec. 2011, pp. 1-8.

[16] W. T. Tsai, Z. Xinyu, C. Yinong and B. Xiaoying, “On

International Journal of E-Business Development Feb. 2013, Vol. 3 Iss. 1, PP. 10-19

- 19 -

Testing and Evaluating Service-Oriented Software,”
Computer, Vol. 41, No. 8, pp. 40-46. August 2008.

[17] T. Namli, G. Aluc and A. Dogac, “An Interoperability Test
Framework for HL7-Based Systems,” IEEE Transactions on
Information Technology in Biomedicine, Vol. 13, No. 3, pp.
389-399, May 2009.

[18] (2011) Topcased - The Open-Source Toolkit for Critical
Systems. [Online]. Available: http://www.topcased.org/.

[19] (2012) MaTeLo - ALL4TEC Model-based Testing Solutions.
[Online]. Available:
http://www.all4tec.net/index.php/All4tec/matelo-product.html.

[20] (2012) Conformiq Automated Test Design. [Online].
Available: http://www.conformiq.com/.

[21] (2012) Testing Technologies. [Online]. Available:
http://www.testingtech.com/products/ttworkbench.php.

[22] (2010) A Unit Testing Framework for C. [Online]. Available:
http://cunit.sourceforge.net/.

[23] (2012) OpenTTCN. [Online]. Available:
http://www.openttcn.com/.

[24] (2012) Testia Tarantula. [Online]. Available:
http://www.testia.fi/.

[25] K. Kronlöf, S. Kontinen, I. Oliver, and T. Eriksson, “A
Method for Mobile Terminal Platform Architecture
Development”, Advances in Design and Specification
Languages for Embedded Systems, Vol. 4, 2007, pp. 285 –
300.

[26] R. Suoranta, “New Directions in Mobile Device
Architectures,” 9th EUROMICRO Conference on Digital
System Design: Architectures, Methods and Tools, DSD 2006,
October 2006.

