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Abstract-In this paper, we study Tarzan’s dilemma of elliptic and cycloidal motion. We give the relation between the flying distance 

and the launching angle of these two different motions, and perform numerical calculation to find the launching angle which 

maximizes the flying distance. This study will be helpful for understanding elementary mechanics for students. 
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I. INTRODUCTION 

When one throws a ball from the ground into the air with definite speed and launching angle  , what is the launching angle 

to maximize the flying distance? The answer 45  of this well-known problem can be derived from simple calculations of 

Newtonian mechanics. Next, let us consider a situation that an object (saying “Tarzan”) is attached at one end of rope and the 

other end is fixed at a point above the ground. If Tarzan starts swinging due to the gravity and releases his hands from the rope 

at an intermediate point, he is thrown into the air with corresponding launching angle 
s . The problem is that what angle 

s  

gives the maximal flying distance. If Tarzan wants to get large 
s  (closed to 45 ), the launching speed is slow because he loses 

kinetic energy. If he wants to get large launching speed, he cannot get enough large launching angle. Therefore this problem is 

called “Tarzan’s dilemma” [1–5]. 

In previous works [1–5], the authors have considered the case of ordinary circular motion. However, this is not the only 

way to jump when Tarzan has a rope of definite length. If both ends of rope are fixed at each point above the ground, and 

Tarzan holds midpoint of the rope, his trajectory of the swing will be an ellipse, horizontally or vertically long ellipse. If one 

end of the rope is fixed at a point between two inverted cycloidal objects, Tarzan’s trajectory will be a cycloidal curve. In any 

case, one can find the launching angle 
s which maximizes the flying distance L and compare that what way of swing will be 

the best for Tarzan. In this paper, we consider Tarzan’s dilemma in elliptic and cycloidal motion and perform numerical 

calculation to find the best launching angle 
s , comparing to those of ordinary circular motion. In educational point of view, 

solving this problem develops student’s qualitative and conceptual understanding for mechanical motion and energy 

conservation law without tough calculation. For example, what is the best way of swing to reach the farthest distance and what 

is the magnitude relation of 
s  between three ways? 

In the paper, we discuss the case of elliptic motion and cycloidal motion and derive a formula for the flying distance L in 

analogy with the case of circular motion. Besides, we discuss the motion of Tarzan in detail by using the results of previous 

sections. Comparing four ways of swinging, we find that the flying distance is the largest in the case of circular motion when 

the length of rope is definite. 

II. ELLIPTIC TARZAN 

We discuss Tarzan’s jump in the case of elliptic motion. As shown in the left panel of Figure 1, let us consider the situation 

that Tarzan has a rope of the length a2 , and fixes it at two points F and F   with the distance 222 ba  , with a > b. He 

stands at the starting point A holding the midpoint of the rope and starts to swing. If friction between the rope and his hands is 

negligible, he moves along an elliptic curve with semi-major (semi-minor) axis )(ba  due to the gravity and tension from the 

rope. After passing the lowest point B of the height h, he flies into the air by releasing the rope at point C, and finally lands on 

point D. 

Now we reinterpret this situation as swing with an imaginary rope fixed at one point, as shown in the right panel of Figure 

1. This imaginary rope changes its length such that Tarzan can move along elliptic curve. While it is difficult to discuss tension 

of such rope, one does not have to worry about it because only geometrical consideration is needed for calculation. Although 

we discuss the case of a > b with eccentricity 222 /)( abae  , the following discussions are valid for the case of a < b as 

well by using 222 /)( babe  . In the elliptic case, the length of the elastic rope varies as a function of position unlike the 

ordinary circular case. Tarzan starts swinging from the starting point A with the position 

   cos,sin rbhyrx AA   (2.1) 

where 
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For 
fs ttt  , the position of Tarzan in the air is given by 

 
ssss tvrtx  cossin)(  , (2.3) 
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1
sincos)( gttvrbhty ssss   , (2.4) 

where 
sr  is defined similar to Eq. (2.2) by replacing  to the angle of the launching point C, 

s . g is gravitational 

acceleration. The angle 
s  and the launching angle 

s is related as  
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At 
ftt  , Tarzan lands on the ground of point D with the position  

 
sfsss tvrL  cossin  , (2.6) 

 2

2

1
sincos0 fsfsss gttvrbh   . (2.7) 

From Eqs. (2.6), (2.7) and the energy conservation law between point A and point C 

 ],cos[
2

1
]cos[ 2

sss rbhmgmvrbhmg    (2.8) 

we obtain the flying distance L from the origin as a function of 
s  

   sssELsELsELss rbhaaarL  coscos42sin2sinsin 22
 ,                          (2.9) 

where 

    coscos
1

rr
a

ssEL   , (2.10) 

corresponds to the difference in height between point A and point C. One can check that in the case of a = b(= r), Eq. (2.9) 

reduces to that of the circular case [2]. The problem is to find the value of 
s which maximizes L for given a, b, h and  . The 

above discussions are valid for the case of a < b by replacing 
sr ,
 to 

sr ,
  defined as  
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We perform numerical calculation in section 5 for both cases a > b (the case EL-1) and a < b (the case EL-2). 

 
Figure 1 Tarzan’s jump of elliptic motion. Left: Tarzan swings with the rope of length 2a which is fixed at two points F and F’. Right: Tarzan’s jump with an 

elastic rope fixed at one point. We perform calculation and analyze the motion in the notation of the right panel for convenience. 
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Figure 2 Tarzan’s jump of cycloidal motion. Left: Tarzan swings with the rope of length 4R, which is fixed at a point between two cycloidal objects. Right: 

Equivalent figure of Tarzan’s jump with an imaginary elastic rope whose length can be changed such that Tarzan moves along the cycloidal curve. 

III. CYCLOIDAL TARZAN 

As the next example of Tarzan’s swing, we discuss the case of cycloidal swing of Tarzan in this section. As shown in the 

left panel of Figure 2, if a rope of the length 4R is fixed at a point of the height h + 4R between two inverted cycloidal objects 

generated from a circle with radius R, Tarzan moves along cycloidal curve while swinging. The parametric form of the 

resulting cycloid of Tarzan is given by 

 )cos1(),sin(  RhyRx  , (3.1) 

with 20  . Again we reinterpret this cycloidal motion as swing with an imaginary elastic rope fixed at a point of the 

height H = h+2R as depicted in the right panel of Figure 2. The length of the rope can be changed from 2R to R such that its 

end of the rope (Tarzan) moves along the cycloidal curve. We define angles   for 0  and   for  2  

measuring from the y-axis, as shown in the Figure 2. The angles 
  and 

s  corresponding to point A and point C are related 

to the angle   and 
s  as given below. 

Tarzan starts swinging from point A with the position 

   cos2,sin rRhyrx AA  , (3.2) 

where 

   22
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After launching from point C with the angle 
s , at 

stt  , Tarzan in the air, for 
fs ttt  , is at the position 

 
ssss tvrtx  cossin)(  , (3.4) 
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1
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and 

 
2

cottan s
s


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At 
ftt  , Tarzan lands on the ground at point D with the position 

 
sfsss tvrL  cossin  , (3.8) 
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The energy conservation law between point A and point C is given by 

 ],cos2[
2

1
]cos2[ 2

sss rRhmgmvrRhmg    (3.10) 

as usual. From Eqs. (3.8), (3.9) and (3.10), we obtain the flying distance L from the origin as  

   sssCYsCYsCYss rRhRRRrL  cos2cos42sin2sinsin 22
 ,                                 (3.11) 

where 

    coscos
1

rr
R

ssCY  , (3.12) 

has been defined as the case of the previous section. In the next section, we perform numerical calculation to find the value of 

s which maximizes L. We call the motion of this type the case CY. 

 

Figure 3 Tarzan’s trajectory for CI (black solid), EL-1 (blue-dashed), EL-2 (green dot-dashed), and CY (red thick). Three horizontal dashed lines correspond 

to H1(2), M1(2) and L1(2) from top to bottom. 

IV. DISCUSSIONS 

In this section, we discuss relation between the flying distance L and the launching angle 
s  in the cases given in the 

previous sections, such as circular (CI) [2], elliptic (EL-1 and EL-2) and cycloidal (CY) Tarzan. We perform numerical 

calculation and compare differences between swings under the following conditions. (1) The length of rope is 5.0 m. We set r 

= 5.0 m (CI), (a, b) = (2.5, 1.0) m (EL-1), (a, b) = (1.0, 2.5) m (EL-2), and R = 1.25 m (CY). (2) When the starting angle   = 

90 [deg.], the starting point A is H = 20 (or 5.0) m high. For comparison, we set the height of point A to be (20, 19.1, 18.3) m 

referring to case (H1, M1, L1), and (5.0, 4.1, 3.3) m referring to case (H2, M2, L2). Relative height and trajectory are shown in 

Figure 3. For the case L1 and L2 in EL-2, there is no solution because the starting point A is below the lowest point B. 
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Figure 4 show the relation between the flying distance L and the launching angle 
s  for H = 20 m (upper three panels) and 

H = 5.0 m (lower three panels). In each panel, black solid, blue dashed, green dot-dashed and red thick curve corresponds to CI, 

EL-1, EL-2 and CY, respectively. Since the height h of the lowest point B is the same for EL-2 and CY, green dot-dashed 

curve and red thick curve crosses at 
s  = 0 in any case. One can see that the CI case gives the longest distance under any 

condition because Tarzan can get the largest kinetic energy while swinging. For H = 5.0 m cases (H2, M2 and L2), the flying 

distance L of CI case is smaller than that of other cases for relatively small 
s  unlike H = 20 m cases (H1, M1 and L1), 

because Tarzan touches the ground at the lowest point B (
s  = 0) and therefore he cannot get large L unless 

s  becomes large. 

Obviously each curve has the maximal value. The maximal value of the flying distance L and the corresponding launching 

angle 
s  are given in Table 1 for all cases of Figure 4. In each element of Table 1, the values ( [deg.], 

s [deg.], L[m]) are 

given, where L is the maximal value for given height of point A and 
s  is the corresponding launching angle. As shown in 

Table 1, the launching angle 
s  to get the longest L becomes smaller when the starting point A becomes lower. The reason is 

that as the point A becomes lower, larger horizontal speed 
ssv cos  is needed to get longer flying distance L and the flying 

time 
sf tt   becomes shorter. Comparing the four cases CI, EL-1, EL-2 and CY, as the lowest point B is lower, the flying 

distance L becomes larger because Tarzan can get larger kinetic energy. However for EL-2 and CY with the same height of 

point B, the maximal value of L for CY is always larger than that of EL-2 because the x-coordinate )( stx  for CY is larger than 

that of EL-2, depending on curvature. 

As for the launching angle 
s , the magnitude relation between four ways is 

 )1()()2()(  ELCYELCI ssss   (4.1) 

in any case. This relation depends on what kinetic energy Tarzan can get. This can be seen in Figure 5. Figure 5 is the 

trajectory of Tarzan for the case of   = 90 [deg.]. The trajectories of EL-1 and CY are similar because the lowest point B is 

the same in height in both cases. The maximal value of the flying distance L strongly depends on the height h of the lowest 

point B. However, it depends on 
s  and type of the swing as well. The general discussion of dependence of L on h is beyond 

the scope of this manuscript. 

In the educational point of view, this problem requires conceptual understandings of physics for students as well as some 

calculations. Students can derive the relation between L and 
s  without tough calculation, only by laws of projectile moving 

due to the gravity and energy conservation law. Although the 
s  dependence of L seems complicated, students can find that 

there exists the maximal value of L and discuss the reason of the relation Eq. (4.1) given above. Considering and discussing 

such physical meanings will be helpful for students to understand physics. 

Table 1 The values (  [deg.], 
s [deg.], L  [m]) for definite height of point A. L is the maximal value for given height of point A, and 

s  is the 

corresponding launching angle. 

Height of A[m] CI EL-1 EL-2 CY 

20(H1) (90, 25.4, 21.2) (90, 11.9, 9.58) (90, 19.4, 14.2) (90, 18.5, 15.0) 

19.1(M1) (80, 23.8, 18.9) (55.0, 4.41, 3.42) (47.2, 16.2, 11.2) (76.2, 15.4, 11.9) 

18.3(L1) (70, 21.8, 16.5) No (23.1, 11.7, 7.64) (57.2, 11.1, 8.10) 

5.0(H1) (90,41.0, 12.0) (90, 20.8, 5.53) (90, 34.8, 7.21) (90, 31.2, 8.52) 

4.1(M1) (80, 40.2, 10.2) (55.0, 7.81, 1.94) (47.2, 31.6, 5.32) (76.2, 27.3, 6.49) 

3.3(L1) (70, 39.1, 8.50) No (23.1, 25.5, 3.32) (57.2, 20.8, 4.24) 
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Figure 4 Flying distance L as a function of the launching angle 

s
 [deg.] for H = 20 m (upper three panels) and H = 5.0 m (lower three panels). In each panel, 

black solid, blue dashed, green dot-dashed and red thick curve corresponds to CI, EL-1, EL-2 and CY, respectively. 

 

 
Figure 5 Tarzan’s trajectory in the case of   = 90 [deg.] for CI (black), EL-1(blue dashed), EL-2 (green dot-dashed), CY (red thick) motion, for H = 20 m 

(upper four curves) and H = 5.0 m (lower four curves). The length of the rope is 5.0 m in all cases. 
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V. CONCLUSIONS 

We have studied Tarzan’s dilemma in three different motions, including circular, elliptic and cycloidal swing. These three 

motions can be realized by fixing rope in different ways. We have derived formulae of the flying distance L as a function of the 

launching angle 
s  by simple calculation and performed numerical calculations to find the maximal value of L and 

corresponding 
s  for each type of swing. There exists the value of 

s  which maximizes L, and its value of 
s  increases as the 

height of the lowest point B decreases, depending on the type of swing. As the lowest point B becomes lower, Tarzan can get 

larger kinetic energy and therefore 
s  becomes larger (close to 45 ). In our calculation, we have set that the case CY and EL-2 

have the same lowest point in height. In such a case, trajectory of Tarzan is similar with each other, and the difference comes 

from curvature of swing. Calculation and physical interpretation to solve this Tarzan’s dilemma will be helpful for students to 

develop conceptual understanding of physics as well as quantitative calculation. 
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