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Abstract - Islet Amyloid Polypeptide (IAPP or amylin) is a

protein which was first discovered in the year 1987. It is co-

expressed and cosecreted in the β islet cells of the pancreas
along with insulin. IAPP forms amyloid plaques in diseased

states like type II diabetes mellitus (T2DM) and Hyperten-
sion. These comorbidities play an important role in devel-

opment of cardiovascular diseases(CVD). Thus, control of

amyloidosis is vital in prevention and management of T2DM
and CVD. In this work, we model the dynamics of amyloid
formation of islet beta cells under therapeutic interventions.

According to this model the effects of drug therapy on amy-
loid formation are given by a system of ordinary differential
equations and a partial differential equation. The model is
then converted into a system of ordinary differential equa-
tions and the equilibrium points are computed and their sta-
bility is studied. Also, numerical simulations are performed
on the model and we conclude that amyloidosis can be con-
trolled in the presence of therapeutic intervention.

Key words - IAPP; Diabetes Mellitus; Drug Therapy; CVD; Hy-

pertension

I INTRODUCTION

Islet Amyloid Polypeptide (IAPP or amylin) is a protein which
was first discovered in the year 1987 [6]. It is coexpressed and
cosecreted in the β islet cells of the pancreas along with in-
sulin [5]. IAPP polymerises and forms amyloid fibrils consist-

ing of abnormal extracellular deposits of this protein. Amy-
loid when present is always abnormal and consists of an in-
soluble protein precipitate, composed of these IAPP monomers
arranged in a β-pleated sheet structure. This Amyloid is a patho-
logical feature of type II diabetes mellitus (T2DM) and studies
have shown that the formation of these IAPP oligomers result
in β cell loss in T2DM [9].

T2DM is characterised initially by a condition of insulin
resistance and later progresses towards insulin dependence.
Nearly all type II diabetics exhibit these amyloid plaques in the
pancreas composed of IAPP [15]. The severity of the disease
appears to correlate with the degree of plaque deposition. Since
the islet cells also produce insulin, this accounts for insulin de-
pendence in T2DM. Since insulin and IAPP are cosecreted, as
a consequence of their co-regulation, increased insulin require-
ment as in states of insulin resistance, will lead to increased
production of both insulin and IAPP [3]. High concentrations
of the monomer protein promote their aggregation and fibril for-
mation and thus insulin resistance is prone to promote islet amy-
loidosis from IAPP [3]. Many in vitro studies have shown that
IAPP fibril formation can cause death of β cells by inducing
apoptosis [7]. Already in 1994 it was shown that amyloido-
genic human IAPP (hIAPP) is cytotoxic when added to islet
cells in vitro, indicating that amyloid formation may directly
kill cells. However, more recent studies have provided strong
support for the notion that it is the process of amyloid fibril for-
mation, rather than the mature amyloid fibril itself, which is the
most cytotoxic [18].
In addition to T2DM, there are studies which show that hyper-
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tension causes functional and structural changes in the pancre-
atic islet [19]. Hypertension, a multifactorial-polygenic disease,
interacts with multiple environmental stressors and results in
functional and structural changes in numerous end organs, in-
cluding the cardiovascular system. We have literature which
show various classes of antihypertensive drugs delaying or pre-
venting damage to the vulnerable pancreatic islet, and thus de-
laying the development of type 2 diabetes mellitus [8]. There
is evidence that the various classes of antihypertensive drugs
have different metabolic and structural effects, which may ulti-
mately delay, or prevent the onset of the development of T2DM.
Thus, hypertension and type 2 diabetes mellitus (T2DM) are
common comorbidities that are associated with substantially
increased cardiovascular disease (CVD) morbidity and mortal-
ity [8]. Hence, theoretical nonpharmacologic interventions rep-
resent an important complementary and essential approach to
prevention of amyloid formation.

From literature we find that amyloid formation occurs by a
process called nucleated polymerisation [16, 17]. The amy-
loid fibril is not a monomer but a polymer or an oligomer.
These amyloid fibrils increase their length by attaching units
of IAPP in a string like manner. Once, the fibril is formed,
it no longer remains normal like the IAPP monomer. Proteins
must properly fold into three dimensional structures in order
to carry out their proper functions within the cell and the sys-
tem. Dysfunctional protein aggregation, intracellular events like
misfolding or unfolding of native protein exposes hydropho-
bic regions. Conformational changes result in unstable inter-
mediates that have a propensity to form oligomers. Oligomers
form pathogenic subunits and crossed beta-pleated sheets. In
the case of T2DM, amyloid fibrils are formed with subsequent
stabilisation by accessory molecules, such as serum amyloid P,

perlecan, and apolipoprotein E [10] . When precision fold-
ing goes awry, the misfolded, soluble oligomeric proteins be-

gin to accumulate, become toxic, and promote apoptosis [11].

Misfolded IAPP stabilises into crossed beta-pleated formations

that are deposited within the adjacent surrounding extracellu-

lar matrix, resulting in space occupying lesions within the islets

of the pancreas [7]. Once, the fibril is long enough, it wraps

into a helical shape called the nucleus and forms stabilizing
bond. It then becomes stable. The amyloid polymers can con-
sist of thousands of monomer units [12]. These may split fur-
ther into two smaller polymers which can lengthen further. If

the split polymer or oligomer falls below a critical length, it is
unstable and hence it dissociates into normal IAPP monomers.
In this work, we model the process of amyloidosis by nucle-
ated polymerisation under the effects of drug therapy. Animal
studies, and human autopsy material have directly shown that
islet amyloidosis is associated with increased beta cell apop-
tosis and reduced beta cell mass [8]. These findings support
an important role of islet amyloid formation in development of
beta-cell failure and ultimately hyperglycemia in T2DM [13].
Being a common pathogenic factor in an otherwise heteroge-
neous disease, islet amyloid is an attractive target for devel-
opment of novel therapeutic strategies for T2DM [2]. Harm-
ful effects on islet beta cells and insulin-producing capacity
will be prevented by inhibiting aggregation and fibril formation
from this amyloidogenic protein by the use of beta sheet block-
ers [8], heparin sulfate proteoglycan derivatives, serum amyloid
P (SAP) inhibitors or vaccination strategies [10]. There are also
various classes of antihypertensive drugs which have different
metabolic and structural effects, which help in prevention of
amyloidosis and thus in turn preventing the onset of the devel-
opment of T2DM [2].

In this work we model the dynamics of amyloid formation
of islet beta cells under therapeutic interventions. According
to this model the effects of drug therapy on amyloid formation
are given by a system of ordinary differential equations and a
partial differential equation. The model is then converted into
a system of ordinary differential equations and the equilibrium
points are computed and their stability is studied. Also, numer-
ical simulations are performed on the model and we conclude
that amyloidosis can be controlled in the presence of therapeutic
intervention. This paper is organised as follows: In Section 2,
the model which is a coupled system consisting of ordinary dif-
ferential equations and a partial differential equation is derived
. In Section 3, the model is converted into a system of ordinary
differential equations and the equilibrium points are computed.
In Section 4, the stability of the steady states are studied. In
Section 5, the numerical simulations for the model is presented
and the conclusions are given in Section 6.

II THE MODEL

In this section, we model the dynamics of polymerisation of
human islet amyloid polypeptide (HIAPP or IAPP) in Type II
diabetes under the effects of therapeutic interventions. Let M(t)
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denote the population of IAPP monomers at time t, p(x, t) be
the population of IAPP polymers of length x at time t and D(t)

denotes the amount of the drug in the system at time t.

Let A denote the constant rate of production of IAPP
monomers in the pancreatic beta cells and g be the constant rate
of degradation of the IAPP monomers due to metabolic pro-
cesses.

r is the conversion rate of IAPP monomers to polymers. The
IAPP monomers are converted at a rate proportional to the pop-
ulation of the total number of polymers

∫
∞

x0
p(x, t)dx.

Let b(x) be the binary splitting rate of the IAPP polymers of
length x and f (x,y) be the probability density function that a
polymer of length y splits into one of length x and another of
length y− x.

x0 is the critical length of the polymer below which the IAPP
polymer degrades into normal IAPP monomers.

Thus, the rate of change of the monomer population is given
by

dM(t)
dt

= A−gM(t)− rM(t)
∫

∞

x0

p(x, t)dx+

2
∫ x0

0
x
∫

∞

x0

b(y) f (x,y)p(y, t)dydx

The term 2
∫ x0

0 x
∫

∞

x0
b(y) f (x,y)p(y, t)dydx is the number of

IAPP monomers acquired when a IAPP polymer splits with at
least one polymer lesser than the critical length x0.
The assumption is that such a IAPP polymer dissociates into
IAPP monomers. The 2 in the above equation accounts for the
binary splitting of the IAPP polymer into two polymers when
it’s length exceeds the critical length x0. In our work, we as-
sume the lengths of IAPP polymers to take continuous values
for mathematical tractability. Also, from in vitro and in vivo
studies ( as discussed in refer papers), the polymer lengths are
seen to range over large number of IAPP monomers.

m(x) is the constant rate of degradation of the IAPP polymers
due to metabolism. k2 denotes the rate at which the polymer
population gets reduced due to the presence of the drug.
−rM(t) ∂p(x,t)

∂x accounts for the loss of IAPP polymers of length
x due to lengthening. 2

∫
∞

x b(y) f (x,y)p(y, t)dy denotes the
number of IAPP polymers which are added to the polymer
population when longer polymers split into polymers of length
x.

Therefore, the rate of change of IAPP polymers is given by

∂p(x, t)
∂t

= −rM(t)
∂p(x, t)

∂x
− (m(x)+b(x)+ k2D(t))p(x, t)+

2
∫

∞

x
b(y) f (x,y)p(y, t)dy

k0 denotes the rate at which the drug is degraded from the sys-
tem due to metabolic processes and k1 is the rate at which the
drug increases in the system.
Therefore, the rate of change of drug in the system is given by

dD(t)
dt

= −k0D(t)+ k1D(t)
∫

∞

x0

p(x, t)dx

Combining the three equations along with the initial con-
ditions and boundary conditions, the model of dynamics of
polymerisation of human islet amyloid polypeptide (HIAPP or
IAPP) in Type II diabetes under the effects of therapeutic inter-
ventions is given by

dM(t)
dt

= A−gM(t)− rM(t)
∫

∞

x0

p(x, t)dx+

2
∫ x0

0
x
∫

∞

x0

b(y) f (x,y)p(y, t)dydx

∂p(x, t)
∂t

= −rM(t)
∂p(x, t)

∂x
− (m(x)+b(x)+

k2D(t))p(x, t)+

2
∫

∞

x
b(y) f (x,y)p(y, t)dy

dD(t)
dt

= −k0D(t)+ k1D(t)
∫

∞

x0

p(x, t)dx

M(0) = M0

D(0) = D0

p(x,0) = p0(x), x0 < x < ∞

p(x0, t) = 0, t ≥ 0

Now, in the above model we make the following assump-
tions:
Let m(x) = m, b(x) = bx,
f (x,y) = 1/y when y > x0 and 0 < x < y and
f (x,y) = 0 when y ≤ x0 or y ≤ x

Substituting the above in our model, the model transforms
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into the following:

dM(t)
dt

= A−gM(t)− rM(t)
∫

∞

x0

p(x, t)dx+

bx2
0

∫
∞

x0

p(x, t)dx (1)

∂p(x, t)
∂t

= −rM(t)
∂p(x, t)

∂x
−

(m+bx+ k2D(t))p(x, t)+

2b
∫

∞

x
p(y, t)dy (2)

dD(t)
dt

= −k0D(t)+ k1D(t)
∫

∞

x0

p(x, t)dx (3)

M(0) = M0 (4)

D(0) = D0 (5)

p(x,0) = p0(x), x0 < x < ∞ (6)

p(x0, t) = 0, t ≥ 0 (7)

where the constants A, g, r, b, m, k0, k1, k2 are all positive.

III THE STEADY STATES OF THE SYSTEM

In this section, we compute the steady states of our system. For
that, we convert our model into a system of ordinary differential
equations and compute the steady states of the ODE system [1].

Introduce the functions P(t)=
∫

∞

x0
p(x, t)dx which denotes the

total number of IAPP polymers and I(t) =
∫

∞

x0
xp(x, t)dx which

is the total number of IAPP monomers in the polymers. Now,
substituting these functions in equations (1) and (3), we get

˙M(t) = A−gM(t)− rM(t)P(t)+bx2
0P(t) (8)

˙D(t) = −k0D(t)+ k1D(t)P(t) (9)

Now integrating equation (2) for p(x, t) between x0 and ∞,
we get

dP(t)
dt

= −rM(t)[p(x, t)]∞x0
−mP(t)−

bI(t)− k2D(t)P(t)+2b
∫

∞

x0

∫
∞

x
p(y, t)dy

= −mP(t)−bI(t)− k2D(t)P(t)+2b
∫

∞

x0

(y− x0)p(y, t)dy

= −mP(t)−bI(t)− k2D(t)P(t)+

2bI(t)−2bx0P(t)

Thus simplifying further, we get

˙P(t) = −mP(t)− k2D(t)P(t)−2bx0P(t)+

bI(t)

Now multiplying equation (2) with x and integrating for
p(x, t) between x0 and ∞, we get

dI(t)
dt

= −rM(t)[[xp(x, t)]∞x0
−

∫
∞

x0

p(y, t)dy]−mI(t)−

b
∫

∞

x0

x2 p(x, t)dx− k2D(t)I(t)

= 2b
∫

∞

x0

x
∫

∞

x
p(y, t)dydx

= rM(t)P(t)−mI(t)−b
∫

∞

x0

x2 p(x, t)dx− k2D(t)I(t)+

b
∫

∞

x0

(y2− x2
0)p(y, t)dy

Thus, we get

˙I(t) = rM(t)P(t)−mI(t)− k2D(t)I(t)−

bx2
0P(t) (10)

Combining equations (8)-(11), we get the transformed sys-
tem of ODES for our model given by

˙M(t) = A−gM(t)− rM(t)P(t)+bx2
0P(t)

˙P(t) = −mP(t)− k2D(t)P(t)−2bx0P(t)+bI(t)

˙I(t) = rM(t)P(t)−mI(t)− k2D(t)I(t)−bx2
0P(t)

˙D(t) = −k0D(t)+ k1D(t)P(t)

M(0) = M0 ≥ 0

D(0) = D0 ≥ 0

P(0) = P0 ≥ 0

I(0) = I0 ≥ x0U0

We compute the steady state solutions for the above system
of ODEs.

Set ˙M(t) = 0 = ˙P(t) = ˙I(t) = ˙D(t)

Now, solving ˙D(t) = 0,

4
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we get

−k0D+ k1DP = 0

⇒ (−k0 + k1P)D = 0

⇒ either D = 0 or (−k0 + k1P) = 0

Case 1: When D= 0, the system ˙M(t)= 0= ˙P(t)= ˙I(t) reduces
to the following:

A−gM(t)− rM(t)P(t)+bx2
0P(t) = 0

−mP(t)−2bx0P(t)+bI(t) = 0

rM(t)P(t)−mI(t)−bx2
0P(t) = 0

Now solving the above, we get the disease free equilibrium
point as E1 = (A/g,0,0,0) = (M̃, P̃, Ĩ, D̃)

The disease state equilibrium point is given by E2 = (Ḿ, Ṕ, Í, D́)

where

Ḿ =
(bx0 +m)2

br

Ṕ =
bAr−g(bx0 +m)2

mr(2bx0 +m)

Í =
bAr−g(bx0 +m)2

bmr
D́ = 0

where

√
bAr

g
> bx0 +m

Case : 2 When −k0 + k1P = 0, we get the equilibrium to be
E3 = (M∗,P∗, I∗,D∗) where

M∗ =
A+bx2

0P∗

g+ rP∗

P∗ =
k0

k1

I∗ =
rM∗P∗−bx2

0P∗

m+ k2D∗
where rM∗ > bx2

0

D∗ =

√
brM∗− (m+bx0)

k2
where

√
brM∗ > (m+bx0)

IV STABILITY OF THE EQUILIBRIUM POINTS

In this section, we give some results on the stability of the
equilibrium points.
Theorem : 1 The disease free equilibrium E1 = (A/g,0,0,0) =

(M̃, P̃, Ĩ, D̃) is locally asymptotically stable if and only if√
bAr

g < (m+bx0).

Proof: We compute the jacobian matrix of the system about the
equilibrium point E1. The jacobian matrix is given by


−g −Ar/g+bx2

0 0 0
0 −m−2bx0 b 0
0 Ar/g−bx2

0 −m 0
0 0 0 −k0


The eigen values of the above matrix are

−k0, −g, −
√

bAr
g − (m+bx0),

√
bAr

g − (m+bx0) .

Now, the equilibrium E1 is locally asymptotically stable if and
only if the eigen values of the jacobian matrix have negative
real parts. But, all the eigen values will have negative real parts
if and only if the condition

√
bAr

g < (m + bx0) is satisfied.
This proves the theorem.

Theorem : 2 The disease state equilibrium E2 = (Ḿ, Ṕ, Í, D́)

is locally asymptotically stable if and only if
√

bAr
g > (m+bx0)

and Ṕ < k0
k1

.
Proof: The jacobian matrix is given by


−g− rṔ −rḾ+bx2

0 0 0
0 −m−2bx0 b −k2Ṕ

rṔ rḾ−bx2
0 −m −k2 Í

0 0 0 −k0 + k1Ṕ


The characteristic equation of the jacobian matrix is given by

(−k0 + k1Ṕ−X)(X3 +a1X2 +a2X +a3) = 0

where the coefficients

a1 =
−x2

0b2(g−4m)+6bx0m2 +2m3 +bAr
m(2x0b+m)

a2 =
−2b(m+bx0)(bx2

0g−Ar)
m(2x0b+m)

a3 = −g(m+bx0)
2 +bAr

One eigen value is X = −k0 + k1Ṕ and this eigen value will
have negative real part when Ṕ < k0

k1
.
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To conclude about the other eigen values, we apply the
Routh-Hurwitz criterion to the polynomial [4]

X3 +a1X2 +a2X +a3.

Therefore, the other eigen values of the matrix will have neg-
ative real parts if and only if

a1,a2,a3 > 0 and a1a2 − a3 > 0.

This condition is satisfied when√
bAr

g > (m+bx0) .

Hence, the proof.

Theorem:3 Let

a1 = g+ rP∗+2m+2k2D∗+2bx0

B = k1k2D∗2 +2mg+2gk2D∗+2bx0g+2mrP∗+

2k2D∗rP∗+2bx0rP∗+m2 +2mk2D∗+ k2
2D∗2 +

2mbx0 +2bk2x0D∗

Q = brM∗−b2x2
0

F = gk1k2D∗2 + rk1k2P∗D∗2 + k1k2bD∗I∗+mk1k2D∗2 +

k1k2
2D∗3 +m2g+2mgk2D∗+gk2

2D∗2 +2mgbx0 +

2bgk2x0D∗+ rP∗m2 +2rmk2P∗D∗+ k2
2D∗2rP∗+

2mbx0rP∗+2bx0k2D∗rP∗

H = k1k2bgD∗U∗+gmk1k2D∗2 +gk1k2
2D∗3 +

rk1k2bP∗D∗I∗+ rmk1k2P∗D∗2 + rk1k2
2D∗3P∗

Then, the equilibrium E3 = (M∗,P∗, I∗,D∗) is locally asymp-
totically stable if and only if

√
brM∗ > (m+bx0), (11)

rM∗ > bx2
0, (12)

B > Q, (13)

F > Q(g+ rP∗), (14)

H > Q(rP∗) and (15)

a1BF +a1Q2(g+ rP∗)+ > a1QF +a1BQ(g+ rP∗)+

a2
1rP∗Q+2QF(g+ rP∗) F2Q2(g+ rP∗)2 +

a2
1H (16)

Proof: The jacobian matrix about the equilibrium point E3 is
given by


−g− rP∗ −rM∗+bx2

0 0 0
0 −m− k2D∗−2bx0 b −k2D∗

rP∗ rM∗−bx2
0 −m− k2D∗ −k2I∗

0 k1D∗ 0 0


The characteristic equation of the jacobian matrix is

X4 +a1X3 +a2X2 +a3X +a4 = 0

where

a1 = g+ rP∗+2m+2k2D∗+2bx0

a2 = k1k2D∗2 +2mg+2gk2D∗+2bx0g+2mrP∗+2k2D∗rP∗+

2bx0rP∗+m2 +2mk2D∗+ k2
2D∗2 +2mbx0 +

2bk2x0D∗− (brM∗−b2x2
0)

def
= B−Q

a3 = gk1k2D∗2 + rk1k2P∗D∗2 + k1k2bD∗I∗+

mk1k2D∗2 + k1k2
2D∗3 +m2g+2mgk2D∗

+gk2
2D∗2 +2mgbx0 +2bgk2x0D∗+ rP∗m2 +

2rmk2P∗D∗+ k2
2D∗2rP∗+2mbx0rP∗+

2bx0k2D∗rP∗− (g+ rP∗)(brM∗−b2x2
0)

def
= F−Q(g+ rP∗)

a4 = k1k2bgD∗I∗+gmk1k2D∗2 +gk1k2
2D∗3

+rk1k2bP∗D∗I∗

+ rmk1k2P∗D∗2 + rk1k2
2D∗3P∗

−rP∗(brM∗−b2x2
0)

def
= G−Q(rP∗)

Since, the equilibrium point is required to be positive, equa-
tions (12) and (13) follow from that. Now, we apply the Routh-
Hurwitz condition to the characteristic polynomial of the jaco-
bian matrix about E3. By Routh-Hurwitz criterion, the eigen
values of the matrix will have negative real parts if and only if

a1,a2,a3,a4 > 0 and

a1a2a3−a2
3−a2

1a4 > 0

Now, since all the constants are positive in the model,this ⇒
a1 > 0.
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Now, equation (13)⇒ a2 > 0,
equation (14)⇒ a3 > 0,
equation (15)⇒ a4 > 0,
equation (16)⇒ a1a2a3 - a2

3 - a2
1a4 > 0

Therefore, the Routh-Hurwitz condition is satisfied and hence
all the eigen values of the Jacobian matrix have negative real
parts. The negativity of all the eigen values implies that the
equilibrium point E3 is locally asymptotically stable. Hence,
the proof.

V NUMERICAL ILLUSTRATION

Our model can be used for simulations based on data from liter-
ature available in similar polymerisation processes. The model
parameters are as follows:
A = 4400 per day, r = 0.3 fibrils per sq. unit per day, g = 5 per
day, b = 0.0001 fibrils per sq. unit per day, m = 0.04 per day
and x0 = 6 are as given in [14]. k0 = 0.1 per day, k1 = 0.0004
per day, k2 = 0.002 per day
Matlab software has been used to simulate our model. The sim-
ulations assume an initial IAPP monomer population M0 = 1000
along with P0 = 50, I0 = 500 and drug values have been chosen
from 0 to 8000 units. The graphs thus obtained are presented
below.

Fig. 1: Drug Dosage = 0 Units

Fig. 2: Drug Dosage = 1000 Units

7

Fig. 3: Drug Dosage = 2000 Units

Fig. 4: Drug Dosage = 4000 Units
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Fig. 5: Drug Dosage = 5000 Units

Fig. 6: Drug Dosage = 6000 Units

8

Fig. 7: Drug Dosage = 7000 Units

Fig. 8: Drug Dosage = 8000 Units

Fig. 9: Dose Response Curve

The above graphs, fig. 1 - 8 give the steady state values of
the IAPP polymer population for different levels of drug dosed.
We see that as the dose of drug is increased, there is significant
control in the polymerisation of IAPP monomers. Hence this
prevents the aggregation and fibril formation of this amyloido-
genic protein and thus helps in control of T2DM or onset of
development of T2DM. We also see from fig. 9 that increasing
drug levels beyond 6000 units do not provide any significant
reduction in amyloidosis. This will therefore help in arriving
at optimum drug levels. The plateuing effect also in this case
suggests the presence of fixed number of receptors to which the
drug binds before eliciting action thereby giving leads to mech-
anism of action of the drug.
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VI CONCLUSIONS

In this work we have modeled the dynamics of amyloid forma-
tion of islet beta cells under therapeutic interventions and have
studied the stability of the equilibrium points of the model. We
have proved that the steady state solutions of the model are lo-
cally asymptotically stable. Also, numerical simulations were
performed on the model and we conclude that amyloidosis can
be controlled in the presence of therapeutic intervention.

Numeric simulations were performed for different levels of
drug administered. The result showed that amyloidosis was pre-
vented / delayed with increasing levels of drug. This, therefore
presents new avenues for drug discovery in treatment of T2DM.
The simulations also indicated that there was a limit to which
the drug can be increased.We found no significant decrease in
fibril formation for drug levels above 6000 units. Optimum drug
levels and leads to mechanism of action could also be arrived at
from these simulations.

Thus the developed model can play a vital role in understand-
ing the mechanism of drug action in drug discovery.
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