
Journal of Pattern Recognition and Intelligent Systems  2016, Vol. 4 Iss. 1, PP. 27-38 

- 27 - 

First online: 20 September 2016 

An Enhanced Bag-of-Features Framework for 

Arabic Handwritten Sub-words and Digits 

Recognition 
Mohammed O. Assayony*1, Sabri A. Mahmoud2 

1,2Information & Computer Science Department, King Fahd University of Petroleum & Minerals, 

Dhahran 31261, Saudi Arabia 
*1g201102150@kfupm.edu.sa; 2smasaad@kfupm.edu.sa 

 

 

Abstract-In recent years, feature learning approaches have gained substantial interest and are successfully applied to challenging 

problems in facial recognition, visual object retrieval and classification, document image analysis and, recently, in handwriting 

recognition. In this paper, we present a feature learning framework for Arabic handwritten text recognition based on the Bag-of-

Feature (BoF) paradigm. Utilizing the characteristics of handwritten text, we developed two novel versions of SIFT that are 

discriminative and computationally efficient with half the size of the original SIFT descriptors. To evaluate the quality of the 

features learned by the framework and the efficiency of the proposed versions of SIFT, we conducted extensive experimental work 

on two Arabic handwritten text datasets, viz. the non-touching Arabic Indian digit and Arabic sub-words datasets of CENPARMI 

Bank check database. Our framework achieves state-of-the-art accuracies on both datasets. The recognition performance and the 

computational efficiency are the result of utilizing the unique properties of the handwritten text. 

Keywords- Feature Learning; Bag-of-Features; Arabic Handwriting Recognition; SIFT 

I. INTRODUCTION 

Handwriting recognition is a branch of pattern recognition concerned with automatic conversion of images of handwritten 

text into text representation. The advances in the area of handwriting recognition have assisted the automation of several 

demanding applications in daily life, including bank check processing, postal address reading and business form processing. 

Despite these successes, handwriting recognition remains a challenging task due to the large variability in human writings that 

produce visual differences in size, slant and pen-stroke of characters’ shapes (Fig. 1). The effect of such variability and other 

types of noise are addressed by extracting robust features prior to the recognition. Deciding the type of features, however, is 

difficult and requires considerable effort. Vast number of features have been handcrafted by experts based on their prior 

knowledge and experience in the field, including structural features, e.g. skeleton representation, strokes, and loops, and 

statistical features like gradient histograms, projection profiles, energy of Gabor filters, and wavelets transforms coefficients, 

among others [1]. The new trend in computer vision and machine learning is to design techniques that can automatically learn 

robust features without the need for specific domain knowledge [2]. Several feature learning paradigms have been applied to 

handwriting recognition, e.g., Convolutional Neural Networks (CNN) [3-5], Recurrent Neural Networks (RNN) [6, 7] and 

Deep Believe Networks (DNN) [8, 9]. Despite their successes in learning robust features for handwritten text of several scripts, 

the aforementioned approaches rely on deep neural networks, which are computationally expensive and require large datasets 

for training. Bag-of-Features (BoF), however, is an alternative paradigm which is computationally efficient and can be trained 

with a reasonable number of samples [10]. The paradigm was utilized in visual object classification [11] and image retrieval 

[12] as well in document image processing applications, including handwriting recognition [13], word spotting [14] and writer 

identification [15]. 

 

Fig. 1 Samples of Arabic digits and subwords written by different writers 

In this work, we exploit the Bag-of-Features framework to learn robust feature representations for Arabic handwriting 

recognition. Though the framework has been applied before for Arabic handwriting recognition [13], we propose utilizing the 

characteristics of the handwritten text in order to enhance the quality of the learned features and improve the computational 

performance of the framework. Since the framework involves several steps that can be implemented by a variety of techniques, 

we thoroughly investigate several techniques, focusing on the options that have an impact on the quality of the learned features. 

Precisely, we propose two novel versions of SIFT that achieve the discriminative power of SIFT and are computationally 

efficient with half the size of the SIFT descriptors. To provide better representation for the handwritten text, we employ dense 



Journal of Pattern Recognition and Intelligent Systems  2016, Vol. 4 Iss. 1, PP. 27-38 

- 28 - 

sampling instead of the Harris detector used in [13]. As the size of the generated codebook plays important rule in the 

computational and discrimination performance, we built several codebooks of different sizes and selected the size that resulted 

in the optimal performance. To alleviate the quantization distortion associated with the traditional hard assignment, a soft 

assignment based on Gaussian Models is implemented and its performance is compared with the naïve hard assignment. To 

evaluate and analyse the efficiency of the proposed modifications, the framework is integrated with a holistic handwriting 

recognition system that we applied on two Arabic handwritten text datasets, the non-touching Arabic Indian digits and the 

Arabic sub-words datasets of CENPARMI Bank check database [16]. 

The rest of this paper is organized as the follows. Section II provides an overview of the Bag-of-Features framework and 

shows how the handwritten text characteristics are utilized to enhance the framework. The details of the handwriting 

recognition system we experimented with are presented in Section III. In Section IV, we present the experimental results, and 

Section V concludes the paper. 

II. BAG-OF-FEATURES FRAMEWORK 

In the Bag-of-Features framework, an image is represented by the frequencies of occurrences of its local features [10]. The 

framework includes two-phases, viz. codebook generation and BoF vector construction. Each of the two phases involves 

several steps that can be implemented by variety of techniques. This pipeline organization gives BoF framework the flexibility 

to apply to different applications. The codebook is generated by extracting local features from the training data and clustering 

those features using off-the-shelf clustering algorithms. The codebook is the set of clusters’ centroids where each centroid is 

called a codeword. The BoF vector of an image is constructed by extracting local features from the image. Each extracted 

feature is quantized to the closest codeword in the codebook, where the closeness relation is defined based on a distance metric. 

The frequency of each visual word is used to represent the image. The resulting BoF vector represents the statistics of the 

image local features. It can be used to train classifiers for image classification and categorization tasks, for object detection and 

recognition applications, or to index images in databases for efficient image retrieving applications. 

Extracting local image features involves feature detection and description. Different detection techniques have been 

proposed in computer vision, e.g., Hessian, Harris, Hessian-Laplacian and Harris-Laplacian, and Difference-of-Gaussian, in 

addition to dense and random sampling that provide better coverage for image contents [17, 18]. Several approaches were 

proposed for interest region description [19, 20]. However, the most state-of-the-art results are obtained by gradient-based 

descriptors, especially SIFT descriptors [21]. For codebook generation, most BoF works are based on k-means clustering for 

codebook generation. In the quantization step, two approaches are common, viz. hard assignment, where a descriptor is 

assigned to the nearest codeword, and soft assignment, where a descriptor is assigned to the nearest k codewords in order to 

alleviate the quantization distortion associated with the hard assignment. 

We believe that utilizing the characteristics of the handwritten text could enhance the quality of the learned features and 

reduce the overheads of several stages of the framework. We show below how the characteristics of the handwritten text could 

be employed in improving SIFT descriptors. 

A. Reducing Descriptor Dimensionality 

SIFT algorithm relies on the distribution of the gradient magnitude to describe the regions of interest. Once the gradient 

magnitude and orientation for each pixel in the region are computed, the region spatial area is divided into 4×4 regions and the 

360 degree gradient orientation range is quantized into 8 orientation bins (Fig. 2 (a)). After that, the histogram of the gradient 

magnitudes at each region is computed, giving a descriptor vector of 4×4×8 = 128 elements for the patch. In text recognition, 

however, our concern is the line orientation rather than the individual pixel orientation. For instance, when a pixel shows -90o 

orientation, this indicates that the pixel lies on the lower edge of a horizontal line, whereas +90o orientation indicates that it lies 

on the upper edge of a horizontal line. In both cases, the line is horizontal. Therefore, the two symmetric orientation bins can 

be combined into a single bin, giving 4 orientation bins instead of 8 (Fig. 2 (b)) and the descriptor dimensionality is reduced 

from 128 to 64. Note that the distance between the two adjacent bins is still 45o, similar to the original SIFT algorithm. The 

only difference is that the values of the negative orientation bins are accumulated to the corresponding symmetric positive 

orientations. This modification produces shorter vectors for the text patch with the same discriminative power of the original 

SIFT. 

 
Fig. 2 Orientation quantization 

0
o
 

45 o 
90 o 

135 o 

180 o 

-135 o 
-90

 o
 

-45 o 

0o 

45o 

90o 

135o 

(a) The range [0O, 360O] is 

quantized into 8 bins 

(b) Combining the symmetric 

orientation bins gives 4 bins 



Journal of Pattern Recognition and Intelligent Systems  2016, Vol. 4 Iss. 1, PP. 27-38 

- 29 - 

B. Fast Computation of the Gradient Magnitude and Orientation 

In order to compute the pixels’ gradient magnitude and orientation, the original SIFT algorithm applies the basic derivative 

filters (hx = [-1  0  1], hy = [-1  0  1]T) for evaluating the horizontal and vertical derivatives (dx, dy) at each pixel. The 

justification of using the basic derivative filters rather than large filters like Prewitt or Sobel filters is that the image has to be 

pre-smoothed by Gaussian kernels. We argue that Gaussian smoothing is computationally expensive, so several descriptors 

like SURF [22], BRIEF [23] and LDP [24] have avoided it by using efficient approximations, i.e., box filters that could be 

efficiently implemented using integral images. Moreover, for handwritten text where the images are binary, the noise 

associated with this type of images is due to the writing style and the binarization algorithm. The noise appears as sharp edges 

due to the transition from 0 to 1 or from 1 to 0. Applying Gaussian smoothing would attenuate these edges rather than 

permanently eliminating the notches on the text borders (Fig. 3). Further, smoothing affects the binary values of almost all 

pixels - even those pixels that are far from the edges of the text line. The changes in the values of the pixels in the middle of 

the text line generates noisy gradients. 

  

(a) Original image (b) Smoothed image 

Fig. 3 A Digit Sample smoothed by a Gaussian kernel. The original digit has 821 black pixels. After smoothing, only 8 pixels remained black 

To avoid these effects, we eliminated the smoothing step and applied the basic derivative filters directly. Since the images 

are binary, the filter response at any image pixel would take one out of three values {-1, 0, 1} based on the intensity value (0/1) 

of the left/right and top/bottom neighbor pixels. Consequently, the gradient magnitude and orientation can be computed by 

building lookup tables instead of applying computationally expensive procedures for computing arctan and square-root 

functions. The lookup tables are shown in Fig. 4. The possible values of the gradient orientation in Fig. 4 (b) are exactly the 8 

orientation bins shown in Fig. 2 (a), which implies that the gradient magnitude would be accumulated to exactly one bin 

according to its orientation. Utilizing these lookup tables would enable us to construct faster SIFT descriptors compared with 

the original algorithm. Using the reduction approach explained in the previous subsection, the descriptor dimensionality would 

be reduced to half by combining the corresponding symmetric orientation bins. The lookup table for computing pixel 

orientation after combining the corresponding symmetric orientations is shown in Fig. 4 (c). 

dy 

dx  

dy 

dx  

dy 

dx 

-1 0 1  -1 0 1  -1 0 1 

-1  1   -1 -135o -90o -45o  -1 +45o +90o +135o 

0 1 0 1  0 +180o +90o 0o  0 0o +90o 0o 

1  1   1 +135o +90o +45o  1 +135o +90o +45o 

(a) gradient magnitude  (b) gradient orientation 

before combining the 

symmetric orientation bins 

 (c) gradient orientation after 

combining the symmetric 

orientation bins 

Fig. 4 Lookup tables for computing gradient magnitude and orientation 

III. ARABIC HANDWRITING RECOGNITION SYSTEM 

To assess the quality of the learned features as well as the performance of the proposed modifications, the BoF framework 

is integrated with a holistic handwriting recognition system. The general model of the holistic handwriting recognition system 

is shown in Fig. 5. Below, we give the details of the options we implemented for each step in the system. 

 

Fig. 5 General model of the handwriting recognition system 

In the preprocessing step, image samples are normalized to 64 pixels in height while maintaining the aspect ratio. Height 

normalization is a common preprocessing step for reducing the side effect of the variety in text size. 64-pixel height 

normalization was used with the Non-Touching Digits Dataset in [25] and [26]. The image samples shown in Fig. 1 all have a 

height of 64-pixels. For feature extraction, we applied the BoF framework. As the framework involves several stages that can 

Text Image Preprocessing Model 
Feature 

Extraction 

Classification 

Training 

Recognized Text 

Testing 



Journal of Pattern Recognition and Intelligent Systems  2016, Vol. 4 Iss. 1, PP. 27-38 

- 30 - 

be implemented in diverse approaches, we have implemented different approaches for each stage. The Harris detector, Harris-

Laplace detector and dense sampling are implemented for selecting representative image regions. In the dense sampling 

approach, the image spatial area is divided into a grid of overlapping fixed-sized patches where the descriptor algorithm is 

applied on each patch. We use grids of four patch sizes (viz. 16, 24, 32 and 40 pixels) and a stride of 8 pixels in the four grids. 

The preliminary experiments showed that multi-size sampling has better performance than using single-size. Though a stride 

shorter than 8 pixels would produce better accuracy, this value makes a balance between the accuracy and the computational 

performance, especially when the GMM is applied in the quantization step, as presented below. As the Harris detector doesn’t 

report a scale for the detected regions, we use a fixed-size patch of 24 pixels centered at each detected region. We found 

experimentally that this size is the best among the four sizes that are used in the dense sampling approach. SIFT produces a 

128-D descriptor for each region. We apply PCA to reduce the SIFT descriptors to 64-D vectors. For codebook generation, we 

apply the K-Means clustering algorithm on a set consisting of one million descriptors selected randomly from the training 

samples. Moreover, Gaussian Mixture Models GMMs are estimated for the selected descriptors. Several codebooks of sizes 

ranging from 128 to 2048 codewords are generated. For quantization, hard assignment and soft assignments are implemented. 

The image final feature vector is obtained by averaging the occurrences of the codewords in the image. We use the GMM to 

compute a-posteriori probabilities of the descriptors and accumulate them to produce the final image vector in soft assignment. 

The classification step of our recognition system is implemented using the Support Vector Machine (SVM) with linear kernel. 

Table 1 summarizes the main configuration of our handwriting recognition system. 

The system is implemented in MATLAB R2012b and run on a server with two Intel Xeon X5690 processors of 3.47 GHz 

and 88 GB RAM running Windows 7 Professional N. We used the CornerDetector System object of the MATLAB Computer 

Vision System Toolbox for Harris implementation and VLFeat library [27] for the other algorithms. 

TABLE 1 CONFIGURATION OF THE HANDWRITING RECOGNITION SYSTEM 

Stage Value 

Preprocessing Height normalization 

Local Feature Detector 

Harris: region size of 24 pixels. 

Harris-Laplace: the region scale specifies the region size. 

Dense Sampling: 4 grids of sizes 16, 24, 32 and 40 with 8-pixels stride. 

Descriptor 
SIFT 

SIFT vectors are reduced to 64-D by applying PCA. 

Codebook generation 
K-Means applied on 1 million random descriptors. 

GMM estimated over the codebook. 

Codebook Size 128, 256, 512, 1024 and 2048 

Assignment Approach 
Hard Assignment 

Soft Assignment based on GMM 

Classification 1-vs-all SVMs with linear kernel 

IV. EXPERIMENTAL RESULTS 

We have conducted several experiments to evaluate the features learned by the proposed framework. Our experiments are 

conducted on the non-touching Arabic Indian digits and non-touching Arabic subwords datasets of the CENPARMI database 

[16]. The non-touching Arabic/Indian digit dataset contains 10425 image samples of isolated Arabic/Indian digits (0-9) 

extracted from the courtesy amount field of the checks. The samples are divided into the training set (7390 images) and the 

testing set (3035 images), where the samples of each digit are grouped into separate class in each of the training and testing 

sets. Fig. 6 shows the statistics of the digit classes with a sample image example from each digit class. The non-touching 

Arabic subwords dataset contains 27985 image samples of Arabic subwords used in legal amounts of Arabic checks. The 

dataset has 87 classes corresponding to the Arabic subwords encountered in the legal amount filed of the collected checks’ 

samples. As the samples are extracted from real checks, the distribution of the samples of the classes are unbalanced, with 

some classes having a single sample while the testing set is empty. 

Class Training Testing Total Sample 

0 3793 1574 5367  

1 782 304 1086  

2 545 225 770  

3 362 144 506  

4 307 133 440  

5 649 263 912  

6 279 111 390  

7 233 109 342  

8 246 98 344  

9 194 74 268  

Total 7390 3035 10425  

Fig. 6 Statistics of the non-touching digits dataset 



Journal of Pattern Recognition and Intelligent Systems  2016, Vol. 4 Iss. 1, PP. 27-38 

- 31 - 

A. Non-Touching Digits Dataset 

The first set of experiments were conducted on the non-touching Arabic/Indian digits. The obtained recognition accuracies 

are shown in Fig. 7. The results show that, on average, dense sampling outperforms the two interest point detectors. This result 

is consistent with comparative studies conducted for visual object recognition tasks that show that dense sampling produces 

better recognition rates than interest point detectors [18]. The best results of the three sampling strategies are shown in Table 2. 

 

Fig. 7 Recognition rates for digit dataset with different local feature detection and quantization approaches 

HS = Harris, HL = Harris-Laplace, DS = Dense Sampling 

HA = Hard Assignment, SA = Soft Assignment 

TABLE 2 THE BEST RECOGNITION ACCURACY ACHIEVED BY THE THREE DETECTION METHODS  

CODEBOOK SIZE = 2048, QUANTIZATION = SOFT ASSIGNMENT 

Class Harris Harris-Laplace Dense Sampling 

0 99.56% 99.68% 99.36% 

1 96.71% 98.03% 97.70% 

2 98.22% 97.78% 100.00% 

3 96.53% 98.61% 100.00% 

4 98.50% 97.74% 99.25% 

5 96.21% 98.48% 99.24% 

6 98.20% 100.00% 100.00% 

7 93.58% 97.25% 100.00% 

8 98.99% 97.98% 100.00% 

9 94.59% 94.59% 100.00% 

Average 98.29% 98.88% 99.34% 

Comparing the hard and soft assignments, we found that soft assignments gave better accuracies in all cases, since the soft 

assignment reduces the side effect of quantization distortion associated with the hard assignment. The results show also the 

positive effect of increasing the codebook size up to 2048. The best recognition rate of 99.34% was achieved by dense 

sampling with soft quantization and a codebook size of 2048. The hard quantization with the codebook of the same size 

achieved 99.11%, while the codebook size of 1024 achieved 99.14% and 99.05% with the soft and hard assignments 

respectively. Similarly, the codebook size of 512 achieved a 99.05% recognition rate with the soft assignment. These results 

outperform the state-of-the-art recognition rates published in the literature on the same dataset (Table 3). 

TABLE 3 RECOGNITION ACCURACIES REPORTED IN THE LITERATURE FOR  

CIMPARMI NON-TOUCHING DIGITS DATASET VS. THE BEST ACCURACIES ACHIEVED IN THIS WORK 

Features and Classifier Accuracy Statistical significance 

Dense Sampling, 2048 codebook, Soft Assignment with SVM (This work) 99.34% 0.29 

Dense Sampling, 1024 codebook, Soft Assignment with SVM (This work) 99.14% 0.32 

Dense Sampling, 2048 codebook, Hard Assignment with SVM (This work) 99.11% 0.33 

Dense Sampling, 1024 codebook, Hard Assignment with SVM (This work) 99.05% 0.34 

Dense Sampling, 512 codebook, Soft Assignment with SVM (This work) 99.05% 0.34 

GSC Features with SVM [28] 99.04% 0.34 

Log-Gabor Filter Response Features with SVM [25] 98.95% 0.35 

Pixel Intensity Values with Bernoulli Mixtures [29] 98.10% 0.45 

Pixel Intensity Values with Bernoulli HMM [30] 98.00% 0.46 

Spatial Gabor Filter Response Features with 1-NN [26] 97.99% 0.46 



Journal of Pattern Recognition and Intelligent Systems  2016, Vol. 4 Iss. 1, PP. 27-38 

- 32 - 

The table shows the statistical significance of the recognition rates at the 95% confidence level. The table shows that some 

of the results are not statistically significant, although they are higher than published work. This indicates the power of the 

framework in learning robust feature representation. Fig. 8 shows the confusion matrix of the tested samples for the 

configuration that gives the best accuracy (dense sampling with soft quantization and codebook size of 2048). We achieved a 

recognition rate of 100% in six classes (2, 3, 6, 7, 8 and 9), while most of the misclassified samples are in class 0 (10 samples) 

and class 1 (7 samples). 20 total samples were misclassified. These samples are shown in Fig. 9. It is clear that the 

misclassified samples of classes 0 and 1 are similar, making the differentiation between them hard even for a human. The large, 

wide hole in sample #10 makes digit 0 looks like 5. On the other hand, the thick border and small hole in sample #19 make 

digit 5 looks like 0. The soft mid-concavity of the misclassified sample of class 4 (sample #18) makes it similar to digit 2, 

especially when we compare it with some training samples of digit 2 that ended with sharp right tail as in ( ) and ( ). Our 

approach successfully recognized several challenging samples in this class, like ( ), ( ), ( ) and ( ) that were 

misclassified in other works [25, 28]. Our approach also tolerates the cut found in the middle of some samples like the ones in 

( ), ( ) and ( ). Digit 3 is usually written with three upper strokes ( ) and sometimes with two ( ). While previous 

approaches [25, 28] have difficulties to recognize them, our approach achieved 100% accuracy in this class. 

Actual Class 
Predicted Class 

Recognition Rate 
0 1 2 3 4 5 6 7 8 9 

0 1564 8 0 0 1 1 0 0 0 0 99.36% 

1 7 297 0 0 0 0 0 0 0 0 97.70% 

2 0 0 225 0 0 0 0 0 0 0 100.00% 

3 0 0 0 144 0 0 0 0 0 0 100.00% 

4 0 0 1 0 132 0 0 0 0 0 99.25% 

5 1 0 0 0 0 262 0 1 0 0 99.24% 

6 0 0 0 0 0 0 111 0 0 0 100.00% 

7 0 0 0 0 0 0 0 109 0 0 100.00% 

8 0 0 0 0 0 0 0 0 99 0 100.00% 

9 0 0 0 0 0 0 0 0 0 74 100.00% 

Average 99.34% 

Fig. 8 Confusion matrix of the tested digit samples for dense sampling with codebook of size 2048 and soft quantization 

No. Image Actual Class Predicted Class No. Image Actual Class Predicted Class 

1 
 

0 1 11 
 

1 0 

2 
 

0 1 12 
 

1 0 

3 
 

0 1 13 
 

1 0 

4 
 

0 1 14 
 

1 0 

5 
 

0 1 15 
 

1 0 

6 
 

0 1 16 
 

1 0 

7 
 

0 1 17 
 

1 0 

8 
 

0 1 18 
 

4 2 

9 
 

0 4 19 
 

5 0 

10 
 

0 5 20 
 

5 7 

Fig. 9 Images of the misclassified digit samples 

B.  Non-touching Subwords Dataset 

Two sets of experiments are conducted on the non-touching subwords dataset. The first is conducted on the most frequent 

10 classes (Fig. 10) in order to compare our results with published work [31], while in the second set we consider all classes 

that contain at least one sample in the training set and one sample in the testing set (Fig. 11). In all experiments, SIFT 

descriptors are extracted densely using four scales viz 4, 6, 8 and 10 pixels. Five codebooks of sizes 128, 256, 512, 1024 and 

2048 are used. Both the Hard and Soft Assignments are evaluated. The obtained accuracies are shown in Fig. 12. 

 



Journal of Pattern Recognition and Intelligent Systems  2016, Vol. 4 Iss. 1, PP. 27-38 

- 33 - 

No Training Testing Total Sample 

1 2061 859 2920  

2 1896 781 2677  

3 1726 724 2450  

4 1301 529 1830  

5 1175 490 1665  

6 1159 521 1680  

7 1077 442 1519  

8 1005 410 1415  

9 961 396 1357  

10 745 304 1049  

Total 13106 5456 18562  

Fig. 10 Statistics of the most frequent 10 classes of the non-touching subwords dataset 

No Train Test Total Sample No Train Test Total Sample No Train Test Total Sample 

1 1993 829 2822 
 

24 12 4 16 
 

47 71 28 99 
 

2 4 2 6 
 

25 51 20 71 
 

48 93 39 132 
 

3 10 4 14 
 

26 2 1 3 
 

49 1 1 2 
 

4 24 8 32 
 

27 161 61 222 
 

50 21 10 31 
 

5 2061 859 2920 
 

28 80 37 117 
 

51 83 35 118 
 

6 567 244 811 
 

29 4 1 5 
 

52 6 2 8 
 

7 1175 490 1665 
 

30 362 147 509 
 

53 64 26 90 
 

8 961 396 1357 
 

31 319 121 440 
 

54 40 18 58 
 

9 242 103 345 
 

32 55 22 77 
 

55 13 5 18 
 

10 1896 781 2677 
 

33 11 5 16 
 

56 277 116 393 
 

11 37 16 53 
 

34 4 2 6 
 

57 158 55 213 
 

12 821 330 1151 
 

35 11 4 15 
 

58 83 38 121 
 

13 6 3 9 
 

36 1 1 2 
 

59 69 33 102 
 

14 187 82 269 
 

37 114 47 161 
 

60 96 36 132 
 

15 92 36 128 
 

38 62 27 89 
 

61 4 1 5 
 

16 62 31 93 
 

39 23 11 34 
 

62 61 28 89 
 

17 2 1 3 
 

40 473 198 671 
 

63 33 15 48 
 

18 81 30 111 
 

41 1077 442 1519 
 

64 4 2 6 
 

19 1726 724 2450 
 

42 1005 410 1415 
 

65 87 29 116 
 

20 745 304 1049 
 

43 130 49 179 
 

66 183 80 263 
 

21 216 83 299 
 

44 12 5 17 
 

67 10 4 14 
 

22 69 25 94 
 

45 2 1 3 
 

68 78 40 118 
 

23 1301 529 1830 
 

46 10 4 14 
 

69 3 1 4 
 

Fig. 11 Statistics of the non-touching subwords dataset 

Similar to the digit dataset, the soft assignment outperformed the hard assignment in all codebook sizes, and the best 

accuracies are achieved with a codebook of size 2048. In the most frequent 10 classes, the best recognition rate of 95.53% 

(0.48) was achieved by the soft assignment with the 2048 codebook. This result is statistically significant and about 6.4% 

better than the result reported in [31], where a recognition rate of 89.10% (0.71) was reported on the same classes with pixel 

intensity values and Bernoulli HMM. Fig. 13 shows the confusion matrix of the tested samples for the configuration that gives 

the best result (soft quantization and codebook of size 2048). The lowest accuracy was for the NOON ( ). This is attributed to 



Journal of Pattern Recognition and Intelligent Systems  2016, Vol. 4 Iss. 1, PP. 27-38 

- 34 - 

the large variety of the writing style of this letter (Fig. 14). The two letters RAA ( ) and WAW ( ) have similar writing styles. 

We noticed that the confusion between these two classes constitutes about 36.5% of the total misclassification errors. Other 

misclassified samples have challenging writing styles that made them similar to other classes. In Fig. 14, we show samples of 

such challenging styles. 

 

Fig. 12 Recognition rates for the non-touching subwords dataset 

10C = The Most frequent 10 classes, AC = All Classes 

 
Predicted Class 

Recognition Rate 
          

 499 15 2 0 2 2 0 1 0 0 95.78% 

 4 804 2 8 39 2 0 0 0 0 93.60% 

 5 4 466 6 0 4 1 2 2 0 95.10% 

 0 7 7 366 2 5 4 3 2 0 92.42% 

 0 50 2 0 722 5 0 0 2 0 92.45% 

 0 2 5 1 2 710 2 1 0 1 98.07% 

 0 0 2 2 0 3 297 0 0 0 97.70% 

 1 0 1 2 0 5 0 518 2 0 97.92% 

 0 0 0 12 1 4 0 3 421 1 95.25% 

 0 0 0 0 0 0 0 0 1 409 99.76% 

Average 95.53% 

Fig. 13 Confusion matrix of the tested samples of the most frequent 10 classes of the non-touching subwords dataset 

No. Image Actual Class Predicted Class No. Image Actual Class Predicted Class 

1 
   11 

   

2 
   12 

   

3 
   13 

   

4 
   14 

   

5 
   15 

   

6 
   16 

   

7 
   17 

   

8 
   18 

   

9 
   19 

   

10 
   20 

   

Fig. 14 Examples of misclassified subwords samples in the most frequent 10 classes of the non-touching subwords dataset 

For the complete subwords dataset, the best accuracy we achieved was 89.93% (0.56) with the Soft Assignment and 2048 

codewords. These results are encouraging on such a challenging dataset containing a large number of classes, with many 

classes of few samples. This is still better and statistically significant than the recognition accuracy reported in [31] with the 

most frequent 10 classes. Fig. 15 shows the per-class accuracy using Soft Assignment and 2048 codewords. The main source 



Journal of Pattern Recognition and Intelligent Systems  2016, Vol. 4 Iss. 1, PP. 27-38 

- 35 - 

of error is attributed to the lack of training samples, as the classes with less than five training samples (e.g., classes #2, 17, 29, 

36, and 61 (( ), ( ), ( ), ( ), and ( )) have poor performance. The classes having similar writing style, e.g., 

classes #4 and 5 (( ) and ( )), classes #6, 8 and 10 (( ), ( ) and ( )) and classes #40 and 41 (( ) and ( )) 

have large confusion. Class# 8 ( ) has several writing styles, so samples from other classes with unusual writing styles are 

sometimes assigned to this class. Fig. 16 shows examples of challenging samples. Despite that, we have achieved high 

accuracy (above 90%) in many classes containing several hundred test samples, like Classes #1, 19, 20, 23 and 42. Some 

samples in these classes have complicated writing styles which are hard for humans to recognize without context (Fig. 17). 

No #Samples 
Correctly 

Classified 

Mis-

classified 
Accuracy No #Samples 

Correctly 

Classified 

Mis-

classified 
Accuracy No #Samples 

Correctly 

Classified 

Mis-

classified 
Accuracy 

1 829 807 22 97.35% 24 4 0 4 0.00% 47 28 15 13 53.57% 

2 2 0 2 0.00% 25 20 13 7 65.00% 48 39 21 18 53.85% 

3 4 2 2 50.00% 26 1 1 0 100.00% 49 1 0 1 0.00% 

4 8 3 5 37.50% 27 61 52 9 85.25% 50 10 3 7 30.00% 

5 859 797 62 92.78% 28 37 29 8 78.38% 51 35 28 7 80.00% 

6 244 217 27 88.93% 29 1 0 1 0.00% 52 2 0 2 0.00% 

7 490 459 31 93.67% 30 147 138 9 93.88% 53 26 9 17 34.62% 

8 396 341 55 86.11% 31 121 100 21 82.64% 54 18 14 4 77.78% 

9 103 83 20 80.58% 32 22 19 3 86.36% 55 5 0 5 0.00% 

10 792 721 71 91.04% 33 5 2 3 40.00% 56 116 106 10 91.38% 

11 5 1 4 20.00% 34 2 0 2 0.00% 57 55 48 7 87.27% 

12 330 278 52 84.24% 35 4 0 4 0.00% 58 38 24 14 63.16% 

13 3 1 2 33.33% 36 1 0 1 0.00% 59 33 21 12 63.64% 

14 82 31 51 37.80% 37 47 44 3 93.62% 60 36 31 5 86.11% 

15 36 24 12 66.67% 38 27 21 6 77.78% 61 1 0 1 0.00% 

16 31 24 7 77.42% 39 11 8 3 72.73% 62 28 20 8 71.43% 

17 1 0 1 0.00% 40 198 189 9 95.45% 63 15 8 7 53.33% 

18 30 25 5 83.33% 41 442 397 45 89.82% 64 2 0 2 0.00% 

19 724 706 18 97.51% 42 410 406 4 99.02% 65 29 24 5 82.76% 

20 304 291 13 95.72% 43 49 40 9 81.63% 66 80 77 3 96.25% 

21 83 76 7 91.57% 44 5 1 4 20.00% 67 4 0 4 0.00% 

22 25 13 12 52.00% 45 1 0 1 0.00% 68 40 32 8 80.00% 

23 529 508 21 96.03% 46 4 0 4 0.00% 69 1 0 1 0.00% 

Total Samples: 8172; Correctly Classified: 7349; Misclassified: 823; Average Accuracy: 89.93% 

Fig. 15 Per-class accuracy achieved by soft assignment and 2048 codewords on the complete subwords dataset 

No. Image Actual Class Predicted Class No. Image Actual Class Predicted Class 

1 
   

11 
   

2 
   

12 
   

3 
   

13 
   

4 
   

14 
   

5 
   

15 
   

6 
   

16 
   

7 
   

17 
   

8 
   

18 
   

9 
   

19 
   

10 
   

20 
   

Fig. 16 Examples of misclassified subwords samples of the complete subwords dataset 

 



Journal of Pattern Recognition and Intelligent Systems  2016, Vol. 4 Iss. 1, PP. 27-38 

- 36 - 

No. Image Class No. Image Class 

1 
  

6 
  

2 
  

7 
  

3 
  

8 
  

4 
  

9 
  

5 
  

10 
  

Fig. 17 Examples of challenging samples that were correctly recognized 

C. Experimental Evaluation of the Proposed Approaches 

Based on the modifications presented in Section II, we have implemented two novel versions of SIFT, named 

unsignedSIFT and binarySIFT. UnsignedSIFT smooths the input image by a Gaussian kernel proportional to the descriptor 

spatial area similar to the one used by the VLFeat phow command. Gradient magnitudes and orientations are computed using 

the same procedures as VLFeat dsift command. However, instead of generating 8 bins in each of the 4×4 spatial regions, the 

contributions of the corresponding symmetric orientation bins are accumulated, giving 4 bins per region. Accordingly, 

unsignedSIFT produces a 64-D descriptor for the input patch. In binarySIFT, the Gaussian smoothing step is ignored and the 

gradient magnitude and orientation are computed for the binary image using the lookup tables shown in Fig. 4. Similar to 

UnsignedSIFT, the contributions of the corresponding symmetric orientation bins within each spatial region are accumulated, 

giving a 64-D descriptor for the patch. The two versions are implemented based on the open-source VLFeat library by 

modifying dsift command, which is an efficient implementation for extracting dense SIFT descriptors for gray-scale images. 

To evaluate the performance of the novel versions, we integrated them with our feature learning framework and conducted 

several experiments on the non-touching Arabic Indian digit and non-touching Arabic subwords datasets. In these experiments, 

we used dense sampling with four patch sizes (16, 24, 32 and 40 pixels) and a stride of 2 pixels in the four grids. The original 

SIFT as well as the two novel versions were applied in the description step. The obtained descriptors are de-correlated by 

applying PCA. Five codebooks of sizes 128, 256, 512, 1024 and 2048 are generated by k-means clustering, and the hard 

assignment is utilized in the quantization step. Fig. 18 compares the recognition accuracies of the three SIFT versions. 

 
Fig. 18 Comparing the Recognition accuracies of the three versions of SIFT 

DGT = Digits dataset, 10C = Most frequent 10 classes, AC = All Classes 

S = Original SIFT, U = UnsignedSIFT, B = BinarySIFT 

The results show that unsignedSIFT and binarySIFT achieve comparable performance to the original SIFT, although their 

descriptors have only 64 elements. The two versions achieved better performance with larger codebooks. In addition to the 

promising recognition accuracies, the two versions take less time to compute. Due to their lower dimensionality, the clustering 

and quantization are faster than those generated by the original SIFT. Table 4 shows the CPU times of computing the 

descriptors of a digit sample image (dg003082.tif) using the original SIFT and the two novel versions. We show also the CPU 

times of clustering three sets, each with one million random descriptors generated by one of the three versions into 1024 

clusters. The two versions achieved up to 2.2X speedup in description generation and clustering steps, which indicates that 

utilizing the characteristics of the handwritten text reduces the computational overhead. 

 

 



Journal of Pattern Recognition and Intelligent Systems  2016, Vol. 4 Iss. 1, PP. 27-38 

- 37 - 

TABLE 4 CPU TIME (IN MILLISECONDS) ELAPSED IN COMPUTING THE DESCRIPTORS OF A SAMPLE IMAGE 

AND IN CLUSTERING 1 MILLION DESCRIPTORS INTO 1024 CLUSTERS 

 SIFT UnsignedSIFT BinarySIFT 

Descriptors Computation 15.51 8.88 6.92 

Clustering 507.13×103 341.07×103 356.37×103 

V. CONCLUSIONS 

We presented, in this paper, a feature-learning framework for Arabic handwritten text recognition based on Bag-of-Feature 

(BoF) paradigm. Several alternatives involved in the framework are investigated, and their effects in the learned features are 

evaluated. We used the Harris detector, Harris-Laplace detector and dense sampling. The selected regions are described using 

SIFT that produces 128-d descriptors for each region. The codebook is built by applying k-means clustering on sample vectors 

selected randomly from the training set. The feature vector of a given sample is obtained by quantizing its reduced SIFT 

descriptors using the codebook and constructing the normalized histogram of size equal to the codebook size. Two 

quantization approaches are evaluated, viz. hard and soft assignment. SVM is used in the classification phase. The system is 

evaluated on the non-touching Arabic Indian digits and Arabic subwords datasets of CENPARMI database. 

The extensive experiments show that dense sampling outperforms the interest point detectors for handwritten text 

recognition. Codebooks with large sizes had a positive effect on the performance in all datasets. The best accuracies are 

achieved using a codebook of size 2048. Soft assignment reduces the side effect of quantization distortion associated with the 

hard assignment and improves the performance of the learned features. The developed framework achieved 99.34% 

recognition accuracy on the non-touching Arabic/Indian digit dataset, 95.53% recognition accuracy on the 10 most frequent 

classes of the non-touching Arabic subwords dataset and 89.93% on the full non-touching Arabic subwords dataset. All these 

results outperformed the state-of-the-art published work on the same datasets. The main source of errors in both datasets is the 

challenging writing styles. The two datasets contain samples written with complicated styles that are difficult even for human 

recognition without context. The non-touching subwords dataset lacks enough training samples for some classes. Classes 

containing less than 10 training samples achieved poor performance. The accuracy of the 10 most frequent classes of this 

dataset support this argument. Despite that, our system achieved 100% accuracy on 6 digit classes, and successfully tolerated 

common problems encountered in published works such as imperfect and disconnected samples. On the full subwords dataset, 

our system achieved accuracy above 90% in many classes containing several hundred test samples, though some samples in 

these classes have complicated writing styles. 

Utilizing the characteristics of the handwritten text images resulted in two novel versions of the SIFT algorithm that are 

computationally efficient and produce descriptors of half the size of the original SIFT. The two versions have achieved 

comparable recognition performance to SIFT on the non-touching Arabic Indian digits and Arabic subwords datasets. 

As future work, we will investigate improving the feature learning framework we developed in this work by adapting novel 

low-level features other than SIFT to utilize the characteristics of Arabic text. We intend to adapt our framework to 

segmentation-free open-vocabulary Arabic handwritten text recognition. 

ACKNOWLEDGEMENT 

The authors would like to acknowledge the support provided by King Fahd University of Petroleum & Minerals (KFUPM) 

for funding this work through project number RG 1313-1/2. The first author is supported by Hadhramout Establishment for 

Human Development, Yemen Graduate Scholarship. The authors would also like to thank the anonymous reviewers whose 

comments helped in improving the paper. 

REFERENCES 

[1] M. T. Parvez and S. A. Mahmoud, “Offline arabic handwritten text recognition: A Survey,” ACM Comput. Surv., vol. 45, no. 2, pp. 1-35, 

2013. 

[2] Y. Bengio, A. Courville, and P. Vincent, “Representation Learning: A Review and New Perspectives,” IEEE Trans. Pattern Anal. Mach. 

Intell., vol. 35, no. 8, pp. 1798-1828, 2013. 

[3] A. AbdulKader, “A Two-Tier Arabic Offline Handwriting Recognition Based on Conditional Joining Rules,” in Arabic and Chinese 

Handwriting Recognition, Springer Berlin Heidelberg, 2008, pp. 70-81. 

[4] Y. LeCun, L’. Bottou, Y. Bengio, and P. Haffner, “Gradient-based learning applied to document recognition,” Proc. IEEE, vol. 86, no. 

11, pp. 2278-2324, 1998. 

[5] R. Anil, K. Manjusha, S. S. Kumar, and K. Soman, “Convolutional Neural Networks for the Recognition of Malayalam Characters,” in 

Proceedings of the 3rd International Conference on Frontiers of Intelligent Computing: Theory and Applications (FICTA), vol. 247, pp. 

493-500, 2014. 

[6] A. Graves and J. Schmidhuber, “Offline Handwriting Recognition with Multidimensional Recurrent Neural Networks,” in Advances in 

Neural Information Processing Systems (NIPS), vol. 21, pp. 545-552, 2009. 

[7] T. Bluche, J. Louradour, M. Knibbe, B. Moysset, M. F. Benzeghiba, and C. Kermorvant, “The A2iA Arabic Handwritten Text 



Journal of Pattern Recognition and Intelligent Systems  2016, Vol. 4 Iss. 1, PP. 27-38 

- 38 - 

Recognition System at the Open HaRT2013 Evaluation,” 11th IAPR Int. Work. Doc. Anal. Syst., pp. 161-165, 2014. 

[8] U. Porwal, Yingbo Zhou, and V. Govindaraju, “Handwritten Arabic text recognition using Deep Belief Networks,” in 21st International 

Conference on Pattern Recognition (ICPR), 2012, pp. 302-305. 

[9] P. P. Roy, Y. Chherawala, and M. Cheriet, “Deep-Belief-Network Based Rescoring Approach for Handwritten Word Recognition,” in 

2014 14th International Conference on Frontiers in Handwriting Recognition, 2014, pp. 506-511. 

[10] S. O’Hara and B. A. Draper, “Introduction to the Bag of Features Paradigm for Image Classification and Retrieval,” arXiv Prepr. 

arXiv1101.3354, 2011. 

[11] G. Csurka, R. Dance, Christopher, L. Fan, J. Willamowski, and C. Bray, “Visual categorization with bags of keypoints,” in Workshop 

on statistical learning in computer vision (ECCV), 2004, pp. 1-22. 

[12] Sivic and Zisserman, “Video Google: a text retrieval approach to object matching in videos,” in Proceedings Ninth IEEE International 

Conference on Computer Vision, vol. 2, pp. 1470-1477, 2003. 

[13] L. Rothacker, S. Vajda, and G. a. Fink, “Bag-of-Features Representations for Offline Handwriting Recognition Applied to Arabic 

Script,” in 2012 International Conference on Frontiers in Handwriting Recognition, 2012, pp. 149-154. 

[14] M. Rusinol, D. Aldavert, R. Toledo, and J. Llados, “Browsing Heterogeneous Document Collections by a Segmentation-Free Word 

Spotting Method,” in 2011 International Conference on Document Analysis and Recognition, 2011, pp. 63-67. 

[15] S. Fiel and R. Sablatnig, “Writer Identification and Writer Retrieval Using the Fisher Vector on Visual Vocabularies,” in 2013 12th 

International Conference on Document Analysis and Recognition (ICDAR), 2013, pp. 545-549. 

[16] Y. Al-Ohali, M. Cheriet, and C. Suen, “Databases for recognition of handwritten Arabic cheques,” Pattern Recognit., vol. 36, pp. 111-

121, 2004. 

[17] T. Tuytelaars and K. Mikolajczyk, “Local Invariant Feature Detectors: A Survey,” Found. Trends® Comput. Graph. Vis., vol. 3, no. 3, 

pp. 177-280, 2007. 

[18] E. Nowak, F. Jurie, and B. Triggs, “Sampling Strategies for Bag-of-Features Image Classification,” in ECCV, vol. 3954, 2006, pp. 490-

503. 

[19] K. Mikolajczyk and C. Schmid, “Performance evaluation of local descriptors,” IEEE Trans. Pattern Anal. Mach. Intell., vol. 27, no. 10, 

pp. 1615-30, 2005. 

[20] J. Hu, X. Peng, and C. Fu, “A comparison of feature description algorithms,” Opt. - Int. J. Light Electron Opt., vol. 126, no. 2, pp. 274-

278, 2015. 

[21] D. G. Lowe, “Distinctive Image Features from Scale-Invariant Keypoints,” Int. J. Comput. Vis., vol. 60, no. 2, pp. 91-110, Nov. 2004. 

[22] H. Bay, A. Ess, T. Tuytelaars, and L. Van Gool, “Speeded-Up Robust Features (SURF),” Comput. Vis. Image Underst., vol. 110, no. 3, 

pp. 346-359, 2008. 

[23] M. Calonder, V. Lepetit, M. Ozuysal, T. Trzcinski, C. Strecha, and P. Fua, “BRIEF: Computing a Local Binary Descriptor Very Fast,” 

IEEE Trans. Pattern Anal. Mach. Intell., vol. 34, no. 7, pp. 1281-1298, 2012. 

[24] X. Yang and K. T. T. Cheng, “Local difference binary for ultrafast and distinctive feature description,” IEEE Trans. Pattern Anal. Mach. 

Intell., vol. 36, no. 1, pp. 188-194, 2014. 

[25] S. A. Mahmoud and W. G. Al-Khatib, “Recognition of Arabic (Indian) bank check digits using log-gabor filters,” Appl. Intell., vol. 35, 

no. 3, pp. 445-456, 2010. 

[26] S. A. Mahmoud, “Recognition of Arabic (Indian) check digits using Spatial Gabor filters,” in 5th IEEE-GCC Conference & Exhibition, 

2009, pp. 1-5. 

[27] A. Vedaldi and B. Fulkerson, “VLFeat: An open and portable library of computer vision algorithms,” in 18th ACM international 

conference on Multimedia, 2010, pp. 1469-1472. 

[28] S. Awaida and S. A. Mahmoud, “Automatic Check Digits Recognition for Arabic Using Multi-Scale Features, HMM and SVM 

Classifiers,” Br. J. Math. Comput. Sci., vol. 4, no. 17, pp. 2521-2535, 2014. 

[29] V. Romero, A. Giménez, and A. Juan, “Explicit Modelling of Invariances in Bernoulli Mixtures for Binary Images,” in IBPRIA ’07 

Proceedings of the 3rd Iberian conference on Pattern Recognition and Image Analysis, 2007, vol. 4477, pp. 539-546. 

[30] A. Giménez, J. Andrés-Ferrer, A. Juan, and N. Serrano, “Discriminative Bernoulli Mixture Models for Handwritten Digit Recognition,” 

in 2011 International Conference on Document Analysis and Recognition, 2011, pp. 558-562. 

[31] A. G. Pastor, “Bernoulli HMMs for Handwritten Text Recognition,” Ph.D. Thesis, Polytechnic University of Valencia, Spain, 2014. 

 

Mohammed O. Assayony received the MS degree in computer science from the Universiti Sains Malaysia in 2009 and he is currently 

pursuing his Ph.D. in computer science and engineering at King Fahd University of Petroleum & Minerals, Saudi Arabia. His research 

interests include Arabic Document Analysis and Recognition, Automatic Feature Learning for Arabic handwriting as well as parallel 

algorithms for scientific applications. 

Sabri A. Mahmoud is a Professor of computer science in Information & Computer Science Department, King Fahd University of Petroleum 

& Minerals, Saudi Arabia. His research interests include Arabic Document Analysis and Recognition, Arabic NLP, Image Analysis and 

applications of Pattern Recognition. Dr. Mahmoud is a life senior member of IEEE. He published over 90 papers in refereed journals and 

conference proceedings. 


