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Abstract-This paper presents a method for finding the most-squares solution for separating cars, and intends to develop technologies 

to be able to separate cars from compact and standards based on images taken from the camera. Two major methods are used 

basically: 1. convex hulls algorithms to obtain car’s convex hull region and 2. classifying by separating cars into clusters regarding 

area and circumference of the regions obtained from car’s convex hull. Finally, a numerical example is presented. 
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I. INTRODUCTION 

There have been various studies that use images to study the clustering of cars, for example, by reading the license plate 

numbers at toll gates or during bridge crossings [1]. When a license plate is dirty, however, processing is difficult, although the 

model of the car can be determined. To address this, various methods have been considered, including a probabilistic 

separation of the background scene, objects, and shadows [2]; measurement of vehicle flow based on images at different points 

in time [3], and using space-frequency analysis to detect car features that are easily distinguishable [4]. In this study, video 

images of traffic entering a parking lot were used and then finding a parking space, with one camera at the entrance and several 

more cameras in the parking lot [5]. Information such as that shown in Fig. 1(a) can be used to determine where cars should be 

directed, that is, to parking area A, B, or C. Note that since areas A and B are marked full for standard cars, standard cars 

entering the lot are directed to area C. 

This method can also be useful for parking cars on a ferry, as shown in Figs. 1(b)-(d) [6]. More cars can fit on a ferry if 

they are assessed and divided in this way. 

Parking 

Areas 

Size of 

Cars 

No. of 

Empty 

Stalls 

State 

A 

Compact 5 Empty 

Standard 0 Full 

Large 20 Empty 

B 
Standard 0 Full 

Large 10 Empty 

C 
Standard 15 Empty 

Large 10 Empty 

(a) Information about the state (full or empty) of parking areas [5] 

 

(b) Display and camera 

 

(c) Cars in a parking lot [6] 

 

(d) Cars on a ferry [6] 

Fig. 1 Use plan of this system 

A simulation of taking video images of cars was done from a viaduct on a public highway with the WEB camera (Table 1) 

aiming at these applications. 

After preprocessing the video images, some images of cars were obtained and they were categorized by using a scatter plot. 

The system was evaluated by measuring the rate at which the types of cars could be identified. 

Confusing 
Parking  Directions

Area A Area B Area C
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There are various cluster separation studies for items other than cars, and these studies have used various methods, such as 

one based on overlapping probability distributions, a fuzzy clustering method, a method based on the amount of information 

amount, and a data recovery approach [7]. 

In this study, the support vector machine (SVM) method [8] and the subspace method [9] will be considered. In the SVM, 

for a most-squares solution (for implicit functions) [10], the selected support vector near the separation line will be needed to 

compute and to derive the straight line that separates clusters of kinds of cars. Obtaining this two-dimensional feature will be 

used the pseudoinverse operator method [11], which is based on an orthogonal projection theorem [12, 13]. 

II. IMAGE PROCESSING FOR THE SEPARATION OF CAR MODELS 

A. Image Processing Methods 

Images of cars were isolated from video images that were obtained by using a web camera (ELECOM UCAM-DLH200HS) 

that was placed on a bridge (height = 6.2 m) at the entry to a virtual parking lot. 

TABLE 1 MAJOR SPECIFICATION OF WEB CAMERA (ELECOM UCAM-DLH200HS) 

Reception Element 1/4 inch CMOS sensor

Pixel Count 200milion pixel

Hardware maximum image degree 1600×1200

Maximum frame rate

25fps(640×480pixel)

12fps(1280×720pixel)

7fps(1280×960pixel)

5fps(1600×1200pixel)

Color About 1600million color (24bit)

Interface USB2.0
 

The cars were sorted by the convex hull method by using the well-known image processing tool Open-CV [14], as shown 

in Fig. 2. The car images were preprocessed to block out extraneous information, and the resulting images are shown with a 

black background. 

 
 

 

Fig. 2 Capturing the image of a car using the convex hull method 

Using the measured features (area and circumference) of the convex hulls, a separation line between the clusters of data 

were able to quickly obtained in the case of no overlapped cluster. But, the following method was necessary in the case of 

overlapped cluster for the working. 

III. CONCEPT AND RELATIONAL EQUATIONS OF MOST SQUARES METHOD FOR CLUSTERING 

The shape of the compact cars, medium-scale cars, and large-scale cars are a similar rectangular figure, then the declines 

(the rate of area and circumstance of the figure (c.f. later Fig. 3) of straight lines connected the points of cars of the same class 

(b) Standard car (small class) (a) Compact car 

(d) Truck (c) Standard car (large class) 
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are almost same as shown in the feature plane on the area and the circumstance. 

Therefore, the car model class cannot be separated by identifying the slope by the fitting of these straight lines by the least 

square method using a distance of orthogonal shadow in Appendix. 

Then, the straight line to which the distance between two points group of each class and a linear manifold was maximum 

separated by the most square method was obtained. 

The method in a general function space to independent variables of implicit functions in the appendix is applied to the 

problem of a requesting separate straight line in two dimension space. 

First, slope a that the sum of distance between a linear manifold y ax b  that passes the point ),( 21 pp xx  and the 

point of N piece ( , )i ix y  in two dimensions becomes extream places is obtained as follows. 

  (1) 

 
 (2) 

 

  
(3) 

 

This evaluation function is differentiated, the stationary equation is set up, the variable x is replaced with a difference from 

the street point X, and they simplify as follows. 

  
(4) 

 

  
(5) 

 

  (6) 

where 
 

(7) 

  
(8) 

 

One of the straight lines with two slopes is minimum extreme, and the other is maxim extreme. The former will become the 

line by the least squares method, and the latter will become the line by most squares method. In the many kinds of literature on 

cluster separating method, the ordinary least squares method on the dependent variable of explicit function has been used; they 

are called to regressive cluster separating method for obtaining a regressive straight line of a cluster like a line [7]. Here, the 

most squares method is necessary for the reason mentioned before. 

Second, let obtain the slope a and the intercept b of a straight line that distance from points of N pieces become extreme 

minimum. Assuming ( , ) (0, )p px y b  in the above equations because explicit functions pass to (0,b), the differential on the 

slope a is same as the above equation and then differentiating on b, the slope a is obtained as follows. 
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where 
 

(12) 

  
(13) 

 

If these equations are solved on b, the each straight line of both the least squares solution and the most squares solution on 

the distance of difference as the evaluation function is obtained. 

The straight line obtained by the least square solution is a so-called regression line. The straight line obtained by most 

squares solution becomes a candidate of the cluster separating line if the clusters of the problem are able to separate if the 

problem is mix one of which classes have twin peaks. If the problem has one class with the single peak with the data of N 

pieces and it is not able to separate, then the solution is not the candidate of cluster separation but only most squares solution of 

the points of N pieces. 

The third problem is a selection method on the points of N pieces (it is called support vector later) of a separating straight 

line neighborhood. The separating cluster problem is trivial, and the support vector which distance from a separating straight 

line is short are easy to select when there is a pause between two classes scattered data in the feature plane. 

As for the selection of the total N piece, the assumption that the in halves level from two classes means appropriate is 

plausible assuming the principle of tug-of-war. Finally, it has to select the support vector placed as becoming a tie on the tug-

of-war because the tug is pulled to one with strong power with a lot of numbers. 

There are various researches [7] on some cases even when two cluster distributions are not pause and overlapped. In the 

case of this car model clustering problem, the clusters become indistinguishable if they are mixes because the feature of 

clusters are similar and have an almost same slope in the data scattering plane. This case is a problem of requesting the 

minimum area between so-called twin peak histograms; some devices are necessary to obtain the solution for selecting the 

neighborhood points vector (support vector). For examples, above mentioned tug-of-war tie method or improvement of 

separating by transformation of variable. 

From these contexts, it is plausible as a visible and qualitative image that the followings should be already-known in prior 

as an assumption to apply the most squares method for the cluster separation problem. 

1) The treated data have multi-peak, there is a valley between two classes, and the clusters can separate in the valley. 

2) The necessary data of total N pieces (support vector) can be selected from separating two classes to be able to apply the 

tug-of-war tie method. 

It seems that it may be necessary to compose many sides of the manifold which is the minimum cutting set to cut the linear 

separation manifold between two adjacent classes by each intersection though it is difficult to image similar for the multi-

dimensional multi class problem as well as two dimensions. 

IV. NUMERICAL EXPERIMENTS FOR CLUSTERING OF CAR MODELS 

A. Separation between Compact Cars and Standard Cars 

Based on the results of previous investigations, a clustering method used a separation hyper-plane to divide the data was 

used. This hyper-plane was obtained from the most-squares solution for the support vector, and the clusters are separated by 

the least-squares regression lines, which had different slopes and were solution of the lumped data. 

The least-squares method was not able to divide compact and standard cars, as shown in the following figure, since the 

difference in the slopes of the regression lines was not sufficient. 

Therefore, the support vector was chosen, and to divide the data were attempted by using the most-squares solution. 

The slope of the line was obtained as that of the most-squares solution for the support vector data. The y intercept was 

determined by performing a random search for the sum of the maximum distance, simultaneously with calculating the 

regression line. The support vector was selected from the mean value of each characteristic (including all data within nine 

standard deviations). The results were shown in Fig. 3. The short dashed line indicates the separation line, and the solid line is 

the regression line. 

In the figure, data are plotted in the area-circumference parameter plane. These data are a case of characteristic plane with 

coming in succession. 

Here, the x-axis indicates the area and the y-axis are the circumference in Fig. 3. 

 

1 2

1

2 2

1 2

1

( ) ,

{ ( ) }

N

i i

i

N

i i

i

where A x x b

B x x b





 

  





1 2

1

2 2

1 2

1

( ) ,

{ ( ) }

N

i i

i

N

i i

i

where A x x b

B x x b





 

  







Journal of Machinery Manufacturing and Automation  2017, Vol. 6 Iss. 1, PP. 1-7 

- 5 - 

Area

2 4 6 8 10 12 14
-5

0

5

10

15

20

25

30

Area

C
ir
cu

m
.L

en
gt

h

Separation Line for Legal Car Model

 

 

Mix data
Regression Line
Separation Line

C
ircu

m
. Len

gth

Separation  for Legal Car Model

Separation line

Regression line

2             4             6              8            10           12           14     

30

25

20

15

10

5

0

C
ir

cu
m

fe
re

n
ce

 

Fig. 3 A separation line and a regression line for the convex hull image dataset for compact and standard cars 

V. CONCLUSIONS 

The motivation for this research is to make parking more efficient by sending cars to empty spaces, and this is 

accomplished by using images of the cars to cluster them into size categories and then directing them to the appropriate 

locations. The sizes were then able to be separated into clusters by using the most-squares method, even though the least-

squares method was unable to accomplish this. The most-squares method must be used in more clustering area as same as the 

least-squares method. 

Projection was started onto the hyper-plane and then used the least-squares method, after a literature search and some initial 

experimentation. A general set of stationary equations was obtained from the evaluation function; these were constructed from 

the sum of squares of the distances from N points to a linear manifold that passes through a particular point. The orthogonal 

projection and the point were obtained from the data by uniting the SVM method and the subspace method. The most-squares 

solution was computed for the support vector nearest to the separation line, and the straight line that separated the clusters of 

different kinds of cars was obtained by the most-squares method and the pseudoinverse operator. The least-squares and most-

squares solutions for this stationary equation are useful for separating the clusters in this dataset. The slope and y-intercept of 

the least-squares solution (regression line) and the most-squares solution represent a separation of two-dimensional features, as 

was shown in the example to which this method was applied. 

Convex hulls of compact and standard cars were extracted from the image data, and the area and circumferences were 

plotted. The usefulness of this method was shown by obtaining a regression line and another line that separated the clusters. 

The spatial meaning and the way to derive a separation of data into clusters is not clear in the conventional SVM method. 

When the slopes of two regression lines are similar, as in this example, it is not possible to use them to separate clusters. 

It is necessary to use the method in this paper in conjunction with the conventional least-squares method to obtain a 

generalized cluster separation method. 

It is expected that there will be many applications for this method. 
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APPENDIX 

A. Distance to Orthogonal Shadow 

When an arbitrary vector 
nx R  is decomposed into the sum of  an orthogonal shadow x̂ L  on a subspace L and a 

leg x L
 on an orthogonal complement L

, ˆx x x , then there is a symmetric matrix P such that x̂ Px , 

( )x I P x . Such a P is called an orthogonal shadow operation on a subspace L , and (I-P) an orthogonal shadow 

operation are called on an orthogonal complement L
. 

Now, if let X be the matrix for which the row vectors are the basis vectors for the subspace L , then the equation 

0Tx X  is obtained because x  is orthogonal to all the basis vectors of L . 

The general solution of this equation can be written using the pseudoinverse matrix X
＋
, as follows. 

 

1

0

0 ( )

( )

T

T T T

T T

X x

x X I X X x

where X XX X

 (A1) 

This is called the Penrose solution [11]. Here, y is a vector with the same dimension as that of x . Using the properties of 

symmetry and the pseudoinverse, the orthogonal shadow operation P can be decomposed as follows. 

 P= XX  (A2) 

The distance d from an arbitrary vector to the orthogonal projection on the subspace L  is defined from Eq. (A1) and Eq. 

(A2) as follows. 

 ( )d x I P x  (A3) 

The distance pd  from x  to a linear manifold pL x  through px  can be written as follows if px  is the parallel moving 

amount from the origin. 

 ( )( )p pd I P x x  (A4) 

Let an evaluation function be a sum of distances from N points of (xi: i=1,…,N) to a linear manifold pL x  through px  

http://ieeexplore.ieee.org/search/searchresult.jsp?searchWithin=p_Authors:.QT.Maulik,%20U..QT.&searchWithin=p_Author_Ids:37298345500&newsearch=true
http://ieeexplore.ieee.org/search/searchresult.jsp?searchWithin=p_Authors:.QT.Bandyopadhyay,%20S..QT.&searchWithin=p_Author_Ids:37270160000&newsearch=true
http://ieeexplore.ieee.org/search/searchresult.jsp?searchWithin=p_Authors:.QT.Plewczynski,%20D..QT.&searchWithin=p_Author_Ids:38095143300&newsearch=true
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1 1 1

( )( ) ( ) ( ) ( )
N N N
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p i p i p i p i p

i i i

J d I P x x x x I P x x  (A5) 

Then, the variation equations of the above evaluation (A5) are obtained as functions of the independent parameters P and 

px , and these can be used to find the stationary solutions. 

 
1 1

2

1

2 ( ) ( ) 2 ( ) ( ) 0
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 (A6) 

These can then be rearranged and used the properties of matrices to obtain the following set of stationary equations. 

 
2

1

{ ( ) } 0

( ) 0

[ , , ], [1,1, ,1]

T

T

p i p N p

tr X P I X

P I Xet

where X x x x x x x et

 (A7) 

When these equations are solved for P and xp, the linear manifolds 
pL x  as stationary solutions are obtained; these may 

contain a least-squares solution and a most-squares solution. 
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