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Abstract-Nowadays, cloud computing offers more and more business opportunities, and thanks to the concept of virtualization, 
different types of cost-effective Cloud-based services have been rising. Virtualization of computing, storage, and networking 
resources, and their interconnection is at the heart of cloud computing, hence enabling new E-Business scenarios. In such a context, 
APIs for enabling Cloud-based services are strongly required, nevertheless, methods, mechanisms and tools for exploiting virtualized 
resources and their utilization for developing anything as a service (*aaS) are still ad-hoc and/or proprietary in nature. In this paper, 
we discuss how to use an adaptive standard protocol, i.e., XRI, for enabling cloud service providers to arrange their own Cloud-
based services, building them on top of the IaaS provided by other service providers. 

Keywords- Cloud Computing; Cloud Management; Federation; Service Composition; E-Business 

I. INTRODUCTION 

Today, cloud computing represents a tempting business opportunity for ICT operators of increasing their revenues [1,2]. 
The cloud ecosystem begins to be clearer and the role played by cloud service providers appears more defined than the past. 
Moreover, the number of new public, private, and hybrid clouds rising all over the world is continually growing [3]. The 
success of cloud computing is due to the fact that it offers new business opportunities for both service providers and their 
clients (e.g., organizations, universities, ICT societies, other clouds, mobile and desktop customers, etc), by means of 
architectures for delivering Infrastructure, Platform and Software as a Service (i.e., IaaS, PaaS, and SaaS) [4].  

A possible classification of cloud architectures can be made according to a three-tier stack [5]. As depicted in Figure 1, 
such a stack includes, the following three layers: Virtual Machine Manager (VMM), Virtual Infrastructure Manager (VIM), 
and Cloud Manager. 

 

Fig. 1 Three-tier stack describing a cloud architecture 

The VMM provides an abstraction for the above layer. It can be a hypervisor (e.g., Xen, KVM, VMware, Virtual Box, 
Virtual PC, etc) running on top of the Operating System (OS) of each physical server composing the cloud’s data centre, and 
enables the capability of deploying Virtual Machines (VMs).  

The VIM acts as a dynamic orchestrator of physical server running hypervisor. It is responsible to arrange IaaS defining 
which VMs have to be instantiated and in which physical server. The main purpose of this layer is to setup VMs (e.g., 
preparing disk images, setting up networking, and so on) regardless of the underlying VMM. In the end, the CM implements 
the business logic of a cloud service provider also addressing security and Quality of Service (QoS). It is responsible to arrange 
“specific” IaaS, PaaS, or SaaS, related to a target business, on top of “generic” IaaS provided by the underlying layer. 

Commonly, these three layers are implemented within an administrative domain and are managed by a single cloud service 
provider, nevertheless, as predicted by T. Bittman of Gartner [6], the evolution of the cloud computing market is switching 
from a “Monolithic” (Stage 1), where cloud providers are based on isolated proprietary architectures to a Vertical Supply 
Chain (VSC) (Stage 2), where cloud providers are able to leverage both Cloud-based services and virtualized resources from 
other providers in a distributed environment. This scenario brings many advantages for both ICT societies and the whole ICT 
market, but it raises issues due to the interoperability between the different stack tiers of the cooperating clouds. At the same 
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time, standard methods, mechanisms, and tools are strongly required for enabling the exploitation of virtualized resources and 
their utilization for the development of *aaS. 

Currently, mega-providers such as Amazon [7] offer IaaS adopting various pay-per-use forms including pay per hour, pay 
per data transferred, pay per GB-month of provisioned storage, pay per 10.000 GET requests, and so on. Such a form of 
business allows ICT operators to build their own Cloud-based services on the IaaS, i.e., VMs, supplied by these mega-
providers. However, at the time of writing of this paper, there is not a standard methodology which allows binding the Cloud-
based services with the IaaS on which they are deployed. 

In this paper, we propose a methodology based on a standard protocol, i.e., eXtensible Resource Identifier (XRI) [8], that 
enables a cloud service provider to develop its own Cloud-based services i.e., PaaS and SaaS, using the virtualized resources, 
i.e., IaaS, supplied by other providers in a VSC scenario including several cooperating public, private, and hybrid clouds. More 
specifically, by means of a case of study, we demonstrate as a cloud service provider can manage their composed Cloud-based 
services as a whole, retrieving information about them from the IaaS on which they are deployed. 

The paper is organized as follows: Section 2 describes the state-of-the-art of the existing open source cloud middleware, 
classifying them according to the three-tier stack. In Section 3, adapting the tree-tier stack for distributed cooperating clouds, 
we will discuss a scenario of VSC' in which both integration and composition of Cloud-based services take place. In Section 4, 
we introduce XRI, the protocol that can be adopted for the development of composed Cloud-based services. A concrete use 
case using XRI is presented in Section 5, highlighting also experimental results. Conclusions are summarized in Section 6. 

II. RELATED WORK 

As the major commercial cloud providers (e.g., Amazon, Microsoft Azure, Google, Saleforce, Yahoo, etc) adopt 
proprietary solutions, hiding their inner architectural details, from now on, in this dissemination, in order to describe a VSC 
scenario from the architectural point of view, we are going to consider open source cloud solutions. This Section describes the 
current state-of-the-art in cloud computing analysing the main existing open source implementations, evaluating their main 
features and classifying them according to the three-tier stack. Open source cloud computing solutions include CLEVER [9], 
OpenQRM [10], OpenNebula [11], OpenStack [12], Nimbus [13], Eucalyptus [14], Claudia [14]. 

Nimbus is an open source toolkit that allows turning a set of computing resources into an Iaas cloud. Nimbus comes with a 
component called workspace\--control, installed on each node, used to start, stop VMs and pause, implements VM image 
reconstruction and management, securely connects the VMs to the network, and delivers contextualization. Nimbus’s 
workspace-control tools work with Xen and KVM but only the Xen version is distributed. Nimbus provides interfaces to VM 
management functions based on the WSRF set of protocols. There is also an alternative implementation exploiting Amazon 
EC2 WSDL. 

Eucalyptus is an open-source cloud-computing framework that uses the computational and storage infrastructures 
commonly available at academic research groups to provide a platform that is modular and open to experimental 
instrumentation and study. Eucalyptus addresses several crucial cloud computing questions, including VM instance scheduling, 
cloud computing administrative interfaces, construction of virtual networks, definition and execution of service level 
agreements (cloud-to-user and cloud-to-cloud), and cloud computing user interfaces. 

OpenQRM is an open-source platform for enabling flexible management of computing infrastructures. Thanks to its 
pluggable architecture, OpenQRM is able to implement a cloud with several features that allows the automatic deployment of 
services. It supports different virtualization technologies managing Xen, KVM and Linux-VServer VEs. It also supports P2V 
(physical to virtual), V2P (virtual to physical) and V2V (virtual to virtual) migration. This means VEs (appliances in the 
OpenQRM terminology) can not only easily move from physical to virtual (and back), but that they can also be migrated from 
different virtualization technologies, even transforming the server image. 

OpenNebula is an open and flexible tool that fits into existing data center environments to build a Cloud computing 
environment. OpenNebula can be primarily used as a virtualization tool to manage virtual infrastructures in the data-center or 
cluster, which is usually referred as Private Cloud. The more recent versions of OpenNebula are trying to supports Hybrid 
Cloud to combine local infrastructure with public cloud-based infrastructure, enabling highly scalable hosting environments. 
OpenNebula also supports Public Clouds by providing Cloud interfaces to expose its functionalities for virtual machine, 
storage and network management. 

OpenStack is IaaS cloud computing project that is free open source software released under the terms of the Apache 
License. The project is managed by the OpenStack Foundation, a non-profit corporate entity established in September 2012. 
The technology consists of a series of interrelated projects that controls large pools of processing, storage, and networking 
resources throughout a datacenter, all managed through a dashboard that gives administrators control while empowering their 
users to provision resources through a web interface. 

CLEVER (The CLoud-Enabled Virtual EnviRonment) specifically aims at the design of a VIM layer for the administration 
of private cloud infrastructures. CLEVER is able to manage cluster of nodes each containing a host level management module 
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(Host Manager). A single node may also include a cluster level management module (Cluster Manager). All these entities 
interact exchanging information by means of the Communication System based on the XMPP [16]. The set of data necessary 
to enable the middleware functioning is stored within a specific Database deployed in a distributed fashion. CLEVER offers 
security and fault-tolerance and thanks to its modular and pluggable architecture represent a multi-platform solution integrating 
with lots of software solutions.  

Commonly, VIM layer middleware are able to use at VMM layer at least one third party hypervisor solution. Neglecting 
the VMM layers, Table 1 highlights which open source solutions match the VIM and CM layers. 

TABLE I CLASSIFICATION OF OPEN SOURCE CLOUD MIDDLE WARES ACCORDING TO THE THREE-TIER STACK 

Middleware VIM CM 
Nimbus x x 

Eucalyptus x x 
OpenQRM x  

OpenNebula x  
OpenStack x  
CLEVER x  

CLAUDIA  x 

In a scenario of hybrid clouds, projects such as Nimbus and Eucalyptus, which can be considered both at CM and VIM 
layers, manage VMs themselves directly, without providing the full set of features typical of the VIM layer. On the other hand, 
projects such as OpenQRM, OpenNebula, and CLEVER acting at VIM layer provide better virtual infrastructure management 
tools, but do not have CM features. In fact, they are able to manage VMs, either individually or in groups that need parallel 
scheduling on local resources or external public clouds. In addition, they automate VM setup (preparing disk images, setting up 
networking, and so on) regardless of the underlying VMM layer. In the end, projects such as CLAUDIA are able to manage as 
a whole cloud services, nevertheless they merely act at CM layer and need to interact with other solution acting at VIM layer. 

III. HOW TO ENABLE A CLOUD  TO ARRANGE CLOUD-BASED SERVICES USING MULTIPLE THIRD PARTY IAAS (S) 

The delivery of complex services, traditionally enhanced by service providers in client/server architecture, has become a 
necessity of our society. One outstanding problem of these architectures is that the demand of services is very difficult to 
predict: for this reason, resources are generally over provisioned in order to support peak demands. However, this implies high 
costs for both service providers and consumers. Besides, the current adopted solutions still need to find new heuristics for the 
delivery of ubiquitous, continuous and reliable services. With the advent of cloud computing, ICT operators have been aiming 
to overcome these problems. However, Cloud Service Providers to cost-efficiently deliver capacity, need mechanisms enabling 
reliable management of cloud-based services, and that efficiently manage all phases of the service life cycle. To simplify 
service deployment, an easy-to-use, comprehensive mechanism that allows the description, composition, installation, and 
configuration of complex Cloud-based services is required [17,18,19]. 

A. Vertical Supply Chan From an Architectural Point of View 

In general, considering the three-tier stack, we could say that the Cloud Manager layer implements the business logic of a 
Cloud Service Provider. In order to achieve a VSC, we generalized the three-tier stack for meeting the requirement of a 
business cloud ecosystem in which the Cloud Service Providers “cooperate” on the base of business agreements in order to 
compose Cloud-based services and deploying them on the IaaS supplied by other providers. An example of Vertical Supply 
Chain is depicted in Figure 2. 

 

Fig. 2 Three-tier stack describing a cloud architecture 
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Service Provider 1 is responsible to arrange a “specific” Cloud-based service, on top of “generic” IaaS(s) provided by the 
underlying layer. The computing infrastructure acting at the VIM layer may belong to Service Provider 1 itself or may be 
offered by third-party Cloud Providers 2, 3, ..., N.  In the scenario pointed out in Figure 2, requests for service allocation 
received from Service Provider 1 are processed and eventually IaaS instantiation requests are forwarded to Service Providers 2, 
3, ... , N, where are caught by the CM layer (which acts as interface between the “world” and the infrastructure) and sent to the 
underlying VIM layer. This latter will offer the ability of deploying VMs on which the IaaS, PaaS, and SaaS will be executed 
according to a dynamic and scalable fashion: each VIM of Cloud Providers 2, 3, ..., N, in order to satisfy the service allocation 
coming from the overlying CM, will exploit the capabilities of specific hypervisors acting at VMM layer, thus creating an 
abstraction for the physical datacenter(s). 

Considering the open source middleware analysis of Section 2, it is obviously that this scenario well fits middleware acting 
at CM layer such as Claudia and middleware acting at VIM layer such as OpenNebula, OpenQRM, and CLEVER. However, 
this scenario can be applied also to cloud middleware acting both at CM and VIM such as Nimbus and Eucalyptus, even 
though, how has been previously discussed, these latter do not offer so many features as well as middleware specialized for the 
VIM layer. Moreover, it is obvious that this scenario can be applied also to commercial IaaS provider such as Amazon.  

The scenario we are considering might be used to address situations in which a Cloud Service Provider acting both at CM 
and VIM layers has expired its computational capabilities, and it is not able to satisfy further service requests anymore. Such a 
scenario is depicted in Figure 3. 

 

Fig. 3 Service composition in a VSC scenario 

Cloud Provider A acts both at CM and VIM layers offering IaaS, PaaS, and SaaS. It wants to build a Cloud-based SaaS on 
top of a IaaS, but it does not have enough resources to arrange the required IaaS. Thus, in order to satisfy the SaaS allocation 
requests, it contacts respectively Cloud Service Providers B and C. Therefore, the SaaS will be built on top of the IaaS 
provided by Provider A datacenter also using the IaaS(s) provided respectively by Service Provider B and C. Nevertheless, this 
leads to a complex management of the resources because the running services will be deployed on independent computing 
infrastructures. 

B. Vertical Supply Chain Issues 

The scenario we are pointing out is more complex than a traditional “monolithic” one, as a smart, improved coordination 
system is needed for enabling the cooperation of the different involved Cloud Service Providers. In this new cloud perspective, 
together with the traditional internal monitoring mechanisms of each Service Provider, the service metering information 
became important both for accounting, billing and service placement decisions among the involved Service Providers: 
through this approach, each Service Provider is able to achieve an efficient use of the hardware resources, consequently 
minimizing costs.  

More specifically, as depicted in Figure 3, when the hardware resources of one Service Provider are insufficient, or it is 
necessary to re-arrange the service distribution for meeting the Service Level Agreement (SLA) scheduled with the Clients, the 
CM layer of a Cloud can exploit the resources coming from the VIM layers of other Service Providers Providers. Considering 
Figure 3, the CM and VIM layers of Service Provider A may be implemented by the same software solution (e.g., using 
Nimbus or Eucalyptus) or integrating a software solution acting at VIM layer (e.g., OpenNebula, OpenQRM. OpenStack, or 
CLEVER) with other software solutions acting at CM layer (e.g., CLAUDIA). 

In order to achieve and implement this scenario, some issues have to be addressed and some new features have to be 
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included within the middleware. The software solution of CM layer, in fact, must be able to interact with the underlying VIM 
middleware regardless of their implementation, in order to monitor the state of the computing infrastructure and consequently 
send specific commands to them. In particular: 

• it should be able to compose and instantiate Cloud-based services deploying them on the IaaS supplied other service 
providers by means of standard APIs; 

• it needs a specific mechanism for tracing the state of the requested Cloud-based services and maintain information about 
where they are deployed (i.e., the specific VIM middleware on which a service is deployed); 

• it should be able to access the VIM middleware services using a “common interface” that allows sending generic 
commands to the VIM (e.g., start, stop and destroy VMs); 

• in order to know the resource allocation state on each VIM middleware, a unified method for describing such an 
information has to be employed; 

A solution able to fulfill these requirements in a cloud scenario has not been defined yet and finding it is not trivial at all. 

IV. THE XRI TECHNOLOGY 

In this Section, after a brief description of the XRI protocol, we motivate how it can be used for enabling the arrangement 
of Cloud-based services in a VSC scenario. 

A. XRI and XRDS 

The XRI protocol provides a standard syntax for identifying entities, regardless any particular concrete representation. The 
XRI system is similar to DNS, including a set of hierarchical XRI authorities but more powerful. The protocol is built on URI 
(Uniform Resource Identifiers) and IRI (Internationalized Resource Identifiers) extending their syntactic elements and 
providing parsing mechanisms. Particular types of URI are URN and URL. Since an URL is also an URI, the protocol provides 
a parsing mechanism from XRI to URL. Therefore XRI is also compatible with any URN domain.  

XRI supports persistent and reassignable identifiers by means of i-numbers (Canonical ID) and i-names (Local ID). It also 
provides four types of synonyms (LocalID, EquivID, CanonicalID, and CanonicalEquivID) to provide robust support for 
mapping XRIs, IRIs, or URIs to other XRIs, IRIs, or URIs that identifies the same target entity. This is particularly useful for 
discovering and mapping to persistent identifiers as often required by trust infrastructures. XRI enable organization to logically 
organize entities building XRI tree. According to the XRI terminology, each entity in the tree is named authority. The protocol 
provides two additional options for identifying an authority: Global Context Symbols (GCS) and cross-references. Common 
GCS are “=” for people, “@” for organization, and “+” for generic concepts. For example the xri://@XYZ*marketing indicates 
the marketing branch of an organization named XYZ, where the “*” marks a delegation. Instead, cross-reference allows XRI 
references to contain any other XRI references or IRIs as sub-segments. An example is xri://@XYZ*(xri://ABC*development) 
indicating that the development branch of the XYZ organization is managed by the ABC organization. 

An authority is resolved by means of an XRDS document representing a simple, extensible XML resource description 
format standard describing the features of any URI, IRI, or XRI-identified entity in a manner that can be consumed by any 
XML-aware system. Each XRDS describes which types of information are associated to an authority and the way in which 
they can be obtained. Using HTTP, XRI resolution involves two phases: authority resolution which is the phase required to 
resolve an XRI into a XRDS document from an XRI Authority Resolution Server (ARS), and Service End-Point Selection 
which is the phase of selection of the SEP server (e.g., web service, service provider, web application) returning the data 
describing the entity in a given context. The same SEP server can also return different data of the same authority. 

B. Why Does XRI suit to Cloud Computing? 

In our opinion, XRI can be adopted to develop a seamless mechanism for the composition of Cloud-based services in a 
VSC scenario. As XRI is compatible with IRI naming systems, there is not the need to use a unique global naming system, 
even though this would be possible. This feature allows clouds to manage their own XRI naming systems, mapping them on 
the global DNS maintaining the compatibility with the existing naming systems. Moreover, with XRI a cloud can keep one tree 
representing IaaS, PaaS, and SaaS. In addition, such a technology can be used for both identify and resolve VMs and whole 
*aaS by means of the resolution of XRI authorities. Moreover, the XRDS document can be used to describe an XRI authority 
associated to a target service of VM, indicating how to resolve it by means of the corresponding SEP. 

For example the cloud service provider may need to retrieve three types of information about an authority representing a 
VM, resolving it in three different ways. In the first way, the VM has to be resolved by means of general data (e.g., CPU, 
memory, kernel, operating system); in the second way, the VM has to be resolved by means of real time performance data (e.g., 
amount of used CPU and memory used); instead in the third way, the VM has to be resolved by means real time data regarding 
an internal running application (e.g., the percentage of processed data). Such a situation can be addressed by mean of three 
different XRDs inside the XRDS document corresponding to the XRI authority associated to the VM, each one pointing to a 
target SEP server. Figure 4 depicts an example of authority resolution performed by Service Provider A in Service Provider B. 
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Fig. 4 Resolution of data associated to a VM using XRI 

In Step 1 the cloud Service Provider A performs a resolution request of an authority representing a VM to the XRI ARS of 
Service Provider B. In Step 2 the XRI ARS responses with a XRDS document describing the target VM. In Step 3 the Service 
Provider A analyzes the XRDS and find out how to retrieve the required information. Thus, the Service Provider A queries the 
target SEP server and obtains the required information. 

V.  CLOUD-BASED SERVICE ARRANGEMENT USING XRI-BASED INTERFACES 

In this Section, after a description on how the XRI technology may be used for addressing the issues debated in the 
previous, using the XRI ARS provided by the OpenXRI project [20], we are going to simulate the XRI operations needed in a 
Vertical Supply Chain scenario for the composition of Cloud-based services, evaluating their performances. 

A. Use Case Overview 

In order to clarify the ideas on how the XRI protocol can help the composition, development, and management of Cloud-
based services, we are going to consider a possible concrete business scenario involving a Service Provider and third party 
Service Providers able to leas resources. Let us suppose that a Cloud Service Provider named “Video Cloud SP” supplies a 
SaaS (e.g., video transcoding, video streaming, etc), building it on top of an IaaS consisting of several VMs running within its 
virtualization infrastructure, managed by a VIM middleware. Using the offered SaaS application, a Client will be able to 
exploit a high-level performance transcoding service because the Video Cloud SP (behind the scenes) parallelizes the video 
transcoding process, distributing the video source data to be processed among different VMs. 

Let us suppose that the Video Cloud SP runs out of its virtualization resources: in order to carry on providing video 
transcoding SaaS, it may exploit a Vertical Supply Chain using the IaaS(s) offered by external Service Providers. As 
previously stated in Section \ref{subsec:issues}, several issues have to be overcome. As depicted in Figure \ref{fig:video-
cloud-example}, the video transcoding SaaS is built on top of three different IaaS: the first one is provided by the 
Virtualization Infrastructure of Video Cloud SP itself, whereas the second one and the third one are respectively supplied by 
the Virtualization Infrastructures of Providers B and C. This implies that, besides the information about its own IaaS, the Video 
Cloud SP must be also aware about the status of the other IaaS(s). E.g., for each IaaS, it has to know how many VMs have 
been arranged and the percentage of completed tasks within each of them. 

B. XRI Data Retrieval for the Management of Cloud-Based Services 

The Video Cloud SP needs a method for describing the logical organization of its own running services and the different 
instances: this task can be accomplished using the XRI tree structure. 

As depicted in Figure 5, in order to logically manage their Cloud-Based services and retrieve associated information, Video 
Cloud SP, Provider B and Provider C use their own XRI ARSs and several SEP. More specifically, Video Cloud SP is 
represented by the XRI authority xri://@VideoCloudSP, whereas at the underlying level are mounted several authorities 
including *v_trans and *v_str respectively representing video transcoding and video streaming services. Moreover, 
considering the XRI authority *v_trans the underlying mounted authorities identify the different instances for that service. In 
turn, each instance may be built on top of one or more IaaS(s). For example, the instance represented by the XRI authority 
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inst_1 is arranged on three different IaaS(s): one hosted in the Virtualization Infrastructure of the Video Cloud SP itself, 
whereas the others are placed in the external Service Providers B and C. 

 

Fig. 4 Video Cloud Service Provider using External Virtualization Infrastructures 

As for the SaaS(s) of Video Cloud SP, Provider B, Provider C, and Video Cloud Itself, logically organize their IaaS(s) 
mapping them on their own XRI trees. The Video Cloud SP, using its own XRI ARS, builds another XRI tree, with 
xri://VideoCloud_IaaS authority root, representing its IaaS(s). At the underlying level are mounted the authorities representing 
the different IaaS instances, e.g., the authority IaaS_1 describes the used resources, and the underlying mounted authorities 
*VM_1 and *VM_2 represents the VMs on which the IaaS instance is deployed. More specifically, the paths to resolve the two 
VMs respectively are: 

• xri://VideoCloud_IaaS*VM_1  
• xri://VideoCloud_IaaS*VM_2. 

Similarly, Providers B and C logically organize their own IaaS instances using their own XRI ARSs: e.g., in example, the 
IaaS instance of Provider B, i.e., xri://ProviderB_IaaS*IaaS_1 is deployed on three different VMs represented by the XRI 
authorities: 

• xri://ProviderB_IaaS*IaaS_1*VM_1  
• xri://ProviderB_IaaS*IaaS_1*VM_2  
• xri://ProviderB_IaaS*IaaS_1*VM_3. 

In the same way, considering Provider C, the authority identified by xri://ProviderC_IaaS*IaaS*VM_1 represents the VM 
on which the xri://ProviderC_IaaS*IaaS_1 is deployed. 

The advantage of using XRI is that it allows creating an abstraction from the implementation of the CM and VIM layers. 
Considering the aforementioned video transcoding SaaS(s) the Video Cloud SP, at CM layer, needs a method to manage the 
instance identified by the xri://@VideoCloudSP*inst_1 authority. More specifically, the Video Cloud SP has to know the 
IaaS(s) on which the instance of the video transcoding SaaS is deployed (both its own IaaS and the IaaS(s) supplied by 
Providers B and C). Thanks to XRI, this is possible using cross-reference mechanisms, mounting under the 
xri://@VideoCloudSP*inst_1 the cross-reference authorities:  

• *(xri://VideoCloud_IaaS)  
• *(xri://ProviderB_IaaS*IaaS_1)  
• *(xri://ProviderC_IaaS*IaaS_1). 
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In this way, resolving these cross-reference authorities by means of appropriate SEPs, the Video Cloud SP is able to know 
the VMs where each IaaS is deployed, retrieving for each VM information such as the IP address, the percentage of used CPU, 
the amount of used memory, the amount of used internal storage, and the status of the running process associated to the SaaS 
(i.e., in our example the percentage of completed transcoded fragment of video). Thanks to such information, the Video Cloud 
SP will be able to build and update in real time the web graphical interface for the end-user of the video trascoding SaaS. 

Figure 6 depicts the resolution process performed by the Video Cloud SP which resolves the XRI authority associated to 
the IaaS supplied by Provider C. 

 

Fig. 5 Video Cloud Service Provider using External Virtualization Infrastructures 

In Step a.1 the Video Cloud SP resolves the authority xri://ProviderC_IaaS*IaaS_1. In Step a.2 the XRI ARS of Provider 
C responses with the corresponding XRDS document describing the target IaaS. The SP reads the XRDS and discovers the 
different SEPs returning particular data associated to the IaaS. In Step b.1 the SP selects the SEP1 of physical Provider C 
returning general information about the IaaS. SP wants to find out the information associated at the VMs where the IaaS is 
deployed and therefore it needs to discover the XRI authorities associated to them. This task can be achieved in two different 
ways according to the implementation: 1) recursively passing through the XRI tree starting from the *IaaS_1 authority; 2) 
retrieving this information from the XRDS document obtained at Step a.2. Considering this latter possibility, in Step c.1, the 
SP discovers that the IaaS is deployed on one VM whose XRI authority can be resolved by means of the path 
xri://ProviderC_IaaS*IaaS_1*VM_1. In Step c.2 the SP obtain the corresponding XRDS. As the SP wants to obtain from the 
VM the information regarding the real time percentage of completed transcoded fragment of video, it discovers that in this 
particular case the associated SEP is placed in the same VM in form of web service. In this way the SP is able to manage the 
whole video transcoding SaaS. 

The use of a SEP placed inside the VM allows a cloud service provider to flexibly manage composed services without the 
need to apply changes to the physical hardware composing the XRI infrastructure. In fact, for Cloud Providers the physical 
SEP describing general IaaS(s) is always the same, instead the SEP describing specific VMs can be customized and embedded 
within them when the disk-images are prearranged for a target IaaS. 

C. Cross-Mounting Performance Evaluation 

In this Section we are going to analyse the experimental results collected from a set of simulation that we performed using 
the ARS made available from the open source project OpenXRI. Our idea was to reproduce an environment able to fit the 
composition of Cloud-based services through XRI-based interfaces in the VSC scenario, considering different arrangements of 
the XRI authorities, even reproducing “extreme” functioning conditions.    

The series of tests executed (50 runs for each simulation, performed using the JMeter tool [21]) guarantee a wide coverage 
of possible results. The confidence interval (at 95%) depicted in all graphs indicates the goodness of our analysis. Our testbed 
has been deployed inside a system running a Redhat Enterprise Linux AS Release 3.0.8 operating system having the following 
hardware features: Blade LS21 AMD Opteron Biprocessor Dual Core 2218 2.6GHz 8GB RAM. 

To perform this analysis and estimate the workload of OpenXRI ARS 1.2.1 we submitted cross-mounting requests using 
JMeter and evaluated the Response Time of the system expressed in msecs. We have measured the time interval between the 
request phase to the system at Ts and the response time at Tr taking place in the receiving phase. 

In our graphs we reported the total time spent to accomplish each task: Tt=Ts+Tr. The exchange of requests and responses 
is measured in a local network (LAN, without any Internet connection), since the measurements are not affected from the 
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network communication parameters (e.g., throughput, delays, jitter, etc).  

All the collected results have been statistically analysed and presented schematically in Figures 6 and 7. These latter 
consider the response time of cross-mounting tasks in both wide and deep XRI tree structures. Figure 6 depicts the response 
time of authority cross-mounting tasks considering a wide tree structure. On the x-axis we have represented the number of XRI 
authorities, whereas on the y-axis we have represented the response time expressed in milliseconds. For this experiment, we 
have response times that range from about 1 second to less of 2 seconds considering 10, 100, and 1000 authorities, a result very 
good considering cloud computing environments. 

 

Fig. 6 Video Cross-Mounting task response time: "Wide Tree" 

In the end, Figure 6 depicts the response time trend of authority cross-mounting tasks considering the deep tree structure. 
On the x-axis we have represented the number of levels of the XRI tree structure, whereas on the y-axis we have represented 
the response time expressed in milliseconds. In such an experiment, considering 10, 20, and 30 tree levels, we can observe how 
the response time is indeed negligible: less of 0.2 seconds.  

 

Fig. 7 Cross-Mounting task response time: "Deep Tree" 

For the aforementioned reasons we can state that, in the OpenXRI implementation, the cross-mounting tasks are not 
dependent from the structure of the tree (wide or deep). 

VI.  CONCLUSION 

In this paper we tackled the composition of Cloud-based services in VSC scenarios considering hybrid cloud built 
according to a tree-tier stack. More specifically, we focus on a scenario including a cloud service provider which composes 
Cloud-based services deploying them the IaaS provided by other providers. In order to manage such services, a cloud needs to 
retrieve data about the IaaS(s) on which the services are deployed. In order to accomplish this task a solution using the XRI 
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protocol and its cross-reference mechanism has been discussed. Moreover, considering the XRI ARS provided by the 
OpenXRI project several experiments have been made. Information retrieval about composed Cloud-based services is only one 
of the possible issues in the VSC topic. We hope we succeed to stimulate your interest in further contributing about such a 
topic. 
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