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Abstract- In some diagnoses, such as the polysomnography, 
simultaneous measurement of the electroencephalogram (EEG) 
and the electrocardiogram (ECG) is often required. It would be 
more efficient if both the EEG and ECG could be obtained 
simultaneously by using a single measurement. In this paper, we 
introduce a nonlinear state-space projection-based technique to 
extract the EEG and ECG components from an EEG signal 
measured with a non-cephalic reference (NCR) that guarantees 
accurate detection of R waves in the EEG measurement. 
Evaluation of the method using simulated data showed that the 
improved normalized power spectrum in alpha, beta (13–30 Hz), 
and theta bands were accurate. In an accrual EEG, measured 
using the NCR electrode, it was confirmed that the frequency 
components of the extracted EEG were accurate, and no spikes 
that could be attributed to the ECG component were observed in 
the resultant EEG signal. 

Keywords- Polysomnography; EEG; ECG; Non-Cephalic 
Reference;  Nonliner State-Space Projection  

I INTRODUCTION 

The electroencephalogram (EEG) and the 

electrocardiogram (ECG) are frequently measured in some 

diagnostic procedures such as the polysomnography or the 

hybrid brain-computer interface (BCI). In addition, they are 

used in ambulatory monitoring 
[1,2].

 However, multichannel 

recording can be inconvenient and can often cause stress to 

the patient even though EEG and ECG which are effective for 

monitoring the physiological signals of human beings. 

Therefore, it is desirable to simultaneously record EEG and 

ECG signals using a single electrode. We propose a method 

to simultaneously obtain both EEG and ECG signals using a 

single active electrode and a non-cephalic referential 

electrode.  

A standard EEG signal is usually measured with an ear 

reference. In some rare cases, the ECG components, which 

are regarded as artifacts to be removed, can be observed in 

the EEG signal, although the EEG recording does not always 

acquire the ECG component 
[1]

. In our previous work 
[4, 5, 6]

, 

we attempted to move the reference electrode used for the 

EEG recording from the ear to a non-cephalic location in 

order to more reliably obtain ECG components in EEG 

measurements; this reference electrode was described as a 

non-cephalic reference (NCR) electrode. The ECG 

components measured with the NCR electrode were 

sufficiently strong as compared to the EEG components to 

allow for further processing. We found that EEG and ECG 

components could be obtained in a single measurement if an 

EEG-ECG combined signal from the NCR electrode is 

separated into two components by using an appropriate 

method. Our current objective is to develop a signal 

processing algorithm that can separate the EEG and ECG 

signals to extract EEG components in the frequency domain 

and detect peaks of the R wave of the ECG for a heart rate 

analysis.  

To separate the EEG-ECG combined signal, we proposed 

three methods in our previous studies 
[4, 5, 6].

 The first was 

based on signal averaging ECG (SAECG) and wavelet 

transformation
 [5].

 Generally, the SAECG method is used to 

remove ECG artifacts from the EEG signal (however, in our 

study, the ECG component was not treated as an artifact to be 

eliminated). Nevertheless, the resultant signal contains some 

non-negligible residual ECG components, which have 

harmful effects in terms of EEG frequency analysis. In our 

research 
[5],

 wavelet transformation was used to remove 

residual components attributed to the SAECG, and most 

frequency components of EEG were extracted from EEG-

ECG combined signal measured with the NCR electrode. The 

other two methods were realized in the opposite manner as 

the first method; regarding the ECG as the major signal and 

the EEG as a type of EMG-like noise, where the EEG signal 

was first removed to obtain an estimated ECG from the raw 

signal. In 
[5], 

the combined EEG-ECG signal was decomposed 

by five scale levels and the wavelet shrinkage, a technique to 

eliminate noise from the ECG, was performed to separate 

EEG components from the combined EEG-ECG signal. 

Because the shrinkage function was ineffective for 

approximation level five, we proposed a processing method 

based on cosine window function. A combination of wavelet 

shrinkage and the cosine window function could separate the 

EEG and ECG components from the mixed signal, implying 

that denoising algorithms for the ECG signal can be applied 

to separate EEG and ECG components. In
 [6], 

the application 

of the cosine window function proposed in
 [4] 

was improved. 

In 
[4]

, in approximation level five, the wavelet coefficient was 

determined using a window function of a fixed size. However, 

given the fluctuations of ECG durations, a variable window 

size is preferable, and thus, a variable window operation was 

proposed. Although 
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the shape of the separated ECG components was rough, 

this method was shown to separate EEG and ECG signals that 

included ectopic beats, which was a significant feature among 

the three methods because the SAECG-based method
[5] 

could 

not distinguish ectopic beats. 

In the above-described methods 
[4-6],

 estimation of EEG 

and ECG components depended on the periodicity of the 

ECG component. These processes were not suitable when the 

separated EEG and ECG components had to be applied on a 

real-time basis, such as in the hybrid BCI 
[11],

 because the 

analysis of the EEG signal must be controlled by the 

periodicity of the ECG component. Therefore, a method that 

is not regulated by the periodicity of the ECG component 

would be more effective for a real-time EEG-based analysis. 

In this paper, we propose a suitable algorithm to accomplish 

this objective. 

 In a previous study 
[7],

 five denoising methods were 

compared for the single electrode ECG, and nonlinear state-

space projection
 [8, 9]

 was found to be the most effective. 

Nonlinear state-space projection is based on the principle 

component analysis of the phase space of a dynamical system. 

While the methods
 [4-6]

 explored in our previous studies were 

dependent on the periodicity of the ECG component, 

nonlinear state-space projection can be performed on every 

sample. However, limitations of nonlinear state-space 

projection include the requirement of a computationally 

intensive high-dimensional nearest neighbor search, although 

it can be expected to estimate a clearly shaped ECG. 

Although nonlinear state-space projection has advantages as 

well as disadvantages, it produces a superior performance in 

terms of SNR. In addition, it offers the potential to obtain a 

clear EEG component independent of the periodicity of the 

ECG component. In this paper, we evaluate the feasibility of 

nonlinear state-space projection as a method of separating the 

EEG and ECG components from a single measurement. 

II METHOD 

A. Nonlinear State-Space Projection 

Nonlinear state-space projection is a technique 
[8, 9]

 that 

can be used to separate the ECG signal from other 

components, e.g., artifacts and noise. Particularly, in 
[9],

 this 

technique was used similarly to our proposed application to 

extract a fetal ECG from the maternal ECG. In 
[9],

 an accurate 

fetal ECG needed to be extracted to perform a diagnostic 

technique for fetal cardiac activity. This study appears similar 

to our study, in that both the ECG and the separated 

component need to be made available in these studies.  

The first step of a general nonlinear method is to 

reconstruct the phase space of the dynamical system, for 

example, by using delay coordinates ),( 1 nmnn xxX  . Fig. 1 shows 

the two-dimensional delay representation; the one on the left 

was generated from a clean ECG signal, while the one on the 

right was extracted from a noisy ECG. It is intuitively 

understood that nonlinear state-space projection predicts the 

clean delay representation on the left from the noisy one on 

the right. Xn is defined as an embedded vector and is 

equivalent to the true dynamic coordinates, provided the 

embedding dimension m is sufficiently large. Herein, 

approximate projections are used locally in the reconstructed 

phase space to separate the EEG components from the 

combined EEG-ECG signal. 

 
Fig. 1 Delay representation of ECG signals (Left: clean ECG, Right: noisy 

ECG) 

A procedure to compute the correction for the nth 

embedding vector (yn = the embedded vector of the EEG-

ECG combined signal) constitutes the following eight steps. 

1) The delay coordinates yn are generated. The 

embedding dimension (m) is set to 200 (m was selected 

empirically). 

2) A small neighborhood (u) around the point (n) is 

searched. The index for the set of points falling in this 

neighborhood is denoted as un, and hence, the neighboring 

points are designated as nj ujy ,
, where nu

 is the total number 

of points in the neighborhood. In the following example, the 

neighborhood size was set to the smallest value that produced 

mk  neighbors, with no less than 50 units. From the 

points nk uky , , we constructed the mean 
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3) In an embedding space with dimension m, the 

covariance matrix of all delay vectors is computed in a small 

neighborhood surrounding a given point, which should be 

corrected  
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4) The eigenvectors and the eigenvalues of this matrix are 

calculated under the assumption that the clean signal exists 

near a smooth manifold with dimension d < m, and that the 

variance of the EEG is smaller than that of the ECG signal.  

5) Large eigenvalues correspond to the directions for the 

signal, and small ones correspond to all other directions. 

Therefore, the vector under consideration is moved towards 

the subspace of large eigenvectors to separate the EEG signal.  

6) To penalize corrections based on the first and last 

coordinates in the delay window, the equation rRR mm 11  is 

applied, where r is a large value. Other values along the 

diagonal of R are set to one. The Q orthogonal eigenvectors 

of the covariance matrix with the smallest eigenvalues are 

called
Qqeq ,1, 

. The projector onto the subspace spanned by 

these vectors is then 





Q

q
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7) The ith component of the correction n  is given by 


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8) Finally, the correction n  is added to each original 

embedded vector to bring the point towards the manifold 

spanned by the m-Q largest eigenvectors. Then, an estimated 

embedded vector of the ECG component is obtained. Note 

that the R penalty matrix yields the two largest eigenvalues, 

which lie in the subspace spanned by the first and last 

coordinates of the embedding space, and prevents the 

correction vector from having any components in the these 

directions. 

These steps are performed for each embedding vector. 

Given that each element of the scalar time series occurs in m 

different embedding vectors, many different suggested 

corrections are obtained. In our study, one of the suggestions 

was selected for further evaluation.  

B. R Wave Detection Method: Smoothing Nonlinear Energy 

Operator 

In our previous research 
[4-6],

 a smoothing nonlinear 

energy operator (SNEO) was applied to detect the R-wave 

peaks in the EEG signal
 [10].

 The SNEO is sensitive to 

instantaneous changes in frequency-dependent energy and 

can emphasize R-waves that corrupt the EEG signal by the 

Teager-Kaiser energy operator 
[10].

 

III EVALUATIONS AND RESULTS 

The proposed method was evaluated using both simulated 

and actual data measurements recorded using a NCR 

electrode. 

A. Evaluation Using Simulated Data 

We simulated the target signal by blending the actual, 

measured lead I ECG and O2-lead EEG signals recorded from 

four subjects, including three males and one female, all aged 

21 to 22 years. The duration of each EEG measurement is 

approximately five minutes. The sampling rate of both the 

measurements was 250 Hz, and both were filtered using a 

0.5–40 Hz band-pass filter. The EEG and the ECG data for 

each subject were combined with several ratios of the EEG 

and ECG to generate the simulated data. Eq. (5) defines the 

ratio between the EEG and ECG components, which is called 

the spike-to-background signal energy ratio (SBR) 
[9].
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 is the energy of the kth QRS complex with 
)(k

SN
 

points, kN
 is the number of spikes in the entire signal, and 

EE(n) is the energy of the EEG signal in the nonspiked area 

with BN  points. 

A value of m = 200 was set for the embedded space to 

generate the delay coordinates, and then, nonlinear state-

space projection was performed to separate the signals. To 

evaluate the separated EEG component, the improved 

normalized power spectrum (INPS) was calculated for the 

delta, theta, alpha, and beta (beta1:13–30 Hz and beta2: 30–

40 Hz) components, respectively. 

In Eq. (6), P is the power spectrum of the EEG signals 

calculated by using FFT, and the summation is carried for the 

corresponding frequency band. The closer the INPS is to 1, 

the more accurate is the result.  





EGEstimatedE

EEG

P

P
INPS                 (6) 

Figs. 2(a), (b), (c), (d), and (e) show the original EEG, 

ECG, simulated EEG-ECG combined signal, estimated ECG, 

and estimated EEG signal, respectively. Fig. 3 shows INPS, 

where the SBRs were 10, 50, and 90. Fig. 3(a)–(e) shows the 

INPS of the alpha, beta1, beta2, delta, and theta bands, 

respectively. In Fig. 2, ns = 10, ns = 25, and ns = 50 indicate 

the neighborhood size. In this evaluation, the estimated EEG 

components were reconstructed with Q = 2, as discussed 

below.  

 
Fig. 2 (a) Original EEG, (b) original ECG, (c) simulated signal, (d) estimated 

ECG signal, (e) estimated EEG signal 

 
Fig. 3 Results of the INPS from the simulation data; (a)–(e) 

are the results of the INPS from the alpha, beta1, beta2, delta, 
and theta bands, respectively 

B. Evaluation of signals recorded using an NCR electrode 

Examples of actual signals recorded using the NCR 
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electrode are shown in Figs. 4 and 5. The EEG electrode is 

located at lead O2, and the NCR electrode is located at a 

position above the left clavicle. The signal was recorded with 

a sampling rate of 500 Hz and filtered with a 0.5–40 Hz band-

pass filter. In addition, the signal was downsampled to 250 

Hz to compare it with the simulated signal. Figs. 4 and 5 also 

show results from the same subject. The waveform shown in 

Fig. 4(c) was estimated with Q = 2, and the one shown in Fig. 

5 (c) was estimated with Q = 3.  

 
Fig. 4 Results from an actual EEG measurement using an NCR electrode (Q 

= 2). (a) Raw EEG signal obtained using an NCR electrode, (b) estimated 

ECG component, (c) estimated EEG 

 
Fig. 5 Results from actual EEG measurements using the NCR electrode (Q = 

3). (a) Raw EEG signal using an NCR electrode, (b) estimated ECG 

component,(c) estimated EEG 

C. Evaluation of R wave detection in the EEG signal 

measured using the NCR electrode 

In this study, an evaluation procedure for the separated 

ECG components was not stated concretely because our 

previous studies have established that EEG measurement 

using the NCR electrode produces robust detection of R 

waves
 [4, 5, 6].

 In our previous studies
 [4-6],

 detection rates of R 

waves in the EEG signal were evaluated. In this paper, we 

briefly describe the result of R wave detection using datasets 

identical to those used in our previous studies. In our previous 

studies, evaluation indices for R wave detection included both 

sensitivity and specificity, which were determined as 

sensitivity = (true positive/ true positive + false negative)*100 

and specificity = (true positive/true positive + false 

negative)*100, respectively. As a result, the specificities and 

sensitivities of the R-wave detection rate ranged from 90%–

100%, where the SBR varied from 10–90, indicating the 

effectiveness of the measurement using the NCR electrode 

and SNEO-based R-wave detection method. 

IV DISCUSSION 

In this paper, we propose a method for the separation of a 

combined EEG and ECG signal to obtain an accurate 

frequency analysis for the EEG signal and to detect the R 

wave for the ECG signal using a single EEG measurement. 

We evaluated this method by using simulated data and 

evaluated actual signals measured by using an NCR electrode. 

Fig. 2 illustrates the result produced by the proposed method 

using simulated data. In Fig. 2(d), a remaining EEG 

component can be seen within the estimated ECG component. 

In contrast, Fig. 2(e) shows that the estimated EEG 

component does not have outstanding QRS complexes and 

the shape of the estimated EEG component can be 

approximately reconstructed to resemble the original EEG 

waveform shown in Fig. 2(a). In addition, Fig. 3 shows that 

the INPS of the alpha, beta1, delta, and theta bands could be 

accurately contained within the estimated EEG, depending on 

the parameters used. Moreover, Fig. 2 shows that the suitable 

neighborhood size was different for each frequency band; for 

example, the alpha band could be effectively reconstructed 

when ns = 10 and the delta band was most adequate when ns 

= 50. These results show that the neighborhood size can, in 

fact, be selected based on the desired frequency band. 

Figs. 4 and 5 show the results from the same actual EEG 

measurement made using the NCR electrode, implying that 

the difference between Fig. 4(c) and Fig. 5(c) can be 

attributed to the value of Q. These results demonstrate that the 

EEG component can be reconstructed by the two smallest 

eigenvectors, because, as shown in Fig. 5(c), an outstanding 

spike artifact near the QRS complex was observed in the 

estimated EEG component at around 1.8 s. In other words, 

the principle component of the ECG is mainly exists in 3Q .  

In 
[4]

, INPS ranged from approximately 0.5 to 1, which is 

comparable to the accuracy observed in this study. However, 

in this case, the parameters (e.g., d, R) were not optimized. 

Therefore, there remains potential for improvement in the 

proposed method, although this study successfully 

demonstrated that nonlinear state-space projection is a 

feasible method to separate simultaneously measured EEG 

and ECG signal components. In addition, nonlinear state-

space projection can be applied to every sample, which is a 

feature effective for real-time analysis. 

V CONCLUSIONS 

We reported and evaluated an algorithm for separating 

EEG and ECG components from a combined EEG-ECG 

signal recorded using the NCR electrode. The method 

guarantees accurate detection of R waves in the EEG 

measurement, which was confirmed by the sensitivity and 

specificity values of R wave detection of 100% in most SBRs. 

The proposed separation algorithm was based on nonlinear 

state-space projection, consisting of the principle component 

analysis of the phase space of a dynamical system. The 

evaluation using simulated data showed that the INPS of the 

alpha, beta1, and theta bands of the EEG could be accurately 

contained within the estimated EEG when SBR = 10 and Q = 

2. The suitable neighborhood size was different for each 

frequency band, implying the selected neighborhood size can 

be optimized for obtaining a desired frequency band of the 

EEG signal. These results demonstrate the feasibility of 

nonlinear state-space projection-based separation of EEG and 

ECG component from combined signals. 
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