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Abstract- Neural network models seem to have potential for 
prediction purposes and this has led to a number of studies 
comparing the performance of neural networks and regression 
analysis. Regression technique is based on certain basic 
assumptions and validity of these assumptions is critical to its 
performance. This issue does not appear to have been 
considered in most of the comparative studies. In the present 
study, we intend to focus on this aspect by comparing the 
performance of both the techniques using simulation when all 
the assumptions of regression are met. This study reveals that 
the performance of regression analysis and neural network are 
comparable for large and medium sample sizes and suggests 
the need for careful implementation of neural network when 
the sample size is small. 
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I. INTRODUCTION 

Neural networks and Regression analysis have been 
studied and compared by various authors (eg. Korkut et al. 
2011; Guo, W.W. (2010); Yilmaz, I. (2009); Liu, X. et al. 
(2009); Pendharkar, 2006; Hardgrave et al. 1994). However, 
most of these comparative studies focus on specific 
applications where the main objective is to achieve best 
results on a given application data set. As the application 
data sets are generally fixed and their characteristics are 
unknown, it is difficult to evaluate the effect of various data 
characteristics like sample size, number of variables, noise, 
etc. on the performance of the technique under study. 
Simulation allows better assessment of the performance of 
analytical techniques by generating data with the required 
characteristics especially when the objective is to compare 
the performances of the two techniques.  

Few studies in literature (eg. Marquez, Hill, Worthley 
and Remuse, 1991; Marquez and Hill, 1993; Cherkassky, 
Gehring and Mulier, 1996; Banks, Olszewski and Maxion, 
2003) have used simulated data sets for studying 
comparative performance of various techniques. Marquez, 
Hill, Worthley and Remuse (1991) have used simulation to 
carry out an empirical study for evaluating the performance 
of regression and neural networks by varying some data 
characteristics like functional form of the linear model, 
amount of noise and sample size of the data. The results of 
this study indicate that neural network models perform best 
under conditions of high noise and low sample size and in 
case of less noise and larger sample sizes, neural network 
becomes less competent. Also, Marquez and Hill (1993) 
have conducted simulation study where they have compared 
the performance of back_propagation neural network and 

general regression neural network in approximating various 
functions in the presence of noise. They have concluded that 
back propagation model showed significant advantage over 
general regression model in approximating functions under 
condition of low random noise. The accuracy in the 
performance of the back propagation model diminishes as 
the level of random noise increases. This observation limits 
the claim that neural networks are more robust in case of 
noise in the data.  

Cherkassky, Gehring and Mulier (1996) have compared 
six adaptive methods (Nearest neighbour, generalized 
memory based learning, projection persuit, artificial neural 
networks, multivariate adaptive regression splines and 
constrained topological mapping) for function estimation by 
creating artificial datasets to provide some insights on 
applicability of these methods. No single method proves to 
be the best among the methods considered in this study. 
They have observed that statistical methods using greedy 
and fast optimization procedures tend to be less robust than 
neural network methods using iterative optimization 
methods for parameter estimation. Banks, Olszewski and 
Maxion (2003) have presented extensive simulation 
experiment comparing the performance of ten different 
multivariate nonparametric regression techniques: linear 
regression, stepwise linear regression, additive models, 
projection pursuit regression, recursive partitioning 
regression, multivariate adaptive regression splines, 
alternating conditional expectations, additivity and variance 
stabilization, locally weighted regression, and neural 
networks. Datasets used in the experiment are constructed to 
have a range of characteristics by varying the dimension of 
the data, the sample size, the amount of noise, and the 
complexity of the embedded structure. Analyses of the 
results show that all of these properties affect the accuracy 
of each regression technique under investigation.  

 The studies carried out by Marquez, Hill, Worthley and 
Remuse (1991) and Marquez and Hill (1993) pertain to 
comparison of neural networks and regression analysis 
using simulated data sets but these studies are restrictive in 
terms of the sample size and the number of independent 
variables. The need for a more rigorous statistical 
comparison of neural networks with other traditional 
techniques has been emphasized by Sharda and Wilson 
(1993) as many studies in the literature have reported the 
superior performance of neural networks on an anecdotal 
basis leading to much skepticism. The statistical techniques 
are based on certain fundamental assumptions and this issue 
does not seem to have been considered in many of the past 
comparative studies involving neural networks and 
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statistical techniques (Paliwal and Kumar, 2009). Further, 
the comparative performance of the two techniques has not 
been studied properly with respect to a variety of data 
characteristics in the past literature.  

In this paper, we intend to compare the performance of 
regression analysis and multi layered feed forward neural 
networks using simulation when all the assumptions of 
regression technique hold true. Data sets with different 
sample size, number of independent variables and amount of 
noise are simulated in order to carry out this comparison. In 
this study, Levenberg-Marquardt (LM) algorithm (Bishop, 
1995) has been used for training neural networks though 
most of the past studies have used back propagation 
algorithm to train the networks. Due to the slow 
convergence rate of back propagation algorithm, there 
seems to be an increasing interest in the neural network 
research community for new and improved training methods. 
In recent years, the LM algorithm is becoming increasingly 
popular and considered to be an efficient algorithm while 
training neural networks that have up to a few hundreds of 
weights (Hagan and Menhaj, 1994). Appropriate 
experimental design is used to compare the predictive 
accuracy of regression analysis and multi layered feed 
forward neural networks techniques and mean squared 
prediction error is used as the performance evaluation 
criterion. Further, asymptotic prediction intervals for neural 
networks are also calculated and are graphically compared 
with the prediction intervals of regression analysis.  

In Section II, the experimental design, the process of 
simulation and the prediction intervals are discussed. 
Section III presents the analysis and the results of the data 
analysis are given in Section IV. Section V presents the 
conclusion of this study. 

II. METHODOLOGY  

The data sets are simulated using Monte Carlo 
simulation such that all the assumptions of multiple 
regression model are satisfied. Factors explored in this study 
are (1) number of independent variables (2) sample size (3) 
levels of noise and (4) methods of analysis. The effect due 
to these four factors and their interaction effects will be 
analyzed using appropriate experimental design. The 
following subsections describe the experimental design, the 
process of simulation and the prediction intervals. 

A. Experimental Design  
The experiment is a 3 x 3 x 3 x 2 factorial design in 

which there are repeated measures on the last factor.  The 
four factors considered in this study are the number of 
independent variables, sample sizes, levels of noise and 
methods of analysis. The choice of the levels of these three 
factors depends on previous literature and also on 
applications that arise in practice. The last factor represents 
the two methods of analysis, namely regression analysis and 
neural networks that are used to analyze the same data under 
different experimental conditions. Each of the experimental 
conditions is replicated 30 times to average the sampling 
fluctuations. The different levels (or values) that are 
considered for each factor in the experiment are as follows:  

Number of Variables (p): three levels considered for the 
dimension of the number of independent variables are 2, 4 
and 10.  

Sample Size (n):  the sample size is obtained using the 
formula given by Sawyer (1982). 

2 2

2 2

2 1
1 1

K Kn p
K K

−
= +

− −                       (1) 
where p is the number of independent variables in the 

model and K denotes the amount of inflation in the measure 
of performance due to estimating the coefficients and is 
called the inflation factor. Three values of this inflation 
factor are used to get small, medium and large samples 
corresponding to each level of number of independent 
variables p. Table 1 shows the choice of n for different 
values of p and K. 

TABLE I SAMPLE SIZES FOR DIFFERENT VALUES OF P AND K. 

K p = 2 p = 4 p = 10 

1.1 18 30 65 

1.01 150 255 560 

1.003 500 840 1840 

Levels of Noise: Signal-to-noise ratio (SNR) is used to 
measure the variation present in the data generated. The 
squared length of the regression parameter vector is referred 
to as Signal-to-noise ratio. The chosen values of SNR are 1, 
4 and 25 corresponding to high noise, medium noise and 
low noise respectively.  

Methods of Analysis: To compare the performance of 
the two techniques, least squares multiple regression 
analysis and multilayer feed forward neural network using 
Levenberg-Marquardt training algorithm are used. 

B. Process of Simulation 

Data matrices containing the required number of 
independent variables (Xi) were generated using SAS IML 
(SAS Institute, Inc. 2007). The number of design cells in 
this experiment is 27 pertaining to our choice of 
independent variables, sample size and random noise, all 
being at three levels. The number of replications chosen for 
this experiment is 30. Accordingly, thirty data matrices were 
generated for each of the design cells and analysed by both 
regression analysis and neural network technique. The data 
sets are simulated from the model of the Form (2) such that 
all the assumptions of the multiple regression model hold 
true. 

0 1 1 ... ...i i j ji p pi iY X X Xβ β β β ε= + + + + + + ,  

     for 1, 2,....,i n=  and 0,1, 2,...,j p=              (2) 

where iY  is the dependent variable, jiX s  are p 
independent variables and generated from Normal 
distribution with mean zero and variance 1, iε  is the 
random error component generated from Normal 
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distribution with mean zero and constant variance 2σ and 

j sβ  are the parameters of Model (2). Using Delaney and 
Chatterjee (1986), the regression coefficients are computed 
as  

( )j u jr uβ = β                           (3) 

where 2 2
u jr u=∑ and , 1, 2,....ju j p= are uniform 

random numbers in the interval  [-10,10] in order to have 
enough variation in the magnitude of individual coefficients 
in the regression analysis. The squared length of the 

regression parameter vector (
2 = 'β β β ) chosen for this 

study is 100 and is a measure of the strength of the signal. 
The error variances are computed for the selected value of 

2β (=100) and the SNR (=1, 4 and 25) by using the 

relation SNR= 2σ'β β resulting in 2σ = 4, 25 and 100 
corresponding to the three levels of SNR. Descriptive 
statistics were examined on the resulting data matrices to 
verify the desired data characteristics. The resultant data are 
analysed using both regression and neural network in order 
to compare the techniques when all the assumptions of 
regression model are satisfied. To obtain asymptotic 
prediction intervals, data sets containing 1000 observations 
were generated for each of the levels of number of 
independent variables and the levels of noise. 

C. Prediction Intervals 

This subsection describes the prediction intervals for 
predicting the future observation 0Y  using the regression 
model and the neural network model.  

Prediction Interval for the Regression Model:  

An appropriate 100(1 )%α−  prediction interval for 

0Y is given by 

( 1) ' '
0

2
[ 1 ]n pY t sα

∧
− −± + -1

0 0X (X X) X               (4)  

where, the columns in the matrix X contain the observed 
values of the independent variables corresponding to the j 
parameters 0 1, ,...., pβ β β , 10 20 0[1 ... ]kx x x=0X is a 
row vector containing the values of independent variables 
for the new observation 0Y  and 2tα  denotes the 

2α quantile of a t distribution with 1n p− − degrees of 

freedom and ' '1s + -1
0 0X (X X) X is the standard error of 

the prediction error 
^

00( )Y Y− . 

Prediction Interval for the Neural Network Model: 
Asymptotic prediction intervals for multilayer feed 

forward neural network based on certain assumptions have 
been obtained by Hwang and Ding (1997). This approach is 
used to construct the prediction intervals as detailed below: 

Let us assume that the observations 
( , ), 1, 2,...,i iY i n=X  satisfy the model  

( )i i iY gθ ε= +X                               (5) 

where iY is the output of the neural network 

( )igθ X and iε is the error. Further assume that 0Y is the 
future observation that satisfy   

0 0 0( )Y gθ ε= +X                           (6) 
Assuming 0ε is normally distributed, the asymptotic 

prediction interval for the observation 0Y can be constructed 
as 

^

^

0 1 2, ( 2) 1( ) 1 ( )n p hg X t Sα
θ

σ θ
∧

− − + −± +           (7)  

with asymptotic coverage probability (1 ).α− Here, 

1 2, ( 2) 1n p ht α− − + −  denotes the 1 2α− quantile of a t-

distribution with ( 2) 1n p h− + − degrees of freedom,  

( )
2

2

1

1 ( ) ,
( 2) 1

n

i i
i

Y g
n p h θ

σ ∧

∧

=

= −
− + − ∑ X and  

[ ] [ ]^ ^

1^

0 0
1( ) ( ) ( ) ,tS g X g X
n θ θ θ θθ θ θ θ

θ
−∧

= =

 
= ∇ ∑ ∇ 

 
 

where 

^

^ ^

1

1( ) ( ) ( ) ,
n

t
i i

i
g X g X

n θ θ θ θ θ θ
θ

=
=

 ∑ = ∇ ∇ ∑  

 p is the number of input nodes and h is number of neurons 
in the hidden layer and it is assumed to be known. 

III. DATA ANALYSIS 

Initially, data sets containing twice the sample size given 
in Table 1 were generated for each of the design cells. One 
half of this data set was used to train the data and the other 
half was used to validate the trained model and to compare 
the predictive performance of both the techniques. These 
two data sets are referred as training sample and hold out 
sample respectively. The procedure mentioned above is 
replicated 30 times. Replication refers to the repetition of 
the experiments at each combination of levels of different 
factors. This provides a precise estimate of the sample mean 
of the factors of the experiment. Analysis of variance for 
this repeated measure factorial experiment is carried out in 
order to evaluate significant differences in the performance 
of the two techniques with respect to various design factors.  

Appropriate prediction intervals are also constructed to 
predict the future observation Y0 from the regression model 
and the neural network model for all the designs 
corresponding to each of the three levels of number of 
independent variables and three levels of noise. Asymptotic 
prediction intervals for the multilayer feed forward neural 
network are graphically compared with the prediction 
intervals of regression analysis and the results are presented 
in the next section.   
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A. Performance Evaluation Criterion 

In order to compare the performance of these two 
techniques, mean squared error is used as the performance 
evaluation criterion.   

Mean square error (MSE) is an unbiased estimate of 2σ  
and is given by  

2 2

1

1 ( )
1

n

ii
i

s Y Y
n p

∧

=

= −
− − ∑                     (8) 

This estimate is appropriate to be used on the training data 
but provides an underestimate when used on a hold out 
sample. An appropriate measure to be used on test data is 
mean squared prediction error (MSPR) given by 

2
*

1

1 ( )
n

ii
i

MSPR Y Y
n

∧

=

= −∑                       (9) 

where *n  is the number of observations in the test data set 

and where the predicted values iY
∧

are obtained using the 
trained model. This measure indicates the performance of 
the trained model on future observations. 

Square root of the above measures, namely root mean 
square error (RMSE) and root mean square prediction error 
(RMSP) are respectively used for the training data and test 
data so that the error is expressed in the same units as the 
observations.   

B. Neural Network Architecture Selection  

Feed forward network architecture is considered and is 
trained using LM algorithm. The network was considered 
with one input layer and one output layer. Initial 
experiments were carried out to compare the performance of 
feed forward network with one, two and three hidden layers 
in order to decide the number of hidden layers for each of 
the 27 experimental conditions. No improvement in the 
prediction accuracy was observed with the addition of 
hidden layers. As a result, we have used only one hidden 
layer for all the networks trained in our experiments. The 
number of nodes in the input layer and the output layer 
corresponds to the number of independent variables (p) and 
one dependent variable respectively. The number of nodes 
in the hidden layer is usually determined by trial and error 
so as to obtain the best performance for the data under 
consideration. The activation functions that were used in the 
hidden layer and in the output layer are hyperbolic tangent 
function and identity function respectively. 

The purpose of training neural networks is to build a 
statistical model that generalizes well to the new data. The 
process of regularization can be used to improve the 
generalization ability of the network. Regularization 
involves constraining or penalizing the solution of the 
estimation problem to improve the network generalization 
ability by smoothing the predictions (Girosi, Jones and 
Poggio, 1995; Wu and Moody, 1996). A simple form of 
regularization called “weight decay” as discussed in Bishop 
(1995) is used in the present study. Trial and error was used 
to choose the parameter values of the weight decay 

parameter and the number of nodes of the hidden layer. The 
values of weight decay parameter considered were ranging 
from no weight decay to a high value of 0.14 at intervals of 
0.02 and the number of hidden nodes was varied from 1 to 
10 for each of the 27 designs of the simulation experiment. 
Optimum generalization of the test data set was obtained 
with 1 node in hidden layer for all the experimental 
conditions. This could be because of the data being 
generated from a linear model and hence no obvious 
nonlinearities are present in the data to be trained. To 
choose these parameters, error values for the test data set 
corresponding to 30 replications are plotted as box plots 
shown in Fig. 1. For clarity of presentation, only a selected 
range of hidden units (1, 2, 3) and weight decay (WD= 
0.02.0.04, 0.06 and 0.08) parameter are shown in these box 
plots.  
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Figure1 Box Plots showing error values of test data set for 30 replications 
for selected data conditions 
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IV. RESULTS 

To compare the performance of both the techniques, 
RMSE is calculated for the training data set and RMSP is 
calculated for the test data set for each of the design cells for 
30 replications and mean and standard deviations of these 
error values are presented in Table 2. It can be observed 
from this table that the mean error for neural network and 
regression are almost the same for training data. However 
for the test data, mean error for the regression technique is  

always lesser than that of neural networks. As it was of 
interest to see how these two techniques perform when the 
sample size is quite high, relevant experiments are carried 
out and the results are shown in Table 2. In this regard, the 
sample sizes were determined using the same formula as 
given in eq. (1) with K= 1.0003 for p=2, 4 and 10 resulting 
in 10000, 16670, 36680 respectively. The performance of 
the two techniques can be found to be identical and hence 
this factor is not considered for further analysis. 

 

TABLE II MEAN AND STANDARD DEVIATIONS OF ERRORS FOR TRAINING AND TEST DATA SETS 

Sa
m

pl
e 

 S
iz

e 
 

V
ar

ia
bl

e 

M
ea

su
re

 High Noise Medium Noise Low Noise 

Training Test Training Test Training Test 

Reg NN Reg NN Reg NN Reg NN Reg NN Reg NN 

Sm
al

l 

2 

Mean 9.1602 9.2515 10.8997 12.0414 4.8849 5.2738 5.3113 5.7909 1.8021 1.9822 2.1123 2.7562 

Std Dev 1.5701 1.8931 2.0902 2.4188 1.0196 1.0892 0.7444 1.7636 0.3081 0.3685 0.3336 0.7639 

4 
Mean 9.5479 9.2146 10.9671 12.8996 4.713 4.8591 5.5669 5.892 1.8684 2.0641 2.2047 2.637 

Std Dev 1.1497 1.3421 1.6745 1.9083 0.6602 0.6469 0.688 0.8898 0.2131 0.2497 0.2983 0.5747 

10 
Mean 9.7636 9.6109 10.8553 12.22 5.0453 5.1545 5.6068 5.691 1.9427 2.0888 2.2208 2.3808 

Std Dev 0.8617 0.7928 1.0246 1.7618 0.5358 0.5286 0.5102 0.5461 0.1924 0.1784 0.291 0.2762 

M
ed

iu
m

 2 
Mean 10.1255 10.1935 10.1233 10.1831 4.9891 5.0401 5.0173 5.0604 1.9879 2.0302 2.0014 2.0656 

Std Dev 0.559 0.5798 0.6121 0.603 0.3106 0.3082 0.3565 0.3551 0.1172 0.123 0.1301 0.1513 

4 
Mean 9.9444 9.9826 9.983 10.0334 5.0385 5.0717 5.0665 5.1047 1.969 1.9996 2.0053 2.0412 

Std Dev 0.4551 0.4459 0.3846 0.3694 0.2324 0.2395 0.2646 0.2655 0.086 0.0865 0.0878 0.0847 

10 

Mean 9.918 9.9321 9.9868 10.0038 4.99 5.0041 5.1216 5.1445 1.9994 2.0359 2.0159 2.0671 

Std Dev 0.3362 0.3372 0.3576 0.3536 0.1481 0.148 0.1552 0.161 0.0632 0.068 0.0633 0.0746 

L
ar

ge
 

2 
Mean 9.9483 9.9707 10.0489 10.0753 4.9506 4.9719 5.0337 5.0557 1.9872 2.0188 2.0145 2.0435 

Std Dev 0.3023 0.3047 0.2816 0.2863 0.1291 0.1296 0.1704 0.1707 0.0664 0.0665 0.0599 0.0665 

4 
Mean 10.0944 10.1106 9.9908 10.0081 4.9718 4.979 5.0131 5.0237 1.9945 2.0121 2.0047 2.0229 

Std Dev 0.2293 0.2307 0.2327 0.2358 0.1139 0.1176 0.13 0.1281 0.0484 0.048 0.0699 0.0711 

10 
Mean 9.9763 9.9828 10.0627 10.0686 4.9921 4.9967 5.0114 5.0168 1.9853 1.997 2.0038 2.016 

Std Dev 0.1605 0.1612 0.1394 0.1385 0.0988 0.0998 0.0693 0.0687 0.0336 0.0345 0.0392 0.0388 

V
er

y 
La

rg
e 2 

Mean 
10.0284 10.0273 9.9762 9.9881 4.9931 4.9938 4.9909 4.9952 2.0053 2.0065 2.0006 2.0028 

Std Dev 0.0977 0.0982 0.11 0.1104 0.0506 0.0512 0.0518 0.0531 0.018 0.0182 0.0247 0.0241 

4 
Mean 

10.0026 10.0065 9.9886 9.9978 4.9902 4.9976 4.9902 4.9976 1.9999 2.0155 1.9999 2.0155 

Std Dev 0.0549 0.0552 0.0907 0.0899 0.032 0.0323 0.032 0.0323 0.0125 0.0126 0.0125 0.0126 

10 
Mean 

10.0001 9.9972 9.9863 9.9958 4.9902 4.9976 4.9902 4.9976 1.9999 2.0155 1.9999 2.0155 

Std Dev 0.048 0.0478 0.0753 0.0731 0.032 0.0323 0.032 0.0323 0.0125 0.0126 0.0125 0.0126 

Analysis of variance for the four factorial designs with 
repeated measure on the last factor is carried out to test the 
effects of these design factors (independent variable, sample 
size, noise levels and method of analysis) on the prediction 
performances. The validity of the usual F-tests in a repeated 
measure factorial experiment rests on the assumption of 
covariance matrices being homogeneous across the levels of 
the between subjects factors (compound symmetry) and 
variances for all pair wise differences between variables 
being equal (sphericity). As there are only two levels in the 
within subject factor, the current experiment does not  

require any sphericity test. The homogeneity of covariance 
matrices is tested using Box’M test and the null hypothesis 
is rejected. The empirical literature indicates that for a 
balanced design (group sizes are equal), the degrees of 
freedom adjusted univariate F-tests could be used to obtain a 
robust test of repeated measures main and interaction effect 
hypotheses even when the assumption of equality of the 
covariance matrices is not satisfied (Huynh, 1978; 
Keselman, Carriere and Lix, 1993). The results from 
univariate tests for within subject effects are summarized in 
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Table 3 and Table 4 respectively for training and test data 
sets.  
TABLE III REPEATED MEASURES ANALYSIS OF VARIANCE (TRAINING DATA) 

Tests of Hypotheses for Between Subjects Effects 

Source DF Type III SS Mean 
Square F Value Pr > F 

Var 2 0.94 0.47 0.82 0.4411 

Noise 2 16854.68 8427.34 14652.1 <.0001** 

Var*Noise 4 0.81 0.2 0.35 0.8424 

Size 2 16.7 8.35 14.52 <.0001** 

Var*Size 4 5.57 1.39 2.42 0.047 

Noise*Size 4 25.51 6.38 11.09 <.0001** 

Var*Noise*Size 8 6.76 0.84 1.47 0.1646 

Error 783 450.35 0.58   
Tests of Hypotheses for Within Subject Effects 

Source DF Type III SS Mean 
Square F Value Pr > F 

Method 1 0.85 0.85 19.4 <.0001** 

Method*Var 2 0.59 0.29 6.68 0.0013** 

Method*Noise 2 1.04 0.52 11.79 <.0001** 

Method*Var*Noise 4 0.29 0.07 1.67 0.1553 

Method*Size 2 0.35 0.18 4 0.0187 

Method*Var*Size 4 0.68 0.17 3.9 0.0039** 

Method*Noise*Size 4 2.19 0.55 12.47 <.0001** 

Method*Var*Noise
*Size 8 0.55 0.07 1.56 0.1323 

Error(Method) 783 34.4 0.04   

Note: ** means the corresponding effects are significant at 1% significance 
level. 

TABLE IV REPEATED MEASURES ANALYSIS OF VARIANCE (TEST DATA) 

Tests of Hypotheses for Between Subjects Effects 

Source DF Type III 
SS 

Mean 
Square F Value Pr > F 

Var 2 0.92 0.46 0.51 0.6 

Noise 2 19656.73 9828.37 10949.50 <.0001** 

Var*Noise 4 1.02 0.25 0.28 0.8887 

Size 2 259.78 129.89 144.71 <.0001** 

Var*Size 4 4.31 1.08 1.20 0.3087 

Noise*Size 4 104.68 26.17 29.16 <.0001** 

Var*Noise*Size 8 4.27 0.53 0.59 0.7827 

Error 783 702.83 0.90   
 

Tests of Hypotheses for Within Subject Effects 

Source D
F 

Type 
III SS 

Mean 
Square 

F 
Value Pr > F 

Method 1 27.96 27.96 135.73 <.0001** 

Method*Var 2 1.13 0.57 2.74 0.07 

Method*Noise 2 12.81 6.41 31.11 <.0001** 

Method*Var*Noise 4 1.67 0.42 2.02 0.09 

Method*Size 2 44.14 22.07 107.14 <.0001** 

Method*Var*Size 4 1.86 0.46 2.25 0.06 

Method*Noise*Size 4 25.49 6.37 30.94 <.0001** 

Method*Var*Noise
*Size 8 3.32 0.42 2.02 0.04 

Error(Method) 783 161.28 0.21   

Note: ** means the corresponding effects are significant at 1% significance 
level. 

As can be seen from between effects of the test data set 
(Table 4), two of the main effects, noise and sample size 
along with the two way interaction effect of noise× size are 
significant at 1% level of significance. From the within 
effects, it can be seen that the main effect of method is 
significant implying significant difference between the 
means of MSPR for regression and neural networks. Also, 
the interaction effects of method× size, method×noise and 
method× noise× size are all statistically significant. 

To assist in the practical interpretation of these 
interaction effects, Figures 2(a), 2(b) and 2(c) present the 
profile plots for the two-way interaction effects of 
method× size, method× noise and method× variable. The 
profile plots give us an indication of the levels of various 
factors contributing to the differences in the performance 
measures. It can be seen from Figure 2(a) that the RMSP 
value for regression is less as compared to neural network 
technique at all the levels of number of independent variable. 
From Figure 2(b), it is clear that the RMSP value for 
regression is less than that of neural network for small 
sample size. As the sample size increases from small to 
large, the error values of the two techniques become very 
close. It can be seen from Figure 2(c) that the RMSP value 
for regression is less than that of neural network at all levels 
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of noise but the difference is visible only for high noise 
level. 

 (a) Method & Sample Size interaction profile plot 

 
(b) Method & Noise Level interaction profile plot 

 
 (c) Method & Variable interaction profile plot 

 
Figure 2 Profile plots for different interaction effects 

Further, multiple comparison tests are performed to 
see at what level of one factor, difference exists in the 
other factor causing interaction effect to be significant. 
To carry out multiple comparisons of this repeated 
measure factorial design, we have used F-tests with 
appropriate numerator and denominator as explained 
in Winer (1971). From these multiple comparison tests, 
it can be concluded that significant differences are 
found between the performances of the two techniques 
at all levels of noise but only for small sample size. 

Prediction intervals for regression analysis and 
neural network analysis are computed for each of the 
levels of the number of independent variables and for 
each of the levels of noise. The scatter plots shown in 
Figure 3 correspond to the case of number of 
independent variables being two at various levels of 
noise.  

(a) High Noise 

 

 
(b) Medium Noise 
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(c) Low Noise 

 
Figure 3 Scatter plots of prediction intervals of regression and NNs for the 

case of two independent variables at various levels of noise 

These plots clearly indicate that the sizes of the 
prediction intervals of neural networks are much larger as 
compared to regression analysis as these prediction intervals 
are well within that of neural networks. It can be seen that 
the size of the prediction intervals becomes narrower as we 
move from high noise level to low noise level. Similar 
inference results are seen when the number of independent 
variables considered are 4 and 10 and hence the scatter plots 
are not show 

V. CONCLUSION 

In this paper, the performance of neural networks is 
compared with that of regression analysis when all the 
assumptions of regression analysis are met. This is carried 
out by systematically generating large number of data sets 
that vary on various dimensions like number of variables, 
sample size and noise level. Performance of the two 
techniques is compared using predictive error values for the 
independent data set that was not used for training the 
models. 

This study reveals that the performance of regression 
analysis and neural network are comparable at all levels of 
noise and at all levels of the number of independent 
variables for large and medium sample sizes when all the 
assumption of regression analysis are satisfied.  However, 
regression analysis outperforms neural network for small 
sample size irrespective of the levels of noise and the 
number of independent variables. Neural network being data 
driven technique, the decline in the performance for small 
sample size could be due to non availability of enough 
training samples to complete the learning process. This 
result points out the need for careful implementation of 
neural network when the sample size is small.   

Further, asymptotic prediction intervals are obtained for 
neural networks and are graphically compared with the 
prediction intervals of regression analysis for each of the 
experimental conditions. The width of the prediction 
intervals of neural networks is much larger as compared to 
regression analysis as these prediction intervals are well 
within that of neural networks. The mean error values of 
regression are consistently less than the corresponding 
values of neural networks for the test data set. These 
observations support the use of regression technique in 
predicting future observations when the assumptions of 
regression analysis are met. Regression technique further 
stands out as it allows interpretation of coefficients of the 
independent variables and inferences can also be drawn 
regarding the significance of variables in prediction 
problems. 
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