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Abstract- Kohonen self-organizing maps (SOM) have a lot of 
fruitful applications. In the classical monograph Kohonen T., 
Self-Organizing Maps (Third edition), New York: Springer-
Verlag, 2001 the following fields of SOM applications are 
presented: signal processing, control theory, models of the 
biological brain function, experimental physics, chemistry and 
medicine, financial analysis, etc. 

One of the main applications of SOM is “automated” 
stochastic iterative numerical algorithm for constructing 
adaptive grids. Moreover, this algorithm can be treated as the 
most natural mathematical model of SOM. 

The algorithm starts with introducing arbitrary initial 
positions of points (nodes) inside some domain. On every 
iterative step a sample value of the stochastic variable, which is 
distributed with respect to given probability distribution 
density (this density defines the demanded arrangement of 
nodes in the domain), is realized numerically. The closest 
(“winner”) point to this sample value defines the learning 
coefficient (or neighborhood function) which influences on shift 
of every node. The special choice of the learning coefficient 
allows getting satisfactory arrangement of points after several 
iterations. 

There are difficulties in analytical description of the 
Kohonen scheme. This description is rather useful for 
theoretical investigation of the self-organizing algorithm 
(convergence, estimating of errors, etc.). In monograph the 
mentioned above, T.Kohonen suggested the following 
“continuous” approach. Under some principal simplifications 
(1D case, simplified form of the learning coefficient, assumption 
about ordering of the initial distribution of nodes, uniform 
distribution for “attraction nodes”) the recurrent formulas for 
node’s shifts are replaced by the system of differential 
equations for “most probable” positions of nodes. This system 
has no general analytical solution, and only numerical 
experiments can be used for investigation of asymptotic 
positions of nodes. 

In this paper we have proposed direct use of the formulas 
for node’s shift to get analytical recurrent expressions for the 
most probable positions of nodes under the Kohonen’s 
simplifications. We also showed that our approach helps to 
investigate some special effects of the self-organizing algorithm, 
in particular, the “boundary effect” which defines undesirable 
noticeable distances between the boundary nodes and the 
boundary of the domain. In addition we considered the 
possibilities for weakening of Kohonen’s restrictions: in 
particular, we have constructed recurrent formulas for special 
practical learning coefficient. 

Keywords- Kohonen Self-Organizing Maps; Recurrent 
Formulas; Boundary Effect; Learning Radius 

I. INTRODUCTION 

Self-organizing maps (SOM) have a lot of fruitful 
applications: signal processing, control theory, models of the 
biological brain function, experimental physics, chemistry 
and medicine, financial analysis, etc (see the monograph [1] 
of T. Kohonen and references in this monograph).  

One of the main applications of SOM is “automated” 
stochastic iterative numerical algorithm for constructing 
adaptive grids [1]

There are many examples of computer calculations 
which prove the effectiveness of Kohonen scheme

. Moreover, this algorithm can be treated as 
the most natural mathematical model of SOM. This model 
can be considered as a segment of vector Markov chain, 
where states are the groups of nodes {𝒙𝒙1(𝑡𝑡), … ,𝒙𝒙𝑀𝑀(𝑡𝑡)}  in 
some domain 𝑋𝑋 ⊂ 𝑅𝑅𝑋𝑋𝑑𝑑 . 

 [1, 2]. This 
algorithm, however, induces some problems during its 
implementation. One of them is the “boundary effect” which 
defines undesirable noticeable distances between the 
boundary nodes and the boundary 𝜕𝜕𝜕𝜕 of the domain 𝑋𝑋 [1, 2]

There are also difficulties in analytical description of the 
Kohonen scheme (this description is rather useful for 
theoretical investigation of the self-organizing algorithm–
convergence, estimating of errors, etc.). Constructive 
approaches for this description were elaborated only for the 
simplest one-dimensional (1D) case

. 

 [1, 3]. The Kohonen’s 
“continuous” approach from the monograph [1] is presented 
in the Section III of the present paper.  This approach leads 
to a system of differential equations for the “most probable” 
mean asymptotic positions of nodes {𝒙𝒙1(𝑡𝑡), … ,𝒙𝒙𝑀𝑀(𝑡𝑡)} . This 
system has no general analytical solution, and only 
numerical experiments can be used for investigation of 
asymptotic positions of nodes. Section IV demonstrates that 
recurrent formulas for the most probable mean positions of 
grid nodes for the first iterations of the algorithm can be 
derived for the simplified case considered by Kohonen [1]. As 
implementations of the algorithm in practice imply a 
comparatively small number of iterations, the use of such an 
analytical description seems to be more promising than the 
“asymptotic” approach from the monograph [1]

II. BASIC RANDOMIZED ALGORITHM  

. It is noted in 
Section V that our approach allows also investigating 
analytically the 1D boundary effect and modifications of 1D 
Kohonen scheme which lead to decrease of this effect. 
Finally, the main results of this work are shortly presented in 
the Section “Conclusions”. 

Let us formulate the problem as follows (see also [1, 2]). 
In a “physical” domain 𝑋𝑋 (or on its surface 𝜕𝜕𝜕𝜕), we have to 
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construct a grid 𝑋𝑋(𝑀𝑀) = {𝒙𝒙1, … ,𝒙𝒙𝑀𝑀} with the distribution of 
nodes corresponding to a specified density  𝑓𝑓(𝒙𝒙) , 𝒙𝒙 ∈ 𝑅𝑅𝑋𝑋𝑑𝑑 . 
The structure of this grid (order and structure of disposition 
of nodes) is determined by a “map” 𝑄𝑄(𝑀𝑀) = {𝒒𝒒1, … ,𝒒𝒒𝑀𝑀} and 
by a system of the “neurons” 𝐸𝐸(𝑀𝑀) = {𝒆𝒆1, … ,𝒆𝒆𝑀𝑀} 
(where 𝒆𝒆𝑖𝑖 = (𝒒𝒒𝑖𝑖 ,𝒙𝒙𝑖𝑖) ) determining the correspondence 
between the grids 𝑋𝑋(𝑀𝑀) and 𝑄𝑄(𝑀𝑀). 

The approximation of neurons is performed with a self-
learning procedure, which is an iterative process based on 
consecutive formation of a learning set 
Ξ(𝑇𝑇) = {𝝃𝝃0(1), … , 𝝃𝝃0(𝑇𝑇)} in the form of a sampling from the 
probability distribution of a random vector 𝝃𝝃  having a 
density 𝑓𝑓(𝒙𝒙) ; here, 𝑇𝑇 is the number of iterations and 
𝝃𝝃0(𝑡𝑡) ∈ 𝑋𝑋  (or 𝝃𝝃0(𝑡𝑡) ∈ 𝜕𝜕𝜕𝜕 , 𝑡𝑡 = 1, … ,𝑇𝑇). In addition, lateral 
relations between the neurons 𝒆𝒆𝑖𝑖  and 𝒆𝒆𝑗𝑗  are established at 
each iteration step by using special “learning coefficient” 
𝜃𝜃𝒒𝒒𝑚𝑚 (𝑡𝑡,𝒒𝒒𝒊𝒊) ∈ [0,1). This procedure yields a sequence of grids 
𝑋𝑋(𝑀𝑀)(𝑡𝑡) = {𝒙𝒙1(𝑡𝑡), … ,𝒙𝒙𝑀𝑀(𝑡𝑡)} ; in this case, the following 
relation has to be satisfied: 

𝑋𝑋(𝑀𝑀) ≈  𝑋𝑋� (𝑀𝑀) 
= limt→∞ 𝑋𝑋(𝑀𝑀)(𝑡𝑡)⁡≈  𝑋𝑋(𝑀𝑀)(𝑇𝑇).             (1) 

The approximate equality signs in Equation (1)  mean not 
only that the distances 𝜌𝜌(𝒙𝒙𝑖𝑖(∞),𝒙𝒙𝑖𝑖) , 𝜌𝜌(𝒙𝒙𝑖𝑖(∞),𝒙𝒙𝑖𝑖(𝑇𝑇)) , and 
𝜌𝜌(𝒙𝒙𝑖𝑖(𝑇𝑇),𝒙𝒙𝑖𝑖), where 

𝜌𝜌(𝒙𝒙,𝒚𝒚) =
�(𝑥𝑥(1)  −  𝑦𝑦(1))2  +  … +  (𝑥𝑥(𝑑𝑑)  −  𝑦𝑦(𝑑𝑑))2,  
𝒙𝒙 = (𝑥𝑥(1), … , 𝑥𝑥(𝑑𝑑)), 𝒚𝒚 = (𝑦𝑦(1), … ,𝑦𝑦(𝑑𝑑)) 

are small, but also that the required properties of the grid 
𝑋𝑋(𝑀𝑀)  (e.g., the properties of rectangularity, the absence of 
the boundary effect, etc.) in implementation of the next 
iterative process are accurately reproduced. 

Algorithm [1, 2]

(a) the next element 𝛏𝛏0(t) of the sampling Ξ(T) is 
chosen; 

. 1. The initial positions of the grid nodes 
X(M)(0) = {𝐱𝐱1(0), … , 𝐱𝐱M (0)} are established. 2.The  
following actions are performed at each iteration with the 
number t = 1, … , T: 

(b) the distances ρ�𝛏𝛏0(t),    𝐱𝐱i(t − 1)�  from the point 
𝛏𝛏0(t) to all nodes 𝐱𝐱i(t − 1) are calculated, and the nearest 
node 𝐱𝐱m (t − 1)  to 𝛏𝛏0(t)  is chosen in accordance with the 
condition 

m = arg min
i=1,…,M

ρ�𝛏𝛏0(t),    𝐱𝐱i(t − 1)� 

such a node 𝐱𝐱m (t − 1) is called a series winner; 

(c) the positions of all nodes are corrected in 
accordance with the formula 

   𝒙𝒙𝑖𝑖(𝑡𝑡) 
=  𝒙𝒙𝑖𝑖(𝑡𝑡 − 1) + 𝜃𝜃𝒒𝒒𝑚𝑚 (𝑡𝑡,𝒒𝒒𝒊𝒊)�𝝃𝝃0(𝑡𝑡)  − 𝒙𝒙𝑖𝑖(𝑡𝑡 − 1)�   (2) 
for all i = 1, … , M; here θqm (t, qi) is a learning coefficient. 

At each iteration of the algorithm, the grid nodes are 

shifted towards the random point 𝝃𝝃0(𝑡𝑡). Therefore, more and 
more nodes are accumulated in areas with high 
concentrations of sampling elements, resulting in grid 
refinement. It was demonstrated [2] 

III.  “CONTINUOUS” KOHONEN’S FORMALISM  

that, as 𝑇𝑇 → ∞ , the 
algorithm leads to satisfaction of the analog of the 
equidistribution principle, i.e., to obtaining of a required grid 
density determined by the function 𝑓𝑓(𝒙𝒙). 

Sequence (2) is random. Attempts to obtain analytical 
expressions even for the simplest characteristics, such as 
mathematical expectations 𝐄𝐄𝒙𝒙𝑖𝑖 , face significant difficulties. 
This fact was noted in [1, Section 3.5]. Simplifications that 
allowed analytical approaches to study the algorithm to be 
developed were also proposed there. Let us briefly describe 
these simplifications. Let 𝑋𝑋 = 𝑅𝑅  (i.e., a 1D case is 
considered), and also 𝜌𝜌(𝑥𝑥,𝑦𝑦) = |𝑥𝑥 − 𝑦𝑦| .  In addition, we 
assume that learning coefficient is equal to 

𝜃𝜃𝒒𝒒𝑚𝑚 (𝑡𝑡,𝒒𝒒𝑖𝑖) ≡ 𝜃𝜃(𝑡𝑡)  for   
 𝑖𝑖 ∈ {max(1,𝑚𝑚− 1) ,𝑚𝑚, min(𝑀𝑀,𝑚𝑚 + 1)}, (3) 

𝜃𝜃𝒒𝒒𝑚𝑚 (𝑡𝑡,𝒒𝒒𝑖𝑖) = 0  otherwise, 
which means that no more than three nodes (the winner node 
and the nearest nodes “on the left” and “on the right” in 
terms of their numbers) are involved into the learning 
process, and the corresponding learning coefficient is 
independent of the position of the winner node. Further, 
Kohonen [1] proposed to replace the Relation (2) by a 
“continuous analog”: 

𝑑𝑑𝑥𝑥�𝑖𝑖(𝑡̃𝑡)/ 𝑑𝑑𝑡̃𝑡  =  𝜃𝜃(𝑡̃𝑡)(𝜉𝜉 − 𝑥𝑥�𝑖𝑖(𝑡̃𝑡))   for   𝑖𝑖 ∈
{max(1,𝑚𝑚 − 1) ,𝑚𝑚, min(𝑀𝑀,𝑚𝑚 + 1)} 

(4) 
  𝑑𝑑𝑥𝑥�𝑖𝑖(𝑡̃𝑡)/ 𝑑𝑑𝑡̃𝑡  =  0    otherwise. 

Further, Kohonen [1]

It was further noted in [1] that Relation (5) is valid for all 
𝑡̃𝑡 > 0 if Condition (6) is satisfied. Assuming that the 
distribution of the random quantity 𝜉𝜉 is concentrated on the 
segment [𝑎𝑎, 𝑏𝑏] (this means that 𝑓𝑓(𝑥𝑥) > 0 for 𝑥𝑥 ∈ [𝑎𝑎, 𝑏𝑏] and 
𝑓𝑓(𝑥𝑥) = 0 for 𝑥𝑥 ∉ [𝑎𝑎, 𝑏𝑏]) we can introduce the intervals 

 formulated a statement that, for 
arbitrary initial positions of the points {𝑥𝑥�𝑖𝑖(0)}  and for 
𝜃𝜃(𝑡̃𝑡) ≡ const there exists a time instant 𝑇𝑇 > 0 for Process 
(4), such that 

𝑥𝑥�1(𝑡̃𝑡) ≤ 𝑥𝑥�2(𝑡̃𝑡) ≤  …  ≤ 𝑥𝑥�𝑀𝑀(𝑡̃𝑡)            (5) 
for all 𝑡̃𝑡 > 𝑇𝑇 , i.e., the points {𝑥𝑥�𝑖𝑖(𝑡̃𝑡)}  become ordered, 
beginning from the time 𝑇𝑇 , and this order persists with 
increasing 𝑡̃𝑡 ; in addition, the distribution density of the 
points {𝑥𝑥�𝑖𝑖(𝑡̃𝑡)}  in the limit approximates the monotonic 
function of the distribution density 𝑓𝑓(𝑥𝑥)  of the random 
quantity 𝜉𝜉. 

In this paper, we do not discuss the process of ordering 
of the points {𝑥𝑥�𝑖𝑖(𝑡̃𝑡)} in detail, assuming that the following 
relation is valid already at the initial time: 

−∞ < 𝑎𝑎 ≤ 𝑥𝑥1(0) ≤ 𝑥𝑥2(0) … 
 ≤ 𝑥𝑥𝑀𝑀(0) ≤ 𝑏𝑏 ≤ ∞.                     (6) 
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⎩
⎪
⎪
⎪
⎨

⎪
⎪
⎪
⎧𝑆𝑆𝑖𝑖(𝑡̃𝑡) = �1

2
�𝑥𝑥�𝑖𝑖−2(𝑡̃𝑡) + 𝑥𝑥�𝑖𝑖−1(𝑡̃𝑡)�, 1

2
�𝑥𝑥�𝑖𝑖+1(𝑡̃𝑡) + 𝑥𝑥�𝑖𝑖+2(𝑡̃𝑡)�� ,             3 ≤ 𝑖𝑖 ≤ 𝑀𝑀 − 2 

𝑆𝑆1(𝑡̃𝑡) = �𝑎𝑎, 1
2
�𝑥𝑥�2(𝑡̃𝑡) + 𝑥𝑥�3(𝑡̃𝑡)��,                                                                                       

𝑆𝑆2(𝑡̃𝑡) = �𝑎𝑎, 1
2
�𝑥𝑥�3(𝑡̃𝑡) + 𝑥𝑥�4(𝑡̃𝑡)��,                                                        

                               
𝑆𝑆𝑀𝑀−1(𝑡̃𝑡) = � 1

2
�𝑥𝑥�𝑀𝑀−3(𝑡̃𝑡) + 𝑥𝑥�𝑀𝑀−2(𝑡̃𝑡)�, 𝑏𝑏�,                                                                      

𝑆𝑆𝑀𝑀(𝑡̃𝑡) = � 1
2
�𝑥𝑥�𝑀𝑀−2(𝑡̃𝑡) + 𝑥𝑥�𝑀𝑀−1(𝑡̃𝑡)�, 𝑏𝑏�.                                                                        

�               (7)

for fixed chosen values of {𝑥𝑥�𝑖𝑖(𝑡̃𝑡)} and consider conditional 
(at fixed �𝑥𝑥�𝑗𝑗 (𝑡̃𝑡)� ) mathematical expectations equal (with 
allowance for the Equation (4)) to 

〈𝑥𝑥�𝑖̇𝑖(𝑡̃𝑡)〉 ≝ 𝐄𝐄 �𝑥𝑥�𝑖̇𝑖(𝑡̃𝑡)  �  �𝑥𝑥�𝑗𝑗 (𝑡̃𝑡)�� =
𝜃𝜃(𝑡̃𝑡) �𝐄𝐄� 𝜉𝜉(𝑡̃𝑡)�𝜉𝜉(𝑡̃𝑡) ∈ 𝑆𝑆𝑖𝑖(𝑡̃𝑡)� − 𝑥𝑥�𝑖𝑖(𝑡̃𝑡)�𝐏𝐏(𝜉𝜉(𝑡̃𝑡) ∈ 𝑆𝑆𝑖𝑖 ,   

(8) 
where 𝐏𝐏(𝜉𝜉(𝑡̃𝑡) ∈ 𝑆𝑆𝑖𝑖(𝑡̃𝑡))  is the probability of the situation 
where 𝜉𝜉(𝑡̃𝑡) belongs to 𝑆𝑆𝑖𝑖(𝑡̃𝑡). The calculation of the two last 
factors in Relation (8) presents a certain problem. Kohonen 

noted [1]

This corresponds to uniformly distributed positions of nodes 
in the computational domain 𝑄𝑄 = 𝑋𝑋 = [𝑎𝑎, 𝑏𝑏]; here, 𝑄𝑄(𝑀𝑀) =
{𝑥𝑥𝑖𝑖 = (𝑖𝑖 − 1)ℎ;   𝑖𝑖 = 1, … ,𝑀𝑀;   ℎ = (𝑏𝑏 − 𝑎𝑎)/(𝑀𝑀− 1). In this 
case, the following relations are valid: 

 that this problem can be definitely resolved for the 
uniform distribution density 

𝑓𝑓(𝑥𝑥) ≡ 1/(𝑏𝑏 − 𝑎𝑎)      for     𝑥𝑥 ∈ [𝑎𝑎, 𝑏𝑏]     and    
𝑓𝑓(𝑥𝑥) = 0   for   𝑥𝑥 ∉ [𝑎𝑎, 𝑏𝑏].           (9) 

 

⎩
⎪⎪
⎪
⎨

⎪⎪
⎪
⎧𝐄𝐄� 𝜉𝜉(𝑡̃𝑡)�𝜉𝜉(𝑡̃𝑡) ∈ 𝑆𝑆𝑖𝑖(𝑡̃𝑡)� = 1

4
�𝑥𝑥�𝑖𝑖−2(𝑡̃𝑡) + 𝑥𝑥�𝑖𝑖−1(𝑡̃𝑡) + 𝑥𝑥�𝑖𝑖+1(𝑡̃𝑡) + 𝑥𝑥�𝑖𝑖+2(𝑡̃𝑡)�,              3 ≤ 𝑖𝑖 ≤ 𝑀𝑀 − 2

𝐄𝐄� 𝜉𝜉(𝑡̃𝑡)�𝜉𝜉(𝑡̃𝑡) ∈ 𝑆𝑆1(𝑡̃𝑡)� = 1
4
�2𝑎𝑎 + 𝑥𝑥�2(𝑡̃𝑡) + 𝑥𝑥�3(𝑡̃𝑡)�,                                                                             

 𝐄𝐄� 𝜉𝜉(𝑡̃𝑡)�𝜉𝜉(𝑡̃𝑡) ∈ 𝑆𝑆2(𝑡̃𝑡)� = 1
4
�2𝑎𝑎 + 𝑥𝑥�3(𝑡̃𝑡) + 𝑥𝑥�4(𝑡̃𝑡)�,                                                                    

                                     
𝐄𝐄� 𝜉𝜉(𝑡̃𝑡)�𝜉𝜉(𝑡̃𝑡) ∈ 𝑆𝑆𝑀𝑀−1(𝑡̃𝑡)� = 1

4
(𝑥𝑥�𝑀𝑀−3(𝑡̃𝑡) + 𝑥𝑥�𝑀𝑀−2(𝑡̃𝑡) + 2𝑏𝑏),                                                              

𝐄𝐄� 𝜉𝜉(𝑡̃𝑡)�𝜉𝜉(𝑡̃𝑡) ∈ 𝑆𝑆𝑀𝑀(𝑡̃𝑡)� = 1
4

(𝑥𝑥�𝑀𝑀−2(𝑡̃𝑡) + 𝑥𝑥�𝑀𝑀−1(𝑡̃𝑡) + 2𝑏𝑏).                                                                  

�         (10) 

⎩
⎪
⎪
⎪
⎨

⎪
⎪
⎪
⎧𝐏𝐏(𝜉𝜉(𝑡̃𝑡) ∈ 𝑆𝑆𝑖𝑖(𝑡̃𝑡)) = 1

2(𝑏𝑏−𝑎𝑎) �𝑥𝑥�𝑖𝑖+1(𝑡̃𝑡) + 𝑥𝑥�𝑖𝑖+2(𝑡̃𝑡) − 𝑥𝑥�𝑖𝑖−1(𝑡̃𝑡) − 𝑥𝑥�𝑖𝑖−2(𝑡̃𝑡)�,                 3 ≤ 𝑖𝑖 ≤ 𝑀𝑀 − 2       

𝐏𝐏(𝜉𝜉(𝑡̃𝑡) ∈ 𝑆𝑆1(𝑡̃𝑡)) = 1
2(𝑏𝑏−𝑎𝑎)

(𝑥𝑥�2(𝑡̃𝑡) + 𝑥𝑥�3(𝑡̃𝑡) − 2𝑎𝑎),                                                                                       

𝐏𝐏�𝜉𝜉(𝑡̃𝑡) ∈ 𝑆𝑆2(𝑡̃𝑡)� = 1
2(𝑏𝑏−𝑎𝑎)

(𝑥𝑥�3(𝑡̃𝑡) + 𝑥𝑥�4(𝑡̃𝑡) − 2𝑎𝑎),                                                                         
                                     

𝐏𝐏�𝜉𝜉(𝑡̃𝑡) ∈ 𝑆𝑆𝑀𝑀−1(𝑡̃𝑡)� = 1
2(𝑏𝑏−𝑎𝑎) �2𝑏𝑏 − 𝑥𝑥�𝑀𝑀−3(𝑡̃𝑡) − 𝑥𝑥�𝑀𝑀−2(𝑡̃𝑡)�,                                                                       

𝐏𝐏�𝜉𝜉(𝑡̃𝑡) ∈ 𝑆𝑆𝑀𝑀(𝑡̃𝑡)� = 1
2(𝑏𝑏−𝑎𝑎) �2𝑏𝑏 − 𝑥𝑥�𝑀𝑀−2(𝑡̃𝑡) − 𝑥𝑥�𝑀𝑀−1(𝑡̃𝑡)�.                                                                           

�    (11) 

Based on these relations, Kohonen [1] 𝑑𝑑𝒛𝒛
𝑑𝑑𝑑𝑑

= П(𝒛𝒛)(𝐹𝐹𝒛𝒛 + 𝒉𝒉)                   (12)  formulated a statement 
that, for an arbitrary set of initial values (6), the most 
probable mean values 𝑥𝑥�𝑖𝑖(𝑡̃𝑡) = 𝐄𝐄𝑥𝑥�𝑖𝑖(𝑡̃𝑡) satisfy the system of 
differential equations 

where 𝒛𝒛 = [𝑥𝑥�1(𝑡̃𝑡), 𝑥𝑥�2(𝑡̃𝑡), … , 𝑥𝑥�𝑀𝑀(𝑡̃𝑡)]𝚻𝚻 (here, T is the sign of 
transposition), matrix 𝐹𝐹 is equal to 

𝜃𝜃(𝑡̃𝑡)
4

 

⎝

⎜
⎜
⎜
⎜
⎜
⎛

−4     1     1     0     0     0     0   …   …   …   …   …   …   …   …
    0 −4     1     1     0     0     0   …   …   …   …   …   …   …   …
    1     1 −4     1     1     0     0   …   …   …   …   …   …   …   …
    0     1     1 −4     1     1     0   …   …   …   …   …   …   …   …
   …    …    …    …    …    …   …   …   …   …   …   …   …   …   …
   …    …    …    …    …    …   …   …    0     1     1 −4     1     1     0
   …    …    …    …    …    …   …   …     0     0     1     1 −4     1     1
   …    …    …    …    …    …   …   …     0     0     0     1     1 −4     0
   …    …    …    …    …    …   …   …     0     0     0     0     1     1 −4⎠

⎟
⎟
⎟
⎟
⎟
⎞
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𝒉𝒉 = 𝜃𝜃(𝑡𝑡)
4

[𝑎𝑎,𝑎𝑎, 0, 0, … ,0, 𝑏𝑏, 𝑏𝑏]Τ and П(𝒛𝒛)  is diagonal matrix 
with the values on the diagonal having the Form (11) (with 
accuracy to replacement of 𝑥𝑥�𝑖𝑖(𝑡̃𝑡) by 𝑥𝑥�𝑖𝑖(𝑡̃𝑡). Relation (12) is a 
system of ordinary differential equations of the first order 
with constant coefficients. 

It was noted [1] that it is rather difficult to find the general 
analytical solution for this system. Taking into account that 
the matrix П(𝒛𝒛) is a diagonal, positively determined matrix, 
it is possible to demonstrate that a fundamental solution 
exists at 𝑑𝑑𝒛𝒛/𝑑𝑑𝑑𝑑 = 0  and has the form 𝒛𝒛0 = −𝐹𝐹−1𝒉𝒉  (the 
proof of the latter fact is rather cumbersome); there are also 
some ideas on the existence of an asymptotic solution of 
System (12) [1]

IV. RECURRENT FORMULAS 

. 

Mentioning the difficulties in finding analytical 
expressions for the most probable mean values of {𝑥𝑥�𝑖𝑖(𝑡̃𝑡)}, 
Kohonen proposed to study the asymptotic positions of 
nodes numerically. In particular, he has proved numerically 
the existence of the boundary effect (noticeable distances 
between the boundary nodes and the segment boundaries) 
and noted this effect becomes less pronounced with 
increasing 𝑀𝑀. 

Direct averaging of the Equation (2) yields the 
equality [3]

here, the index “(𝑡𝑡 − 1)” means taking the mathematical 
expectation over the distribution of the set of 
grids  �𝑋𝑋(𝑀𝑀)(0),𝑋𝑋(𝑀𝑀)(1), … ,𝑋𝑋(𝑀𝑀)(𝑡𝑡 − 1)� ; addition of 𝝃𝝃(𝑡𝑡) 
in this index means additional averaging over the 
distribution with the density 𝑓𝑓(𝒙𝒙)  at the 𝑡𝑡 -th step of the 

algorithm (see Section 1). 

: 

𝐄𝐄(𝑡𝑡)𝒙𝒙𝑖𝑖(𝑡𝑡) =
𝐄𝐄(𝑡𝑡−1)𝒙𝒙𝑖𝑖(𝑡𝑡 − 1) + 𝐄𝐄(𝑡𝑡−1,𝝃𝝃(𝑡𝑡))𝜃𝜃𝒒𝒒𝑚𝑚 (𝑡𝑡,𝒒𝒒𝒊𝒊)�𝝃𝝃(𝑡𝑡) −
𝒙𝒙𝑖𝑖𝑡𝑡−1;                                                       (13) 

 

The calculation of the second term in the right-hand side 
of Equation (13) is particularly difficult. Nevertheless, using 
the simplifications of Kohonen’s formalism (see Section 2): 

1) 1D case: [a, b] = [0,1],  
2) simplified form of the learning Coefficient (3),  
3) assumption about ordering of the initial distribution 

of Nodes (6), 
4) uniform distribution for “Attraction Nodes”(9), 
5) replacement of conditional values by “most probable 

mean” values, 

we can obtain an analog of the Equation (8), which allows 
consecutive obtaining of exact values of the most probable 
mean positions of nodes (𝑡𝑡 = 1,2, … ) ,  

〈𝑥𝑥𝑖𝑖(𝑡𝑡)〉 = 〈𝑥𝑥𝑖𝑖(𝑡𝑡 − 1)〉 + 𝜃𝜃(𝑡𝑡) �𝐄𝐄𝑖𝑖
(𝜉𝜉)(𝑡𝑡 − 1)  −

〈𝑥𝑥𝑖𝑖(𝑡𝑡 − 1)〉�𝐏𝐏𝑖𝑖
(𝜉𝜉)(𝑡𝑡 − 1),                     (14) 

where 

     𝐏𝐏𝑖𝑖
(𝜉𝜉)(𝑡𝑡 − 1) = 𝑠𝑠𝑖𝑖

(+)(𝑡𝑡 − 1) − 𝑠𝑠𝑖𝑖
(−)(𝑡𝑡 − 1), 

     𝐄𝐄𝑖𝑖
(𝜉𝜉)(𝑡𝑡 − 1) = 𝑠𝑠𝑖𝑖

(+)(𝑡𝑡−1)−𝑠𝑠𝑖𝑖
(−)(𝑡𝑡−1)

2
                      (15) 

and 𝑠𝑠𝑖𝑖
(−)(𝑡𝑡 − 1) and 𝑠𝑠𝑖𝑖

(+)(𝑡𝑡 − 1) are the left and right ends of 
the segment 𝑆𝑆𝑖𝑖(𝑡𝑡 − 1) determined by the Equation (7). Note 
that the formulas in System (15) are analogs of Relations 
(10) and (11) for the case with 𝑎𝑎 = 0  and 𝑏𝑏 = 1 . The 
accuracy of the resultant mean positions of nodes was 
verified through Monte Carlo computations in the Paper [3]. 
Examples of these results are shown on the Figures 1 and 2. 
We can fix the convergence of Monte Carlo calculations to 
the Values (13)-(15) when 𝑛𝑛 → ∞ (here 𝑛𝑛 is the number of 
realizations of the main algorithm). We can also note that 
expensive Monte Carlo calculations can be replaced by 
formulas of the (13)-(15) type. 

   
Figure 1 Iterative nodes moving: grey – formulas (13)-(15), red – Monte Carlo computations (𝑛𝑛 = 100) 
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Figure 2 Iterative nodes moving: grey – formulas (13)-(15), red – Monte Carlo computations (𝑛𝑛 = 1000) 

Let’s analyze what Kohonen’s restrictions A-E for 
deriving formulas of the (13)-(15) type can be weakened. 
Transition to multidimensional (in particular, 2D) case 
(restriction A) seems to be rather difficult because of 
appearance of additional geometrical requirements for 
adaptive grids. It is not difficult to get the analytical 
formulas for various probability 1D-distributions (for which 
𝑓𝑓(𝑥𝑥) ≠ const and [𝑎𝑎, 𝑏𝑏] ≠ [0,1]) – see Restrictions A and D, 
but this formulas will be not so universal. The analytical 
investigation of the ordering Procedure (5) (Restriction C) 
has its own difficulties, the special mathematical approaches 
are needed here (may be induction on number of grid nodes 
𝑀𝑀). It is also possible to consider another form of learning 
coefficient (Restriction B and Formula (3)) – see next 
Section V of this paper. 

V. LEARNING RADIUS AS THE MEASURE OF BOUNDARY EFFECT 

In fundamental works [1, 2] 

𝜃𝜃𝒒𝒒𝑚𝑚 (𝑡𝑡,𝒒𝒒𝑖𝑖) = 𝛿𝛿(𝑡𝑡) × 𝜏𝜏𝒒𝒒𝑚𝑚 (𝑡𝑡,𝒒𝒒𝑖𝑖).         (16) 

it was shown that for effective 
realization of learning algorithm (see Section 1) it is 
expedient to choose the learning coefficient as a 
multiplication of two functions: 

The function 𝛿𝛿(𝑡𝑡)  influences on learning step, which 
defines the changing values of nodes positions. Numerical 
experiments [2] 

𝛿𝛿(𝑡𝑡) = 𝑡𝑡−0.2𝜔𝜔(𝑡𝑡), 𝑡𝑡 = 1, … ,𝑇𝑇, where  𝜔𝜔(𝑡𝑡) =
1 − 𝑒𝑒5(𝑡𝑡−𝑇𝑇)/𝑇𝑇 ,                    (17) 

lead to choose this function according the 
form 

The function 𝜏𝜏𝒒𝒒𝑚𝑚 (𝑡𝑡,𝒒𝒒𝑖𝑖)  influences on learning radius 
𝑟𝑟(𝑡𝑡) [2]

      𝜏𝜏𝒒𝒒𝑚𝑚 (𝑡𝑡,𝒒𝒒𝑖𝑖) = 𝑠𝑠�
𝑑𝑑(𝒒𝒒𝑚𝑚 ,𝒒𝒒𝑖𝑖)

𝑟𝑟(𝑡𝑡) �
2

,                   (18) 

: 

 
where 𝑠𝑠 ∈ (0,1)  is a fixed small constant; for our 
computations we chose 𝑠𝑠 = 10−5 . 

There are no difficulties to construct a formula of the 
(13)-(15) type for the learning coefficient of the Form (16)-
(18). This formula becomes more cumbersome: it includes 
sum with not three but (𝑀𝑀 + 1) addendums 

〈𝑥𝑥𝑖𝑖(𝑡𝑡)〉 = 〈𝑥𝑥𝑖𝑖(𝑡𝑡 − 1)〉 + 𝑡𝑡−0.2 × �1 − 𝑒𝑒
5(𝑡𝑡−𝑇𝑇)

𝑇𝑇 � × (
〈𝑥𝑥1(𝑡𝑡 − 1)〉 + 〈𝑥𝑥2(𝑡𝑡 − 1)〉

2
× 𝑠𝑠

� 𝑖𝑖−1
𝑟𝑟(𝑡𝑡)(𝑀𝑀+1)�

2

× 
 

×
2〈𝑥𝑥1(𝑡𝑡 − 1)〉 + 〈𝑥𝑥2(𝑡𝑡 − 1)〉 − 4〈𝑥𝑥𝑖𝑖(𝑡𝑡 − 1)〉

4
+

2 − 〈𝑥𝑥𝑀𝑀−1(𝑡𝑡 − 1)〉 − 〈𝑥𝑥𝑀𝑀(𝑡𝑡 − 1)〉
2

× 
 

× 𝑠𝑠
� 𝑀𝑀−𝑖𝑖
𝑟𝑟(𝑡𝑡)(𝑀𝑀+1)�

2

×
〈𝑥𝑥𝑀𝑀−1(𝑡𝑡 − 1)〉 + 2〈𝑥𝑥𝑀𝑀(𝑡𝑡 − 1)〉 + 1 − 4〈𝑥𝑥𝑖𝑖(𝑡𝑡 − 1)〉

4
+ 

 

+ �(
〈𝑥𝑥𝑗𝑗+1(𝑡𝑡 − 1)〉 − 〈𝑥𝑥𝑗𝑗−1(𝑡𝑡 − 1)〉

2

𝑀𝑀−1

𝑗𝑗=2

× 𝑠𝑠
� 𝑗𝑗−𝑖𝑖
𝑟𝑟(𝑡𝑡)(𝑀𝑀+1)�

2

× 

 
×
〈𝑥𝑥𝑗𝑗−1(𝑡𝑡 − 1)〉 + 2〈𝑥𝑥𝑗𝑗 (𝑡𝑡 − 1)〉 + 〈𝑥𝑥𝑗𝑗+1(𝑡𝑡 − 1)〉 − 4〈𝑥𝑥𝑖𝑖(𝑡𝑡 − 1)〉

4
,                                             (19) 

where 〈𝑥𝑥0(𝑡𝑡 − 1)〉 = 0  and 〈𝑥𝑥𝑀𝑀+1(𝑡𝑡 − 1)〉 = 1 . The multiplier 𝑡𝑡−0.2 × �1 − 𝑒𝑒
5(𝑡𝑡−𝑇𝑇)

𝑇𝑇 �  from the first line of this 
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formula equals to the function 𝛿𝛿(𝑡𝑡) of the Form (17). The 
first two terms (first-third lines of the Formula (17)) define 
the contribution to the shift of the node’s mean 〈𝑥𝑥𝑖𝑖(𝑡𝑡)〉 with 
respect to boundary nodes – the first and the 𝑀𝑀 -th ones 
(existence of this terms in many respects defines the 
boundary effect). In formation of this expressions it is 
considered that the left boundary of the first interval 𝑆𝑆1(𝑡𝑡) is 
equal to the point 𝑥𝑥 = 0  (for “internal” numbers 𝑗𝑗 =
2, … ,𝑀𝑀 − 1  the left boundaries of the intervals 𝑆𝑆𝑗𝑗 (𝑡𝑡)  are 
equal to the values 〈𝑥𝑥𝑗𝑗−1(𝑡𝑡 − 1)〉) and the right boundary for 
the 𝑀𝑀 -th interval 𝑆𝑆𝑀𝑀(𝑡𝑡)  is equal to 𝑥𝑥 = 1  (for “internal” 
numbers the right boundaries of the intervals 𝑆𝑆𝑗𝑗 (𝑡𝑡) are equal 
to the values  〈𝑥𝑥𝑗𝑗 (𝑡𝑡 − 1)〉). In every one of (𝑀𝑀 + 1) terms 
the first multiplier of the form (〈𝑥𝑥𝑗𝑗+1(𝑡𝑡 − 1)〉 −

〈𝑥𝑥𝑗𝑗−1(𝑡𝑡 − 1)〉)/2 is equal to probability for belonging of the 
“attraction point” 𝜉𝜉(𝑡𝑡) (uniformly distributed in the interval 
(0,1) to the corresponding interval 𝑆𝑆𝑗𝑗 (𝑡𝑡) . The second 

multiplier 𝑠𝑠�
𝑗𝑗−𝑖𝑖

𝑟𝑟(𝑡𝑡)(𝑀𝑀+1)�
2

   is equal to the function 𝜏𝜏𝒒𝒒𝑚𝑚 (𝑡𝑡,𝒒𝒒𝑖𝑖) of 
the Form (18); here 𝑑𝑑�𝒒𝒒𝑗𝑗 ,𝒒𝒒𝑖𝑖� = |𝑗𝑗 − 𝑖𝑖|/(𝑀𝑀 + 1). At last, the 
third multiplier of the form (〈𝑥𝑥𝑗𝑗−1(𝑡𝑡 − 1)〉 + 2〈𝑥𝑥𝑗𝑗 (𝑡𝑡 − 1)〉 +
〈𝑥𝑥𝑗𝑗+1(𝑡𝑡 − 1)〉 − 4〈𝑥𝑥𝑖𝑖(𝑡𝑡 − 1)〉)/4 is the analog of the bracket 
�𝐄𝐄𝑖𝑖

(𝜉𝜉)(𝑡𝑡 − 1)  − 〈𝑥𝑥𝑖𝑖(𝑡𝑡 − 1)〉� from the Expressions (14), (15). 

For the Formulas (16)-(19) it is also possible to provide 
the same numerical experiments as in [3] – see, for example, 
Figures 3 and 4. 

 
Figure 3 Iterative nodes moving: grey – formulas (16)-(19), red – Monte Carlo computations (𝑛𝑛 = 100, 𝑟𝑟(𝑡𝑡) ≡ 6) 

 
Figure 4 Iterative nodes moving: grey – formulas (16)-(19), red – Monte Carlo computations (𝑛𝑛 = 1000, 𝑟𝑟(𝑡𝑡) ≡ 6) 

Note that Figures 1-4 illustrate the boundary effect. This 
effect can be essentially decreased by special choice of the 
learning radius 𝑟𝑟(𝑡𝑡) from the Equation (18). For example, 
for computations presented on the Figures 3, 4 𝑟𝑟(𝑡𝑡) ≡ 6, and 

the boundary effect is evident. But just for 𝑟𝑟(𝑡𝑡) ≡ 4  the 
boundary effect disappears (see Figure 5). More Monte 
Carlo (not analytical) computations concerning the boundary 
effect are presented in [4]. 
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Figure 5 Iterative nodes moving: formulas (16)-(19) (𝑛𝑛 = 1000, 𝑟𝑟(𝑡𝑡) ≡ 4); boundary effect is absent 

Note that in [2] it is declared that it is expedient to use 
the learning radius of the following form: 

𝑟𝑟(𝑡𝑡) = 𝑟𝑟(𝑇𝑇) + 𝜔𝜔(𝑡𝑡) × �𝑟𝑟(1)𝑠𝑠𝑡𝑡/𝑇𝑇 − 𝑟𝑟(𝑇𝑇)� × 𝑡𝑡−1/4 , 
the function 𝜔𝜔(𝑡𝑡) and the constant 𝑠𝑠 are from Relations (17), 
(18). 

VI. CONCLUSIONS 

In this paper we’ve proposed an analytical approach to 
description for application of the 1D Kohonen self-learning 
scheme and used it for investigation of boundary effect. The 
approach allows avoiding laborious Monte Carlo 
computations. We’ve proved that the boundary effect 
strongly depends on the learning radius. 
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