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Abstract— The disturbance incidences are common events in the 
flight networks in many countries. On the other hand, the 
survival of busy airlines in this strict and competitive business is 
crucial and tough. Therefore solving flight perturbation 
scheduling problem, in order to provide an optimized schedule in 
low computational time, is very important. This problem and its 
related literature have not yet been investigated seriously in Iran. 
One of the smart methods in solving routing and scheduling 
problems is ant colony optimization method which creates high 
quality results. In this paper, a model and a number of solution 
strategies for flight perturbation problem are presented. An 
approach based on ant colony optimization algorithm is used to 
solve the model. The computational results with real problem 
data show that the proposed method is highly efficient and 
effective in solving complex perturbation problems. The use of 
the proposed method can increase fleet life time and decrease air 
traffic and fuel consumption. 

Keywords- Flight Perturbation Scheduling; Smart 
Optimization; Ant Colony Meta-Heuristic Algorithm 

I. INTRODUCTION 

Airline Operations Control Center (AOC) in airlines is 
responsible for operational scheduling of flights. Safety 
assurance and flight efficiency in timetables are two 
objectives of these centers. There might be perturbations, such 
as airplane technical problems, absence of crew members, and 
bad weather conditions. In order to resolve such perturbations, 
airlines employ strategies like flight cancellation, delaying 
flights, and swapping among aircrafts. The most robust plans 
lose their credibility in such perturbations. In these 
circumstances, airlines make use of manual planning to 
minimize the negative effects of perturbations. However, as 
manual methods result in longer problem solving time, less 
accurate results, increasing workload on flight control 
personnel, and reducing reliability, companies tend to use new 
computer based solutions and technologies. On the other hand, 
the enumeration of all possible schedules is time consuming. 

Flight Perturbation Problem (FPP) has been addressed in 
the literature and different solution methods have been 
proposed. Teodorovic and Stojkovic [1] proposed a 
lexicographical model in which flight cancellation, delaying 
flights, and airplane swapping are allowed, and developed an 
algorithm based on dynamic programming for solving FPP. 
The main objective function of the research was to minimize 
the number of cancelled flights. The second objective function, 
which is used in case of finding multiple solutions with equal 
number of cancelled flights, is to minimize total passenger 
delays. 

Airplane shortage is studied by Jarrah et al. [2] in which 
an airplane is assumed to be out of service for a period of time. 
In this paper, two models were proposed for an isolated 

airport, based on Network Flow Model. In the first model, 
problem was solved by means of delay in flights and airplane 
swapping, while in the second model, flight cancellation and 
airplane swapping was employed. In both models, the goal is 
to minimize the costs associated with replanning the 
purturbated plan. These costs for the two models are delay 
and swapping, and cancellation and swapping, respectively. 
Cao and Kanafani [3] extended the aforementioned paper for 
multiple airports and proposed a Quadratic Binary 
Programming method for it. However, the types of 
perturbations in this research have not been clearly stated. 

There are four different models to deal with FPP [4, 5]. 
The first model permits only flight cancellation, the second 
one allows both flight cancellation and the use of vacant 
airplanes, the third one authorizes the use of flight 
cancellation and flight delay, and finally the last model 
enables the model to use flight cancellation, flight delay, and 
vacant airplanes. In all models, the objective function is to 
minimize replanning costs, the solution methods are 
Lagrangian relaxation and subgradiant optimization, and the 
perturbation is the unavailability of one airplane [4, 5].  

There is also a multi-fleet version of the model in Yan and 
Tu’s [5] study in which the use of a substitute airplane for any 
high capacity airplane of other fleets is possible. 

Arguello et al. [6] proposed a model in which the 
perturbation is defined as the unavailability of one airplane. A 
greedy randomized search procedure is proposed in which 
flight cancellation, flight delay, and flight swapping areused 
in order to minimize total cost of the airline. Thengvall et al. 
[7] has extended the work of Yan and Yang [4] and 
introduced a parameter as deviation penalty which measure 
the deviation from the initial schedule. Although this research 
considers the unavailability of multiple airplanes, it is claimed 
that the model is suitable in the presence of other types of 
perturbation.  

The solution proposed by Love et al. [8] employs a local 
search algorithm which tries to minimize the objective 
function consists of weighted sum of the number of flight 
cancellations, flight delays, and plane swapping. In this 
method, manipulation of weights results in different solutions. 

FPP is known to be NP-Hard. On the other hand, due to 
rapid growth in many airlines, the reviewed heuristic methods 
are time consuming and inefficient and lose their credibility in 
real cases. Therefore, in this research we employ meta-
heuristic method. Due to the success of ant colony algorithm, 
which is a type of parallel random search method, in 
delivering good results in a wide range of optimization 
problems, e.g. scheduling and routing, and its high level of 
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compatibility with real world problems, we choose this meta-
heuristic algorithm to solve the FPP. We believe that the use 
of this method will reduce the time and cost associated with 
rescheduling and results in longer lifetime of the fleet. 

In this research, we propose a mixed integer multi 
commodity model with flight cancellation, flight delay, inter- 
and intra-fleet airplane swapping, and the use of vacant 
airplanes in other airports allowed. Having defined and stated 
the problem, we explore possible solution methods. Our 
investigations lead to the selection of ant colony algorithm for 
which we modelled the problem. We used to proposed 
algorithm in real cases and also in available datasets in the 
literature. After comparison among the results, we note 
improvement tips on our proposed method. 

II. FLIGHT PERTURBATION PROBLEM  

Flight scheduling in airlines is based on maximization of 
profit, efficiency, and flight safety. Due to perturbations, 
however, these schedules lose their credibility and should be 
revised. In this context, Flight Perturbation Problem (FPP) is 
the effort puts in the rescheduling of the flight plans in order 
to minimize negative effects of perturbations. There have 
been identified different types of perturbations some of which 
are as follows: 

 Airplane breakdown. Prior to any flight, airplane’s 
systems are examined by flight engineers, and in case 
of any deviation from standards, the airplane is 
prohibited from flying and the flight is delayed until 
the problem is resolved. 

 Absence of crew members. By international 
regulations, there should be a standard number of 
crew members. This number is based on flight 
sensitivity and the number of passengers. The 
absence of crew members, caused by illness, delay in 
previous flight, etc., results in delay in flight. 

 Bad weather conditions. Icy runway, heavy storms 
against the flight, etc. can result in perturbations of 
flight schedules and in severe cases which might 
cause closure of the airport. 

 Air Traffic Control (ATC) issues. ATC is responsible 
for the control of space and the safety assurance of 
flights. This center is authorized to interfere with 
flight schedules of all airlines. Postponing departure 
time, confining an airplane to remain in the sky for a 
period of time, delaying the arrival of the plane, etc., 
are of such interferences. 

 Perturbation Propagation Effects. In most of airlines, 
flights occur on a chain basis. In other words, if an 
airplane flights from place “A” to place “B”, it will 
continue its tour from place “B” to place “C”, and so 
on. Obviously, least among of perturbation in each 
airport will be propagated to other airlines. This 
phenomenon intensifies the need for a rapid 
rescheduling [15]. 

A. Perturbation effects reduction strategies  

Whatever the cause of perturbation is, the AOC’s main 
goal is to minimize its negative effects. Prior to any decision 
making, responsible employees at AOC negotiate the situation 
with flight controllers, crew controllers, and maintenance 

schedulers. Main strategies for reducing the effects of 
perturbations are [9]. 

 Delay. Applying delays in departure times, affects 
not only direct passengers of that flight, but also 
passengers of consecutive flights with narrow time 
gaps. 

 Airplane swapping. Airplane swapping is defined as 
the allocating an airplane to a route which in not in 
its main route list. This solution is effective in 
passengers view. If the airplane is chosen from 
another fleet, its capacity should be examined to 
cover all passengers. This strategy’s drawback is in 
crew planning, as the crew members are usually 
trained for specific types of planes. 

 Flight cancellation. While in passengers’ perspective, 
flight cancellation should be the last resort, it is a 
suitable low cost option for airlines if they could 
place passengers in other flights. It should be noted 
that flight cancellation leads to a serious perturbation 
in the airplane’s flight route, as the plane should by 
any means arrive at the next airport. 

 Airplane positioning. Plane’s flight between two 
airports with no passengers is called airplane 
positioning. It occurs in some circumstances that an 
airplane should be in a specific time at a specific 
airport and no scheduled flight can be carried out in 
this time. Due to the costs of flight (fuel, personnel, 
etc.) and unavailability of the plane in positioning 
time, this strategy is too expensive for airlines. 
Therefore, such flights usually occur at nights [10]. 

III. ANT COLONY ALGORITHM  

Ant Colony Optimization (ACO) is a meta-heuristic 
algorithm for finding near optimal solutions to NP-Hard 
optimization problems in a logical time. This method, which 
was introduced by Dorigo [11], is inspired by the actual 
behaviour of ants. Whenever ants find food, in real world, 
they transfer the food to the nest. In the beginning, each ant 
travels a different path and on their way back, they discharge 
a chemical substance known as pheromone. The amount and 
intensity of the release pheromone depend on the quality and 
amount of food. In the upcoming travels, this chemical 
substance acts as a communication medium, due to the fact 
that closer distances will have more pheromone which makes 
more ants to follow that path. The main characteristics of ants’ 
system are [12, 13]:  

 A positive feedback is used (by means of pheromone 
model, a parametric probability function on the 
solution space will be provided which results in fast 
recognition of a good solution) 

 based on distributed computing (In order to alleviate 
the amount of pheromone, a vaporization method is 
employed which can prevent rapid convergence) 

 Useing a greedy heuristic method 

 population based (leads to parallel search in solution 
space and increasing the convergence rate of the 
algorithm). 

ACO has been employed in many highly complex 
optimization problems. This algorithm is currently the newest 
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method for solving sequential ordering problems (SOP), 
project resource-constraint scheduling, and other types of 
scheduling problems [14]. 

The algorithm’s steps are as follows: 

1) To Determine the initial parameters of the algorithm, 

2) To Start the algorithm 

a) ‘m’ ants have travelled from the nest to the resource, 
therefore we have ‘m’ feasible solutions 

b) Update the amount of pheromones on all paths 

c) If the stopping condition is met, go to step 3, 
otherwise go to step 2.1 

3) To Report the best result of all the iterations as the global 
optimal solution. 

The algorithm is further described in the proposed 
algorithm section. 

IV. FLIGHT NETWORK DESIGN  

In order to solve the FPP problem by means of ant colony, 
it is necessary to model the problem in the network format. 
Such a network should consist of nodes and arcs so that 
mobile agents (ants) can travel the nodes and complete their 
path. Therefore, all the available flights and airplanes in the 
period of perturbation are presented as a network depicted in 
Fig.1. This network includes three types of nodes: aircraft 
source nodes, flight nodes, and flight sink nodes. Each node 
belongs to a station (airport). Each aircraft source node 
represents a specific airplane and this airplane belongs to a 
specific station from which the plane is planned to start its 
tour or to which the plane will land at the time of perturbation. 

Each flight node and flight sink node is representative of a 
specific flight. The position of a node in the network shows 
the planned departure time and destination. To every flight 
sink node, an aircraft source node is related. In other words, 
every flight route starts from an aircraft source node and ends 
in a flight sink node. Considering the type of aircraft source 
node, to ensure that every route ends in a proper destination, 
extra constraints should be enforced. Flight sink nodes assign 
a specific flight to every aircraft which is specified by the 
aircraft source node. In other words, these nodes represent the 
assigned flight to aircrafts in the original scheduled, at the end 
of perturbation time. As soon as the perturbation period being 
finished, these nodes turn the rescheduled plan back to the 
original schedule. 

 

 

 Fig. 1 Flight network modelling in node and act format 

The interval between the start and the end of perturbation 
is called decision time in which any changes in the original 
schedule is allowed. For domestic flights, decision time is one 
day or less. However, in case long haul operations are 
included, this time is extended to more than a day. Arcs in the 
network define every possible connection between aircraft 
source nodes and flight sink nodes. Therefore, if there is an 
arc between aircraft source node and flight sink node, the 
available airplane in the source node can be assigned to the 
flight. 

V. MATHEMATICAL MODELLING OF FLIGHT PERTURBATION 

PROBLEM  
A mixed integer multi commodity model is employed in 

order to model the FPP. In the FPP literature, commodity 
implies different types of airplane. The sets, parameters, and 
variables of the model are as follows: 

 Sets 

A: set of airplane source nodes 

F: set of flight nodes 

S: set of flight sink nodes 

 Parameters 

c୧୨
୩: the income earned if the airplane k is assigned to 

flight j after flight i 

c	୧ : the cost per time period of delay in flight i 
(proportional to the number of passengers of the 
flight i) 

c୩: capacity of the airplane k 

 

s୧
୩ ൌ 	 ቊ1

0
							

i	 ൌ k	ሺthe airplane	is	assined to its respective source nodeሻ

i	 ് k	ሺthe airplane	isn′t	assined to its respective source nodeሻ
																																 ሺ1ሻ

t୧
୩ ൌ 	 ቊ1

0
							

i	 ൌ k	ሺthe	airplane	is	assined	to	its	respective	sink	nodeሻ					
i	 ് k	ሺthe	airplane	isn′t	assined	to	its	respective	sink	nodeሻ

																																																		ሺ2ሻ

AD୧: the airport from which the flight i departs 

AA୨: the airport to which the flight j arrives 

TD୨: the departure time of the flight j 

TA୨: the arrival time of the flight i/ the availability time of the airplane i 

TG୧୨
୩: the time between two flights if the airplane k is assigned to flight j after flight i 

D୧: the maximum allowed delay for the flight i 

Departure node                     hubs node                   Destination node 
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p୨: the number of passengers for the flight j 

M: a big positive number 

 Variables 

x୧୨
୩ ൌ 	 ൜1

0
							

if	the	airplane	݇	ϐlies	the	ϐlight	݆	after	the	ϐlight	݅
otherwise

 

݀௜: the amount of delay in flight i 

The proposed model will be: 
Maximize:  

max ෍ ෍ ෍c୧୨
୩	x୧୨

୩

୏୨∈୊୙ୗ୧∈୅୙୊

െ෍c୧
	d୧
		

୧∈୊

																																																																										ሺ3ሻ

 ݋ݐ	ݐ݆ܾܿ݁ݑܵ

		 ෍ x୧୨
୩

୨∈୊∪ୗ	

ൌ s୩																																																		i ∈ A, k ∈ A																																																																					ሺ4ሻ

෍ x୧୨
୩

୨∈୊∪ୗ	

െ ෍ 	x୨୧
୩

୨∈୅∪୊

ൌ 0																											i ∈ F, k ∈ A																																																																								ሺ5ሻ

	෍ ෍ x୧୨
୩	

୨∈୊∪ୗ୩∈୅

൑ 1																																									i ∈ F																																																																																	ሺ6ሻ

෍ 	x୨୧
୩

୨∈୅∪୊

ൌ 	 t୧
୩																																													i ∈ S, k ∈ A																																																																									ሺ7ሻ

x୧୨
୩	൫AD୧ െ	AA୨	൯ ൌ 0																																	i ∈ A ∪ F, j ∈ F ∪ S, k ∈ A																																																									ሺ8ሻ

TA୧ ൅ TG୧୨
୩ ൅ d୧ െ ൫TD୨ ൅ d௝൯ 	൅ M൫x୧୨

୩ െ 1൯ ൑ 0									i ∈ A ∪ F, j ∈ F ∪ S, k ∈ A																																		ሺ9ሻ
d	୧ ൑ D୧																																																										i ∈ F																																																																														ሺ10ሻ

x୧୨
୩ 	 ∈ 	 ൛0،1ൟ																																																		∀	i, j, k																																																																																ሺ11ሻ

൜
d	୧ ൒ 0																																																									i ∈ F								
d	୧ 	ൌ 0																																																								i ∈ A ∪ S																																																																											ሺ12ሻ

x୧୨
୩	P୨ ൑ C୩										 																												 i ∈ A ∪ F, j ∈ F, k ∈ A 																																 ሺ13ሻ

 
In constraint (4), an airplane is assigned to every source 

node. Constraint (5) establishes the flow equilibrium in every 
node. In other words, this constraint ensures that the number of 
incoming arcs is equal with the number of outgoing arcs. 
Constraint (6), which hardens solving the model, ensures the 
acceptability of the solutions by assigning at most one airplane 
to every flight. Constraint (7) is used to make sure that the sink 
node for every airplane is the same as the original schedule. 

In order to model the flight j to be carried out after the 
flight i, constraints (8)-(10) are added to the model. The first 
one implies that the flight j should start from the airport in 
which the flight i has ended. In constraint (9), we make sure 
that the departure time of the flight j is greater than or equal 
with the arrival time of the flight i. Constraint (10) confines the 
possible delay to be less than maximum allowed delay (Di). Di 
can be set variably by the flight controller’s opinion. Finally, 
constraint (13) allows x୧୨

୩ being “1” only if the capacity of the 
airplane is enough. 

VI. PARAMETER SETTING APPROACHES  

There are two methods for parameter setting: using real 
costs and using weights. When we use real costs, c୧୨

୩  will 
include different costs such as: the cost of using a substitute 
airplane for the flight j (in case of substitution), the cost of 
carrying out flight j after flight i (transition cost), the cost of 
delays (ci, which includes the refund paid by the airline to 

customers), etc. Exact calculation of these numbers in real 
world is not trivial and some of them can only be estimated. 

When weights are used in parameter setting, model users, 
which are in fact flight controllers, can define parameters freely. 
For example, airplane substitution within a fleet might cost 20 
units, airplane substitution between the fleets can cost 100 units, 
the weight of flight cancellation might be 10, and the weight of 
delay in a flight might be 1. These weights will be converted 
into c୧୨

୩ and c	୧. 

One of the advantages of using weights in problem 
modelling is the freedom of decision makers to change the 
weights in case the results of the model do not satisfy their 
perceptions. The new model will be solved and new results will 
be calculated. In other words, by using weights, the model will 
act as an interactive decision support system [15]. Hence, we 
use this approach in our modelling. 

VII. IMPLEMENTATION OF THE PROPOSED MODEL  

Review of related literary of application of TSP, has shown 
that Ant Colony System (ACS) has achieved better results [16, 
17]. Therefore this method is used in this research.  

A. Building the Graph  

The first step in solving the problem by means of ant 
colony algorithm is to present the problem as a graph. 
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Therefore, the network which is described in section 5 is 
employed. In this network, which is defined as N (A, F, S, L), 
elements of set A are the sets of airplanes of the airline which 
are grouped by their type, F is the set of all planned flight in 
decision time, S is the set of flight nodes at the end of 
perturbation and the number of its members is equal to the 
number of the members of A, and L is the set of arcs that 
connect nodes to each other.  

B. Heuristic Information  

One of the differences between artificial ants in ACO and 
real ants, which accelerate the convergence of the algorithm, is 
the calculation of heuristic information or the evaluation of the 
desirability of a node and its prioritization. 

By means of heuristic information, smart agents (ants) 
should choose a node with both maximum gain, compared with 
the neighbour nodes, and minimum deviation from the original 
schedule as the next node. The first candidate for such heuristic 
information is the revenue from a flight between the current 
node and the destination node (Equation 14) in which Wୡ, Wୢ, 
and Wୱ are weights for cancellation and delay in flights’ cost, 
FP୧ is the number of passengers of flight i, d୧୨

୩ is the amount of 

delay of flight j if it occurs after flight i by airplane k, SW୧୨
୩ is 

the flight substitution cost if airplane k (which is not the 
prescheduled airplane) flies the flight j after flight i. 

௜௝ߟ
௞
ൌ ௖ܹ ∗ ܨ ௜ܲ െ ௗܹ ∗ ܨ ௜ܲ ∗ ݀௜௝

௞ െ ܵ ௜ܹ௝
௞																				ሺ14ሻ 

Another candidate, who is more efficient in selecting flight 
nodes, is to use relative flight revenue instead of absolute 
values. In order to calculate the relative revenue, the above 
revenue is divided by the number of passengers of the flight j. 
Therefore, the priciest node might not be included in the 
selection, as its revenue per passenger value is lower. Relative 
revenue is calculated as in equation 15. 

௜௝ߟ
௞
ൌ

௖ܹ ∗ ܨ ௜ܲ െ ௗܹ ∗ ܨ ௜ܲ ∗ ݀௜௝
௞ െ ܵ ௜ܹ௝

௞

ܨ ௜ܲ
																					ሺ15ሻ 

η୧୨	 is a heuristic value which is defined based on the 
objective function, N୧

୩ is the set of possible neighbourhood  of 
the kth ant when it is the city i. α and β are two parameters with 
which the extent effects of pheromone and heuristic data are 
defined. 

In fact, with probability of q଴, the ant will do the best move 
based on the pheromone trail and heuristic information, while 
with probability of 1 െ q଴ , it will do a bias exploration. 
Therefore, tuning q଴ determines whether to focus on the best 
found solution or to explore new ones. 

C. Producing Solutions  

Because of the different types of node we observe in FPP, 
the solution procedure is to start from aircraft source nodes, 
and stop at flight sink nodes. Therefore, instead of placing ants 
on all nodes, they will be distributed randomly on aircraft 
source nodes and consequently further nodes are selected in 
ACO algorithm until a complete path is formed. In ACO 
approach, every node is selected by means of state transition 
rule. In other words, when the kth ant is in node i, the next 
node, j, is selected by the equation (16). 

j ൌ ቊ
arg	max୪஫୒౟ౡ

	ሼτ୧୪ሾη୧୪ሿஒሽ

J
						

q ൑ q଴
otherwise

																ሺ16ሻ 

In equation (16), q is a uniform random variable in [0, 1], 
q଴ is a parameter, and J is a random variable which calculated 
based on distribution function as equation (17). 

p୧୨		
୩ ൌ 	

ሾ	τ୧୨	ሿ஑	ሾη୧୨ሿஒ	
∑ 	ሾ	τ୧୨	ሿ஑	ሾη୧୨ሿஒ	୪஫୒౟

ౡ 		
							if							jϵN୧

୩															ሺ17ሻ 

η୧୨ is a heuristic value which is defined based on the 
objective function, N୧

୩ is the set of possible neighbourhood of 
the kth ant when it is the city i. α and β are two parameters with 
which the extent effects of pheromone and heuristic data are 
defined. 

In fact, with probability of q଴, the ant will do the best move 
based on the pheromone trail and heuristic information, while 
with probability of 1 െ q଴ , it will do a bias exploration. 
Therefore, tuning q଴ determines whether to focus on the best 
found solution or to explore new ones. 

D. Pheromone Trail and Its Update  

In global updating of pheromone trails in ACS, after each 
iteration only one ant is allowed to release pheromone. The 
amount of pheromone is calculated by equation (18). 

	߬௜௝ 	⟵ ሺ1 െ ߬௜௝	ሻߩ	 ൅ ௜௝߬∆ߩ
௕௦				،	∀ ቀ݅،݆ቁ ߳ܶ௕௦														ሺ18ሻ 

	߬௜௝  is the amount of pheromone on the arc ሺ݅, ݆ሻ  and its 
initial value is 	߬଴. ∆߬௜௝

௕௦ in FPP is: 

∆߬௜௝
௕௦ ൌ ܾܽݎݎ	 ൈ

ܳ
ݎݎ݅

																																				ሺ19ሻ 

ܾܽݎݎ  is the Root Revenue for Best Ant, and ݅ݎݎ  is the 
Initial Root Revenue in the original schedule. ܳ is a parameter 
whose optimum value should be defined using experiments. 
Beside the global update rule for pheromone trails, there is also 
a local update rule which is activated as soon as an ant passes 
the ሺ݅, ݆ሻ arc in its close path construction. The local rule is 
formulated in Equation (20). 

	߬௜௝ 	⟵ ሺ1 െ ߬௜௝	ሻߦ	 ൅ 	ሺ0					଴߬	ߦ	 ൏ 	ߦ ൏ 1ሻ															ሺ20ሻ 
	߬଴ is the initial value of the pheromone trail.  

E. Parameter Setting 

In the first step, the values of the parameters are set. 
Parameter setting is an important factor in the success of meta-
heuristic algorithms. These values differ from one problem to 
another. Common procedure for finding suitable values for 
parameters is to use many experiments on every specific 
problem. Repeated experiments have been carried out on four 
datasets, s1a, s1b, s2a, and s2b, which are presented in the 
following parts. The results revealed that some parameters are 
not significantly sensitive (NSS) on the type of problem, and 
therefore can be kept constant. The parameters of the proposed 
algorithm and their values are presented in Table 1. 

VIII. LOCAL SEARCH ALGORITHMS  

The literature on meta-heuristic algorithms reveals that a 
promising method for finding a high quality solution is the 
simultaneous use of a local search method and an initial 
solution generation mechanism. There have been developed 
different local search methods in the literature, from which K-
OPT algorithms are of the most effective ones [14, 18]. In this 
paper, as a local search method 2.5-OPT is employed to be 
added to FPP-ACO, in order to improve the solutions in each 
stage. This method is a bit more time consuming than 2-OPT, 
while its results are much better than 2-OPT. 
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TABLE II   THE PARAMETERS VALUE. 

Parameter Value Comments 
m 2A The best value for the number of mobile agents are 2A where A is the number of flight nodes 

 NSS Evaporation rate in global pheromone trail update ߩ

 NSS The coefficient of pheromone trail’s effect in movement transition rule ߙ

 NSS The coefficient of heuristic information’s effect in movement transition rule ߚ

	߬ఖ 0.0001 Initial pheromone on paths 

 Evaporation rate in local pheromone trail update 0.1 ߦ
MI  Maximum iteration 
 ଴ 0.5 State parameter in transition ruleݍ

Q 1 The coefficient of the effect of pheromone change by the best ant (ant on the path with the most revenue) 

NS NN The number of steps, which is equals with the number of nodes (NN) 

NRS 1 
Number of random steps is the number of ants’ random movements (without following the state transition rule) in 
the beginning of the algorithm. Due to the fact that in the start of the algorithm in FPP problem, ants are placed on 
flight source nodes, random moves ensure that ants spread on all the flight nodes and then start to build up routes.

NSO NSS The number of save options which is the number of answers presented to the flight controller 
 

A. Limitations of 2.5-OPT in FPP  

Considering that there are 3 types of nodes in FPP with 
different characteristics, and time is a key factor in determining 
the position of nodes, the arcs in this problem is directed and 
therefore, there are limitations in reassigning arcs. In other 
words, in addition to the limitations of 2.5-OPT algorithm, 
other limitations, such as maximum allowed delay for the next 
flight, sufficiency of the capacity of the airplane, and the 
feasibility of departure and arrival of every node, should be 
taken into account. 

IX. CONVERGENCE OF THE PROPOSED ALGORITHM 

In order to probe the convergence of the proposed 
algorithm, we should investigate whether ants converge on one 
or some limited routes in later times or they continue to move 
randomly. This hypothesis is tested by means of entropy theory. 
The total probability entropy of all the routes is calculated 
using equation 21: 

E୧୨ ൌ െ ෍ P୧୨
∀୔ୟ୲୦

																																						ሺ21ሻ 

Where P୧୨ is the probability of choosing node j by the ant, 
if it was on node i. Based on the entropy theory and its 
application in mathematical algorithms [19, 20] the more an 
algorithm converges, its entropy will be closer to zero. In other 
words, if by increasing the number of iterations of the 
algorithm, the average entropy of the probability of path 
selection, i.e.Eഥ , tends to zero, we can infer that the ants’ 
movements are convergence to one or a few paths. Fig. 2 
shows the changes in Eഥ  by the increase in the number of 
iterations in the proposed problem. 

 

 Fig.2 Convergence of the FPP-ACO algorithm. 

X. COMPUTATIONAL RESULTS  

The purpose of providing computational results in this 
section is to prove the efficiency of the model and its 
respective proposed algorithm. Moreover, we show how flight 
controller can use this method as a decision support tool for 
assessing different strategies in the time of perturbation. 

A. Datasets  

The sample datasets with which the efficiency of the 
proposed algorithm and the algorithms available in the 
literature are compared belongs to Sweden’s domestic flights 
data. These datasets are provided under the headings of S1 and 
S2 and their properties are presented in Table 2. Note that 
domestic flights are categorized in short range flights with 15 
to 125 minutes flight time. 

TABLE III    MAIN PROPERTIES OF SAMPLE DATASETS 

 Datasets 
S1 S2 

Number of airplanes 13 30 
Types of airplanes 2 5 
Number of flights 98 215 
Number of airports 19 32 

These datasets have faced perturbation in two different 
types: ‘a’ and ‘b’. In perturbation type ‘a’, an airplane is 
broken down while in perturbation type ‘b’ there is a delay on a 
group of flights. Combining perturbation types and two 
datasets, we will have four sets: s1a, s1b, s2a, and s2b. In s1a, 
one airplane is not available for 5 hours, and in s1b two flights 
will face a delay for 25 and 30 minutes respectively. The 
unavailability of an airplane in s2a is 6 hours and the delay in 
s2b occurs for 4 flights with 15 to 40 minutes time. The 
maximum allowed delay for every flight (D୧) is 60 minutes and 
every feasible path has at most 16 flight nodes. The time for 
every airplane, irrespective of its type, is 10 minutes. This 
number is changeable and is considered as a fixed number in 
our tests for comparison purposes only. Every dataset is solved 
for different weights and their respective costs are calculated. 

B. FPP-ACO Implementation  

The proposed algorithm has been implemented in 
MATLAB environment and a laptop with 1.66 GHZ CPU and 
1 GB of RAM is used for the tests. For each and every problem, 
the algorithm is run several times until one of several stopping 
conditions is satisfied. The stopping conditions are: 
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1) All mobile agents complete their paths. 

2) The number of steps for each ant is greater than the 
maximum number of moves. 

The relationships between the value of the objective 
function and the run time with the number of iterations are 
depicted in Fig. 3. Obviously, by increasing the iterations, 
results will be closer to the optimal value while the run time 
increases. 

 

 Fig.3 The effect of the number of iterations on the quality and the run time 
in s1a 

The computational results are presented in Table 3. Column 
1 shows different runs for different weight settings. The next 
four columns show user’s weights for flight cancellation (can), 
between fleet swapping (sw), within fleet swapping (sw-i), and 
delay (del). BKS column shows the best results obtained by 
means of exact solution method, which is based on the 

combination of Dantzig–Wolfe decomposition and Lagrangian 
Heuristic [21] Generate and Solve (LHGS). This method is one 
of the straightforward strategies in solving FP-MIMF problems. 
By means of Dantzig–Wolfe decomposition, the main FP-
MIMF problem is divided into two easy-to-solve problems and 
these two problems are solved by LHGS [22]. The BKS 
column is added to the table for comparison purposes. REV 
column provides the best generated revenue from paths in the 
proposed algorithm. The following columns are: ‘c’ for the 
number of passengers whose flight has been cancelled and 
‘D*Pass’ for the amount of delay (passenger minute). Finally, 
the column ∆% is the difference between the generated income 
in our methods solution and the revenue of the exact solution. 

A variety of weight combinations have been adopted for 
other data sets whose values may be different, regarding the 
flight controller opinion. As you see in column ∆% , the 
difference between optimum values calculated by this method 
and by the precise method increase in larger problems (S2b, 
S2a) which is unflavoured. The increase suggests that we use 
local search in the proposed method in order to improve the 
results' quality. Then we will apply local search algorithm of 
2.5-OPT in the proposed method and rerun the data set using 
the improved version of the proposed method. The results have 
been presented in Table 4. As you see in the Table 4 the 
adjusted algorithm is able to improve the optimum results 
considerably compared to the situation of without local search 
procedure. 

TABLE IV     THE RESULTS OF THE PROPOSED MODEL IN SAMPLE DATASETS WITHOUT LOCAL SEARCH 

Results Weights Run 
Labels D*pass Sw‐i Sw C ∆% REV BKS del Sw‐i Sw Can 

0 0 0 90 1.99 42,920 43,792 1 10 100 20 S1a1 
20 1 0 74 1.28 216,170 218,980 1 10 100 100 S1a2 
0 0 0 90 1.99 42,920 43,792 1 10 100 20 S1a3 

0 16 0 103 4.57 42,500 44,539 1 10 100 20 S1b1 

0 6 0 112 4.35 41,880 43,786 1 100 100 20 S1b2 

250 0 0 143 3.54 41,610 43,140 1 400 100 20 S1b3 

0 3 0 307 7.15 63,580 68,480 1 10 100 20 S2a1 

20 0 0 253 5.55 64,220 68,000 1 100 1,000 20 S2a2 

1340 19 8 184 6.81 318,570 341,865 1 10 1,000 100 S2a3 

25 4 2 230 6.72 64,435 69,080 1 10 100 20 S2b1 

0 7 2 263 7.20 63,770 68,720 10 10 100 20 S2b2 

420 2 3 201 6.44 64,460 68,900 1 50 100 20 S2b3 

TABLE V     THE RESULTS OF THE PROPOSED MODEL IN SAMPLE DATASETS WITHOUT LOCAL SEARCH 

Results  Weights  Run 
Labels D*pass  Sw‐i  Sw  C  ∆% REV  BKS  del  Sw‐i  Sw Can  

230 0 0 42 0.32 43650 43792 1 10 100 20 S1a1 

0 0 0 56 0.36 43600 43760 1 10 1000 20 S1a2 

210 2 0 44 0.004 218970 218980 1 10 1000 100 S1a3 

0 3 0 40 1.45 43890 44539 1 10 100 20 S1b1 
0 3 0 62 0.76 43450 43786 1 100 100 20 S1b2 

1580 0 0 0 0.00 43140 43140 1 400 100 20 S1b3 
0 6 2 89 1.78 67260 68480 1 10 100 20 S2a1 
116 2 0 133 2.46 66324 68000 1 100 1000 20 S2a2 
655 7 2 98 2.30 333975 341865 1 10 1000 100 S2a3 
216 43 1 45 2.06 67655 69080 1 10 100 20 S2b1 

0 4 0 84 2.22 67190 68720 10 10 100 20 S2b2 
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135 16 2 30 1.93 67565 68900 1 50 100 20 S2b3 
C. Software output  

As we mentioned earlier, the output of the software 
designed to solve FPP problem is a set of ranked answers, 
based on the income of the routes. The user may choose each 
route as the Flight Company's strategy to encounter the 
problems according to experimental considerations. This leads 
to higher flexibility in decisions of the flight controllers (Table 
5).  

TABLE VI   SOME OF THE ANSWERS OBTAINED WITH ANT 

COLONY OPTIMIZATION APPROACH TO SOLVING S2A1  

D*Pass SW-i SW CAN REV No

0 6 2 89 67260 1

25 6 3 93 67055 2

25 13 0 120 66745 3

340 3 1 258 63670 4

10 4 2 317 63080 5

0 1 3 316 63030 6

0 0 0 355 62960 7

0 7 3 311 62710 8

112 4 2 377 61408 9

98 14 6 354 61382 10

D. Calculation Time  

Considering the effectiveness level (Quality) of the answers 
achieved by the proposed method we would analyze its 
efficiency (Convergence speed). In this regard we would 
compare the proposed algorithm's calculation time with the 
precise method based on integration of Lagrangian innovative 
algorithm and Frank-Wolfe analysis method [23] (LHGS). 
Both strategies LHGS and FPP-ACO have been applied in two 
small (S1b, S1a) and large (S2b, S2a) data sets Using various 
weights in order to calculate the expenditures and the results 
have been presented in Table 6. The difference in changes in 
answers achieved by the proposed method for the optimum 
answers is presented in fig. 4. 

 
Fig.4 Diagram for the difference changes in answers achieved by the proposed 

method for the optimum answers 

TABLE VII    COMPARISON OF FPP-ACO AND LHGS APPROACHES  

Calculated time (sec)  Results  Weights  Run 
Labels FPP-ACO  LHGS  FPP-ACO  LHGS  del  Sw-i  Sw Can  

3  4 43650 43792 1 10 100 20 S1a1 

2  4 43600 43760 1 10 1000 20 S1a2 

2  6 218970 218980 1 10 1000 100 S1a3 

2  5  43890  44600  1  10  100  20  S1b1 
2  2  43620  44070  1  100  100  20  S1b2  
1  1  43670  43140  1  400  100  20  S1b3  

17  645  67260 68480  1  10  100  20  S2a1 
15  526  66324 68000  1  10  1000  20  S2a2  
23  1139  333975 3418565  1  10  1000  100  S2a3  
14  1118  67655 69080 1 10 100 20 S2b1 
15  1150  67190 68720 10 10 100 20 S2b2 
11  583  67565 68900 1 50 100 20 S2b3 

XI. CONCLUSION  

In this research we could design and run an efficient and 
effective instrument for solving the flight tribulation problem, 
through developing ACO intelligent method and the local 
search approach of 2.5-OPT. 

In other words, we provide a common field between ACO 
and FPP in an efficient way. This instrument will support the 
decisions of the flight controllers in the operation centers for 
the flight companies, When the flight network faces a problem 
the flight controllers achieve a set of ranked answers using this 
instrument. 

The answers vary in structure. The flight controller can 
choose one of them as his or her strategy to solve the problem; 
otherwise he or she may reset the weights according to his or 
her experience and opinion and solve the problem. Applying 
this method makes the flight networks tribulations time 
schedule more economic in real-world and makes the flight 
navigation's life prolonged. 
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