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Abstract- The probabilistic approach to cognition has 
become an established approach in recent decades. 
Cognition is better viewed as solving probabilistic, 
rather than logical, inference problems; i.e. cognition is 
better understood in terms of probability theory, rather 
than in terms of logic. This article presents a cognitive 
architecture used to govern a robot probabilistically. 
The design and implementation of cognitive 
architectures is a useful tool for understanding cognition 
in a situated agent. The Cerno research project extended 
the CAMAL (Computational Architectures for 
Motivation, Affect, and Learning) model, by 
incorporating probabilistic reasoning in its BDI model. 
Subsequent development of CAMAL has integrated all 
the valanced affective predicates across the architecture. 
Extensive experiments with synthetic and real robots 
demonstrate an improvement in the overall performance, 
success rate, task effectiveness, and goal achievement of 
the cognitive architecture. 

Keywords- Cognitive Robots; BDI; Probablistic 
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I. INTRODUCTION 

The CAMAL architecture is an example of a general 
class of integrative cognitive architectures; drawing together 
a number of threads in Cognitive Science and Artificial 
Intelligence, such as perception, action, decision making, 
motivation, affect, and learning. CAMAL (Computational 
Architectures for Motivation, Affect, and Learning) [1] was 
developed from ideas incorporated in Guardian [2], ACT-R 
[3], CRIBB [4], CogAff [5], and the cognitive architectures of 
Singh and Minsky [6].  

CAMAL is, essentially, a UTC (Unified Theory of 
Cognition) [7] that tries to answer many of the questions that 
comprise Norman’s Cognitive Science agenda [8]. CAMAL 
uses a slight variation of the reasoning model to be found in 
a-CRIBB [9, 10]; i.e. a BDI (Belief-Desire-Intention) 
reasoning model that is driven by an affect model. CAMAL 
previously has not included any probabilistic reasoning 
capability, although multi-dimensional metrics (from the 
affect model) have been used to rank motivations, goals and 
manage affect [11].  

The primary aim of the Cerno research project is to 
investigate how CAMAL can be extended to reason 
probabilistically about tasks and domain model objects. In 
particular, it looked to integrate a probabilistic formalism 
into its BDI model to coalesce a number of mechanisms. 
The impetus for this investigation is the considerable 
evidence that probabilistic thinking and reasoning are linked 
to cognitive development and play a role in cognitive 

functions, such as decision making and learning [12, 13, 14]. 
This leads us to believe that a probabilistic reasoning 
capability is a vital part of any system that attempts to 
emulate human intelligence computationally. In other words, 
probabilistic reasoning is an essential aspect of the process 
of cognition and, therefore, must be considered in any 
adequate description of it. 

II. COGNITIVE ARCHITECTURES AND ROBOTS 

Cognitive robotics (both simulated and embodied) is a 
growing research field that draws on a number of influences. 
Mobile robots provide an essential tool when investigating 
the interaction of cognitive architectures and the physical 
environment. Robots have been used to investigate many 
different aspects of artificial intelligence such as mapping 
and localization techniques [15, 16], robot perception [17] and 
robot learning [18, 19]. The reported research builds on the 
previous use of a mobile robot to investigate a specific area 
of cognitive science known as the anchoring problem [20]. 
The anchoring problem describes the problem of generating 
and maintaining links between symbols and perceptual data. 

 Hybrid architectures seek to avoid the disadvantages of 
their component architectures, whilst retaining all their 
benefits. A commonly used hybrid architecture is the 
reactive-deliberative architecture [21]. Here (see Figure 1) we 
present an architecture consisting of several different 
elements including a set of low-level robot actions; a 
reactive component built from many different reactive 
behaviours; a belief-desire-intention (BDI) schema; a 
distributed model of affect; an association construct; a 
domain model; and a motivational blackboard that links all 
these subsystems together. 
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Fig. 1 Schematic of the Cerno Architecture 

Most pertinent to the overall aims of the current research, 
is the mobile robotics work of Stoytchev and Arkin [22]. 
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Their architecture combines three components: deliberative 
planning; reactive control; and motivational drives. They 
identified that the mapping of high-level deliberative 
commands onto a reactive controller solved some of the 
problems associated with purely reactive control. The 
approach taken in Cerno (plus robo-CAMAL and other 
CAMAL variants) offers a solution, at least in the limited 
experiments performed to date. The BDI schema used with 
the association mappings offers a generic solution that can 
be tailored to specific environments and tasks, through 
adaptation and learning of the domain model. The 
motivational model used in CAMAL is developed from a 
goal based model of emotion and operates at both the 
deliberative and reactive level. 

III. CAMAL AND CERNO-CAMAL 

The belief-desire-intention (BDI) model [23] is a schema 
that calculates the actions of an agent based on its beliefs 
and its desires. A belief is a statement about the confidence 
of a proposition. The confidence the agent can have in a 
belief can vary. In the BDI model, beliefs are based on input 
from the agent’s perceptual system, and its previously held 
beliefs. The agent’s desires are a set of goals, which the 
agent wishes to achieve. The agent’s current desires are 
based on its internal state, possibly its emotional state, and 
its previously held desires. Through a coupling of the 
agent’s beliefs and its desires, CAMAL generates a set of 
intentions or plans to achieve its goals. For example if the 
agent has a goal to hit a ball, and the perceptual system 
generates the belief that there is a ball to the right, the agent 
can then implement a set of plans to turn the agent right and 
move forward. 

The CRIBB (Children’s Reasoning about Intentions, 
Beliefs and Behaviour) model was developed to investigate 
reasoning in young children [24]. This schema was 
implemented as a computer model to simulate knowledge 
and the inference processes of a child solving problems [4]. 
Earlier research saw a variety of CRIBB using affect (a-
CRIBB) developed [9, 10, 11]. For robo-CAMAL, a-CRIBB 
was developed with a major difference to the standard BDI 
model in that different qualitative degrees of belief are 
ascribed to belief statements, according to the source of the 
belief. A preference operator allows discrimination between 
beliefs that are based on assumption, perception and 
deduction. Perception can be further sub-divided to include 
direct perception and indirect perception (i.e. from another 
agent that has some degree of trust associated with it). 
Hence beliefs can be ordered according to the degree of 
trust in them. The current version of CAMAL (and hence 
the Cerno variant) develops this further with the use of 
(quantitative) belief metrics. 

CAMAL makes use of a hybrid reactive-deliberative 
architecture (Figure 1) based on the control system approach 
to mind [25]. A control state is a behavior internal to an agent. 
Control states can exhibit external behaviors (such as 
obstacle avoidance) or, reflect and control internal states 
(such as beliefs). In essence, control states can be a number 
of things, such as beliefs, desires, motivators, etc. They can 
be considered as general behaviors within an agent, and 

therefore can be modified or updated at any time by some 
other processes within the agent. 

Scientific evidence highlights the fundamental role of 
affect in rational and intelligent behaviour [26]. Since there 
appears to be a requirement for something analogous to 
affect in artificial cognitive systems, it has been conjectured 
to use affective control states which makes affect the basis 
of a consistent control language across a cognitive 
architecture [9, 11, 25, 27, 28]. Further research proposes that 
motivation also plays a fundamental role in a variety of 
cognitive functions [29]. From the viewpoint of mind as a 
control system, motivation can thus be thought of as a 
control state. Furthermore, motivators are dispositions and 
tendencies to assess situations and respond to those 
situations and assessments in a certain way. They can 
provide a context and impetus for reasoning about events, 
and also a basis for goal-directed behaviors. They are, 
therefore, often used as a generic framework that draw all 
these control states (beliefs, goals, etc.) together.  

It now seems reasonable to conclude that motivation and 
affect can be co-joined in perception and cognition. 
Motivations are essentially more encompassing than goals 
since they include not only the descriptions of goals but also 
an affective context for those goals. Furthermore motivators 
are often used as a generic framework since they can draw 
all the control states of a cognitive architecture together. 
Hence, the use of control states to develop cognitive 
architectures leads to the use of affective and motivational 
control states. The following sections briefly introduce some 
of the main components of the CAMAL cognitive 
architecture. 

A. Probabilistic -BDI Model 

One of the limitations of the earlier BDI model was the 
lack of any explicit mechanism to express degrees of belief. 
CAMAL represents beliefs as categorical states; prioritized 
by a CAMAL preference model, using belief preference 
operators. Given that our current work on this theme 
presents an affect- and affordance-based core for mind, it 
seems reasonable to conjecture that beliefs, too, should be 
grounded in the use of affect. The aim is for this mechanism 
to be consistent across different domains, tasks, and levels 
of processing. This will be compatible with the way in 
which the affect and motivational models operate 
throughout CAMAL, having an associated affective 
magnitude that can fluctuate according to success or failure 
associated with that element. Effectively, affect will serve as 
a decision metric and affective values as a currency across 
the entire architecture. We, therefore, represent belief 
statements as graded states, with the Extended Belief 
Structure (EBS) using clauses of the form: 

B. belief ( Descriptor, Source, Time, Degree Belief ) 

The numerical reasoning algorithms underpinning the 
EBS associate a probability value DegreeBelief with every 
belief statement in CAMAL. This defines the degree to 
which the belief statement is believed to be true. This 
enables the computation of degrees of belief, and using the 
BDI and affect models to determine the agent’s intentions, 
actions, and behaviors. It will also allow the entire BDI 
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model to run using numeric affective values to prioritize 
choices made over a current belief set. 

CAMAL’s Probabilistic-BDI model provides a method 
to control the flow of information through the deliberative 
component. It determines the intentions, actions, and 
behaviors of the cognitive agent based on its beliefs and 
desires. For example, the Domain model (described later in 
this section) contains belief statements about the assumed 
reliability of belief sources (perception sensors, deduction or 
assumptions): 

degree_of_belief (perception, 0.9). 

degree_of_belief (deduction, 0.75). 

degree_of_belief (assumption, 0.5). 

The belief handling mechanisms (in the Deliberative 
Layer of Figure 1) can therefore use (or modify) these 
predicates when reasoning over beliefs to generate 
statements such as the following statements taken from an 
instance of CAMAL running in a test-bed (robotworld) 
populated by other robots and a ball (and used in the third 
experiment in section IV): 

belief ( environment (sparse), assumption, 1, 0.5 ); 

belief ( cycles (2), deduction, 2, 0.75 ); 

belief ( energy (100), perception, 2, 0.9 ); 

belief ( found (robot1), perception, 2, 0.9 ); 

belief ( near (ball), perception, 2, 0.9 ). 

C. Domain Models 

Underpinning the Probabilistic-BDI, affect, and 
motivational models, CAMAL makes use of domain models. 
The cognitive architecture shown in Figure 1 (Cerno) 
contains three processing layers: reactive, deliberative, and 
metacognition. The latter layer is more extensive in the full 
CAMAL implementation. It is vital that relevant 
information about its attributes and properties along with its 
surrounding environment be incorporated into its cognitive 
architecture. This incorporation is achieved by the use of its 
(propositional) a-priori domain model.  

This model (which the user supplies as a set of 
propositions) defines how CAMAL should reason about its 
intended test-bed. CAMAL is meant to be a generic 
architecture that can be initialised to reason about a specific 
set of tasks in a specified environment. Using a domain 
model is a method of instantiating the relevant information 
about a cognitive agent’s attributes and its surrounding 
environment into the cognitive architecture. The domain 
model, once loaded, initialises the motivational blackboard, 
parameterises the metacognitive layer, and is then 
distributed across the cognitive architecture, at both the 
reactive and deliberative levels. It provides information on 
the agent’s attributes and its surrounding environment. It 
defines the types of objects to be found within the agent’s 
environment (physical or simulation). It defines some of the 
possible beliefs that are most relevant to the agent. It defines 
the relationships between the stated beliefs. It defines the 
goals that the agent can have. It provides a list of all the 

possible actions the agent can undertake; and it provides the 
objects’ perceptual profiles (i.e. the information required to 
recognize an object), etc. 

Statements about the agent’s environment at the 
deliberative level pertain to the possible beliefs the agent 
can hold. These constitute the beliefs used in the BDI model. 
These statements are presented on the motivational 
blackboard at the deliberative level in Figure 1, unlike the 
environment domain model which had components present 
at both the reactive and deliberative levels. These statements 
are placed on the motivational blackboard, and provide 
information on the goals that the agent can have and the 
actions that the agent can take. These constitute the desires 
and intentions used in the BDI model.  

Goals take the following form: 

Goal (Descriptor, Success Condition, Importance). 

The Descriptor is a description of the agent’s goal. The 
Success Condition is the belief descriptor required for the 
goal to be achieved. The importance is an affect value 
detailing the goal’s affordance, meaning how important the 
goal is to the agent.  

CAMAL, once running, is allowed to modify the loaded 
domain model, and so tune the architecture to the specific 
environment it finds itself in. Example goals are given in the 
explanation of the association structure in the following 
section. 

D. Affect & Motivational Models 

Affect is defined in terms of information processes and 
representational structures across the cognitive architecture. 
It is qualitatively defined as negative, neutral, or positive, 
and can be mapped numerically (as a valance) over the 
interval [-1.0, +1.0]. The use of affect and affective control 
states makes affect the basis of a consistent control language 
across the architecture. It allows external events and objects 
to take valanced affordances, and internal mechanisms to be 
prioritized via valanced processes. Adding affect results in 
more effective processing and task management [9, 11]. 

The affect model distributes affect values across the 
entire cognitive architecture, rather than having a 
centralized emotion module. This is made possible by the 
use of associations. An association is a construct that 
contains a complete BDI combination, as well as an 
associated affect value (insistence). This association value is 
one of the main factors in deciding (at the deliberative level) 
the next action of the cognitive agent. Associations take the 
following form: 

Association (Belief, Desire, Intention, Insistence). 

Example associations from CAMAL running in the 
robotworld domain, introduced above, include: 

Association (environment (sparse), find (ball), 

   Reactive (true, true, method5), 0.95). 

Association (near (ball), hit (ball), 

Reactive (false, true, method_hit), 0.95). 
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association (found (robot1), approach(robot1), 

reactive(false, true, method_approach), 
0.95). 

association (found (robot1), track(robot1), 

reactive (true, true, method4), 0.05). 

association (found(robot1),track(robot1), 

 reactive (true, true, method5), 0.835). 

The architecture maintains various beliefs about the 
environment it is operating in, and several possible goals 
that relate to that environment. It also has a number of 
different plans of actions (or intentions or behaviors) that 
correspond to specific reactive sub-architectures that can be 
activated (as in the last two example associations given 
above). Associations effectively provide a method for a 
cognitive agent to keep track of all these possible belief-
goal-action combinations, as well as containing a key value 
that indicates their relevance and significance to the agent at 
a given time—their association value. These combinations 
detail the correct action required to achieve a specific goal 
given a specific belief. 

Given the example belief and association predicates 
above, all associations have their belief basis substantiated. 
CAMAL would reason that the first association has already 
succeeded as the find (ball) goal has already succeeded 
(belief near (ball) exists). If the chosen goal were track 
(robot1) then the second of the two relevant associations 
would be chosen as it has a higher Insistence value. 
However, as the following text describes, CAMAL chooses 
a motivation that is a combination of affordances from 
current belief, goal and association statements. 

As part of the distributed affect model, the motivational 
model contains multiple affective values in the structures of 
its motivational blackboard. The motivational blackboard 
used in CAMAL is akin to the structures found in 
Blackboard Systems [30], and acts as a global workspace. It 
is a global structure that holds all the relevant information 
about an agent’s environment, attributes, properties, beliefs, 
desires, current state, previous states, etc.. This blackboard, 
analogous to Baars’ Global Workspace [31] is potentially 
accessible by all the processes of an agent. The knowledge 
and information held on the motivational blackboard can be 
divided into several distinct areas: beliefs that the agent can 
have about its environment; beliefs that the agent can have 
about its own internal state; desires that the agent can have 
about the objects in its environment; intentions that the 
agent can have to achieve its goals; associations that are 
used to manage the BDI and affect models; and a motivator 
that contains the result of the operation of knowledge 
sources. The reasoning focus in CAMAL is often on the 
motivator as a representational form that enables perception, 
affect, cognition, and behavior to come together and interact. 
In effect, a motivator is a representational schema that is 
used as a generic framework to bring together aspects of 
cognitive processing, such as perception, affect, and 
behavior. Motivators are used to manage and manipulate the 
affective and motivational control states presented at the 

‘deliberative’ level. They may also trigger appropriate 
intentions, actions, and behaviors at the ‘reactive’ level, 
such as selecting a suitable reactive sub-architecture. 
Motivators can, thus, be thought of the result of the 
operation and execution of the various (reactive, 
deliberative and meta-cognitive) knowledge sources on a 
motivational blackboard. Motivators take the following 
form: 

Motivator (Goal, Association, Time, Determinism, Cycle, 
Intensity) 

The Intensity element is an affect value that defines the 
importance of the motivator to the agent. The schema also 
contains the agent’s chosen goal, plus the appropriate 
association selected to achieve that goal, which obviously 
contains the intention of the agent as well (as highlighted 
above). The Cycle element gives the number of cycles the 
reactive component should run for. The Time element 
defines the deliberative cycle when the motivator was first 
generated. The Determinism element is Boolean. If set to 
true, the reactive component would override any reactive/ 
behavioral failure in achieving a goal or other conditions 
until the end of the given number of cycles, or until the goal 
is met. If set to false, the reactive component would return 
the first possible action (including behaviour failure) that 
the deliberative-reactive interface selects, based on the 
appropriate goal-association combination.  

Once a goal and a relevant association are chosen, the 
motivator-update knowledge source of the motivational 
blackboard uses them to update the motivator. For the 
running robot world domain example, given the set of 
beliefs and associations listed above, with all goals defined 
in the associations also present on the motivational 
blackboard, then CAMAL would generate a motivator of the 
form: 

Motivator (goal (approach (robot1), near (robot1), 0.68), 

Association (found (robot1), approach (robot1), 

 Reactive (false, true, method approach), 
0.95), 

  2, false, 10, 0.725). 

This means that CAMAL will attempt to satisfy the goal 
approach(robot1) using the reactive level (see Figure 1) 
behavior method approach with sonar switched off and 
vision on (as defined by the atoms false and true in the 
reactive behaviour definition in the association). The 
reactive behaviour will run for 10 (reactive level) cycles but 
can be interrupted if the reactive behaviour fails during any 
of those cycles (as defined by the atom false between the 
Time and Cycles fields). The motivator was created in 
deliberative Cycle 2 with an Intensity as given in the last 
field. It should be noted that the architecture shown in 
Figure 1 (as with all CAMAL variants) is asynchronously 
parallel. The overall architecture has different run times and 
cycles at the meta-cognitive, deliberative and reactive levels. 
Hence the explicit separation of deliberative and reactive 
time and cycles in the deliberative level motivator, and the 
use of separate predicates to refer to each at the deliberative 
level.. 
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E. Operational Overview 

Cerno is variant of CAMAL that uses reactive 
behaviours associated with robo-CAMAL [20] and the first 
CAMAL architecture to incorporate the Probabilistic-BDI 
schema. It does not include the meta-deliberative reasoning 
of CAMAL [32] but simply a set of statements that define 
how it should reason. These norms (given in the Domain 
Model) define how the algorithms underpinning the 
combination of affective valances in BDI model are 
combined. Unlike CAMAL it cannot reason about these or 
modify how earlier failed or unused motivators are revisited 
when current motivators start to fail. 

The inclusion of degree-of-belief in the structure of its 
belief predicates enables the architecture to select a focused 
belief set that reflects its current activities, as highlighted by 
actions, objects, and agents referenced in a current 
motivator. The motivator enables goal revision and the 
selection of the next goal based on goal importance, current 
beliefs and goal history. The deliberative processing of these 
constructs allows the selection of an appropriate action 
related to specific objects and tasks. This, in turn, drives 
motivator revision using the association construct, which in 
turn enables belief-desire-intention combinations to be 
ranked based on the likelihood of their success (association 
insistence values). The goal importance, association 
insistence, motivator intensity, and degree-of-belief are all 
underpinned by affordances; i.e. they are all consistently 
grounded in affect. Together, they allow motivators to 
persist or be updated by new goals, associations, etc. 

At the reactive level, perceptual data from the agent’s 
sensors in the test-bed are passed to the deliberative layer. 
This perceptual message is parsed and posted to the 
motivational blackboard. Whether in simulated or robotic 
test beds, sensory information is mapped onto belief 
structures. Belief affordances (degrees of belief) define the 
degree to which the belief statement is believed to be true. 
The belief-update module uses the new information to 
modify its belief set. The motivator assessment modules 
then uses the updated belief set to determine the success of 
the current motivator if the current goal has been achieved. 
This then leads to goal updating and the selection of a new 
goal set. The association-update then uses the new belief 
and goal sets to determine the relevant action or intention. 
The affective insistence measure allows the control of 
external behavior through the building of associations that 
link beliefs, goals, and intentions. 

IV. EXPERIMENTAL RESULTS & OUTCOMES 

A succession of experiments was carried out to evaluate 
Cerno’s overall performance, success rate, task 
effectiveness, and goal achievement. 

A. Goal Achievement in a Virtual World  

A succession of experiments was carried out to evaluate 
Cerno’s overall performance, in terms of goal success and 
failure, and consequently task effectiveness.  

These experiments used a graphical predator-prey world 
created using SWI-Prolog. This tile world is populated by 

objects and operators beyond the control of Cerno that affect 
the world. These objects include static opaque obstacles, 
several edible spheres (blue energy objects), red prey agents, 
green predator agents, and a (white) Cerno agent. Five 
experiment scenarios, of increasing complexity, were used 
in order to investigate probabilistic reasoning and behaviour 
selection. The simplest investigated collision avoidance and 
navigation; where Cerno avoids every object, whether an 
obstacle, energy sphere or other agent. Scenario Two 
involved a self-maintenance task where Cerno maintains its 
energy level through the finding and consumption of energy 
spheres. Scenario Three involves task-oriented goals where 
Cerno finds and herds prey agents. Scenario Four involves 
task-oriented goals where Cerno finds and attacks predator 
agents. Scenario Five builds on the first four involving both 
self-maintenance and task oriented goals. In this final 
scenario, Cerno acts as a virtual sheepdog feeding off 
energy spheres, herding prey agents, and protecting prey 
against predator agents.  

The objective was to assess the efficacy of the Cerno 
architecture over the original CAMAL in a tangible manner, 
by using success and failure counts. Efficacy is measured in 
quantitative terms here as greater number of successes and 
lower number of failures. These tests are performed to 
ensure that the use of the EBS, and assumed degrees of 
belief, infer posterior probabilities correctly, assign them to 
the appropriate belief descriptors, and reason 
probabilistically about the number of objects and their 
instances that may be present in the environment. Cerno was 
allowed to operate in the described virtual world with a 
varying number of energy objects, prey agents, and predator 
agents. Each experiment was run for 10 deliberative cycles. 
This was repeated with and without the presence of the 
opaque environmental obstacles. 

In the predator-prey tile world, the term success refers to 
one of the following. 

1.The set goal (defined in the domain model) is achieved 
when the new beliefs explicitly state it. This situation is 
known as Explicit Goal Success. 

2.The set goal (defined in the domain model) is achieved 
when new beliefs state that the negation of the goal negation 
has been achieved. CAMAL allows the negation of Beliefs 
in Goal descriptor. The negation of this negated Belief 
clause (either as not (not (Belief)) or more simply Belief) in 
the subsequent Belief set is known as Double Negation 
Success. 

3.The intention (defined in the association construct) is 
accomplished, when the new beliefs state that. This situation 
is known as Explicit Intention Success. 

4.The avoid-collisions intention (defined in the 
association construct) is accomplished when the new beliefs 
state that. This situation is known as Avoid-Collisions 
Success. 

These results (Figure 2) serve to demonstrate a clear 
increase in the number of successes. This directly supports 
the overall advantage of the Cerno architecture over the 
earlier version of CAMAL in terms of success counts. 
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Fig. 2 Overall increase in the number of successes 

Similarly, the term failure refers to one of the following: 

1.The set goal (defined in the domain model) is not 
achieved, and explicitly stated in the new beliefs. This 
situation is known as Explicit Goal Failure. 

2.The set goal (defined in the domain model) is not 
achieved, with new beliefs that state that the negation of the 
goal has been achieved. This situation is known as Goal 
Negation Failure. 

3.The set goal (defined in the domain model) is achieved, 
but on the wrong object as stated by new beliefs. This 
situation is known as Wrong-Object Goal Failure. 

4.The intention (defined in the association construct) is 
not accomplished, explicitly stated as new beliefs. This 
situation is known as Explicit Intention Failure. 

5.The avoid-collisions intention (defined in the 
association construct) is not accomplished, explicitly stated 
in the new beliefs. This situation is known as Avoid-
Collisions Failure. 

These results (Figure 3) serve to demonstrate a clear 
decrease in the number of failures. This directly supports the 
overall advantage of the Cerno architecture over the earlier 
version of CAMAL in terms of failure counts. 

 
Fig. 3 Overall reduction in the number of failures 

Summarily, the term task effectiveness describes if 
overall the tasks (goals and intentions collectively) were 
successfully completed. This is inferred based on the 
increase in the number of success counts and the reduction 
in the number of failure counts. The two graphs clearly 
show a decrease in the number of failures along with an 

increase in the number of successes. This outcome indicates 
the overall advantage of the Cerno architecture over the 
earlier (non-probabilistic) CAMAL in terms of success / 
failure counts, and also task effectiveness 

B. CAMAL and Cerno Experiments in ARIA MobileSim 

This section presents the ARIA [33] robotic experiments 
carried out using the Cerno cognitive agent in the 
MobileSim test-bed. A number of experiments were 
performed over a number of cycles, and relevant internal 
variables and statistics were recorded. From the obtained 
results, the two cognitive architectures of (pre-Cerno) 
CAMAL and Cerno can be compared and contrasted. 

These experiments investigate Cerno’s ability to adapt in 
the dynamic and uncertain MobileSim environment. It is 
dynamic as it is inhabited by moving robots besides the 
P3DX that is running the Cerno cognitive architecture. It is 
uncertain as there is built-in sensor noise and added random 
error in the simulation test-bed. To investigate adaptability 
some experiments were paused and modifications made to 
the number of specific objects or robots were made. Upon 
resuming experimentation, the findings about the probable 
number of objects and their instances should, again, be close 
to the actual numbers set by the experimenter during the 
pause. 

A succession of experiments was carried out to evaluate 
Cerno’s overall performance in terms of task effectiveness, 
measured by means of goal success and failure. The 
objective here was to assess the efficacy of the Cerno 
architecture over the original CAMAL in a tangible manner, 
by using success and failure counts. In other words, efficacy 
is measured in quantitative terms here, as the greater 
number of successes and lower number of failures. A 
general sample set of obtained experimental results are 
presented in Figures 4 and 5 to enable the comparison of the 
two cognitive architectures. 

 
 Fig. 4 Overall increase in the number of successes 

In the ARIA MobileSim world, the term success and 
failure are defined as given for the Virtual world experiment 
in Section IV A above. 

These results (Figure 5) serve to demonstrate a clear 
decrease in the number of failures that occurred, directly 
supporting the overall advantage of the Cerno architecture 
over CAMAL in terms of failure counts. 
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Fig. 5 Overall reduction in the number of failures 

Summarily, the term task effectiveness describes if 
overall the tasks (goals and intentions collectively) were 
successfully completed. This is inferred based on the 
increase in the number of successes and the reduction in the 
number of failures. The two graphs clearly show a decrease 
in the number of failures along with an increase in the 
number of successes that occurred. This outcome 
demonstrates the overall advantage of the Cerno architecture 
over (the pre-Cerno) CAMAL in terms of success and 
failure counts and also task effectiveness. 

C. Robo-CAMAL and Cerno Experiments in ARIA 
MobileSim 

The Robo-CAMAL research project [20] specifically 
investigated the anchoring problem in a mobile robot 
running a simplified version of the CAMAL cognitive 
architecture. The anchoring problem addresses the linking 
of perceptual data about objects and events to symbolic 
representations of those objects and events. In other words, 
anchoring is the establishment and maintenance of a 
correspondence from sensory data to propositions denoting 
(domain model) objects identified from within the sensory 
data, and actions upon those objects. 

Due to the different research goals and objectives, 
experiments performed with Robo-CAMAL are not directly 
mapped onto Cerno. Only two significant experiments 
carried out with Robo-CAMAL have been identified to 
ascertain whether an improvement or rectification has been 
accomplished in the process of integrating probabilistic 
reasoning ability into CAMAL. The rationale behind this 
selection was the fact that the first experiment highlighted a 
shortcoming in Robo-CAMAL. It is therefore, a sensible 
point of reference and comparison between the two 
architectures. The second experiment highlighted a strength 
in Robo-CAMAL and is, therefore, an appropriate point to 
ensure that Robo-CAMAL was not compromised by the 
inclusion of belief affordances. The obtained experimental 
results are summarized into two graphs (Figures 6 and 7) 
that clearly illustrate the argued points. 

These experiments used an Amigobot [33] robot; this has 
two driven wheels with a rear stabilising wheel. It senses the 
environment through an array of eight sonar sensors; four 
facing forward; one placed on either side; and two at the 
rear. In addition to this standard Amigobot configuration, an 

omnidirectional vision system has been attached. This 
allows the robot a 360 field of vision (see [20]). 

 
Fig. 6 Negligible number of wrong associations for faulty sensor 

experiment 

 
Fig. 7 Negligible number of incorrect associations for adaption experiment 

Cerno was used to control the robot in six variations of 
the same environment for five minutes each. The 
experiment was repeated three times for each environment. 
Table 1 shows the six possible environment combinations 
used for the experiment. 

TABLE I ENVIRONMENT COMBINATIONS FOR AMIGOBOT EXPERIMENT 

Environment Object(s) 

1 Blue Ball 

2 Black Robot 

3 Red Robot 

4 Blue Ball + Black Robot 

5 Blue Ball + Red Robot 

6 Blue Ball + Black Robot + Red Robot 

Each experiment produces a number of associations 
based on beliefs derived from the sonar and vision percepts. 
Robo-CAMAL generated a significant number of 
associations concerning the black robot when it was not 
actually present. This result highlighted the difficulty 
associated with using real sensors. Robo-CAMAL 
constructed the wrong belief found (black_robot) as the 
vision system had incorrectly identified the object as a black 
robot when in fact a blue ball was present. It was clear that 
the cause of this failure was the primitive vision system 
incorrectly identifying a blue ball as a black robot. While we 
are developing more sophisticated vision systems, this 
failure is symptomatic of the type of faulty sensor problems 
that real autonomous robots need to manage. Hence we ran 
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Cerno with its improved belief mechanisms to see how if it 
faired. 

With Cerno controlling the robot, there were a number 
of (wrong) associations indicated that the two domain model 
objects were mistaken, but in the large context of the 
experiment, this number was negligible. The summary 
results are shown in the graph of Figure 6. The different 
environments are marked using numbers one to six. The 
minuscule number of wrong associations (2.3%) are plotted 
against the total number of generated associations, to show 
that the percentage of failures was negligible. %). The 
earlier Robo-CAMAL in similar experiment averaged 16%, 
so the probabilistic belief predicate and reasoning change 
have shown a good improvement.  

The other significant successful experiment performed 
using Robo-CAMAL was an adaption experiment. An 
important point to note here is that in the context of Robo-
CAMAL, adaptation referred to its ability to modify goal 
importance, and therefore selection, to reflect changes in its 
environment. The obtained experimental results showed that 
Robo-CAMAL had the ability to adapt to a variable 
environment, and attempted the goals it believed achievable 
at the right time. Similar to the previous set of experiments, 
it would be instructive to reflect whether the changes in the 
Cerno architecture might have compromised this capability 
of Robo-CAMAL. 

For this experiment, Cerno architecture was instantiated 
with three goals: 

Hit (blue_ball) & hit (red_robot) & hit (black_robot). 

Plus the correct associations were given to the 
architecture at start up, to determine whether it can modify 
its goals to reflect changes in its environment. Cerno was 
then allowed to run three minutes in a variable environment. 
The environment contained the six possible combinations 
used for the previous experiment, listed in Table 1. These 
combinations were changed at intervals of one minute. 

Each experiment produced a number of associations. In 
Robo-CAMAL, most of the generated associations reflected 
the changes made at one-minute intervals. The summary 
results are shown in the graph of Figure 7. In Cerno this, too, 
succeeded based on the huge percentages of correct-to-
incorrect associations that showed Cerno had modified its 
desires to reflect the changes made to its environment. 
There were a number of (wrong) associations that indicated 
adaptation took at times up to a whole minute, but in the 
large context of the experiment, this number was negligible 
(1.95%). The earlier Robo-CAMAL in similar experiment 
averaged 22% errors, so the probabilistic belief predicate 
and reasoning change have shown a good improvement. 

V. DISCUSSION 

Cerno as a Probabilistic-BDI cognitive architecture has 
pursued a perspective informed by affective and 
motivational control states, rationalized by cognitive models 
of probabilistic reasoning. It presents a vigorous affect- and 
affordance-based core for mind, as the Probabilistic-BDI 
model is now valanced via affective values and affordances. 

This allows the entire BDI model to run using numeric 
affective values to prioritize choices over the current belief 
set. The current CAMAL research has now taken a number 
of new directions, as researchers pursue their own agenda. 
These new directions take the original design associated 
with the overarching CAMAL architecture, together with 
the concept of an underlying affect and affordance 
mechanism that can be used to compare process priority or 
rank goals and intentions but reframe the research according 
to specific interests or needs [11]. Using a larger variety of 
mobile robot types, along with a new vision system will be 
the next steps, resulting in a deeper perceptual anchoring 
model. This new perceptual anchoring model could combine 
the improved sensors of the new robot with neural learning 
mechanisms and may, therefore, address some of the issues 
raised by Barsalou [34]. 

There clearly existed a need to address and incorporate 
probabilistic reasoning and inference in CAMAL. The 
primary aim of the Cerno research project was to tackle this 
need with the formal probability and Bayesian theories. This 
research, therefore, attempted to address the following 
specific research questions in the current cognitive 
architecture under investigation: 

• Can Cerno reason probabilistically by exploiting the 
proposed EBS? Can the integration of the proposed 
EBS facilitate probabilistic reasoning and inference in 
Cerno? 

In light of the overall collection of experimental results, 
Cerno can reason probabilistically by exploiting the 
proposed EBS. In other words, the integration of the 
described EBS facilitated probabilistic reasoning and 
inference in Cerno. This was specifically validated and 
confirmed, as correct operation of Cerno in terms of 
probabilistic object/instance reasoning was tested 
comprehensively. 

• Can the Probabilistic-BDI model run compatibly with 
the affect and motivational models, and affective and 
motivational valances used throughout the whole 
architecture? Can this ensure a consistent metric across 
all aspects of affect, reasoning, and domain model 
management? 

The correct results and expected operations of the 
processes indicated the compatibility of the Probabilistic 
BDI model with the affect and motivational valances used 
throughout the architecture. This provides a consistent 
control language for ordering propositions, selecting goals, 
constructing a plan of action, forming a focused belief with 
an updated degree of belief, and prioritising processes. It 
ensures a consistent metric across all aspects of affect, 
reasoning, and domain model management. 

• Can the probabilistic deliberation results be used for 
computing changing degrees of belief given apriori, and 
subsequently using the Probabilistic-BDI, affect, and 
motivational models to determine the agent’s intentions, 
actions, or behaviours? 

The performed tests confirmed and validated that the 
Cerno’s probabilistic reasoner can deliberate using the EBS 
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and assumed degrees of belief, infer posterior probabilities 
correctly, assign them to the appropriate belief descriptors, 
and reason probabilistically about the number of objects and 
their instances that may be present in the environment. 

• Can the Cerno cognitive architecture be applied to 
virtual and physical cognitive agents using synthetic 
test-beds and mobile robots? 

The succession of experiments in simulation and robotic 
test-beds, by successfully applying the Cerno cognitive 
architecture to virtual and physical cognitive agents, showed 
improvements and increased efficacy in Cerno’s overall 
cognitive performance, as well as specific achievements in 
light of the overall collection of experiments. 

The current CAMAL research has now taken a number 
of new directions, building on the results from associated 
researchers pursue their own agenda. These new directions 
take the original design associated with the overarching 
CAMAL architecture, together with the concept of an 
underlying affect and affordance mechanism that can be 
used to compare process priority and rank goals and 
intentions but re-frame the research according to specific 
interests or needs [11]. The results and conclusions from 
these CAMAL related projects feed back into the theory 
underpinning CAMAL and the resulting CAMAL 
implementations.  

Using a more sophisticated mobile robot such as a P3DX 
[33] along with a new vision system and camera could be the 
next step, resulting in a more accurate object identification 
and consequently a deeper perceptual anchoring model. This 
new perceptual model could combine the input from the 
improved sensors of the new robot with a-priori information 
included in the domain model. The new robot would be 
more adaptable and capable of working in unknown and 
uncertain environments. This is loosely related to the UK 
Computing Research Committee’s Grand Challenge 
Number Five: Architecture of Brain and Mind [35]. GC5 is a 
multidisciplinary attempt to understand and integrate natural 
intelligence and high-level cognitive processes at various 
levels of abstraction. The aim is to demonstrate the results 
of our improved understanding in a succession of 
increasingly sophisticated working robots. 

The next step could be regarding the manual 
incorporation of shallow Bayesian metacognitive norms. 
Currently, Cerno does not deliberate to determine which 
norm should be used in the motivational blackboard. This 
means that the Bayesian norms have to be pre-programmed 
prior to start-up (hand-coded and defined in the domain 
model). This manual incorporation could be improved upon 
by constructing more norms and deliberating to choose one 
that has already yielded greater task effectiveness in the past. 

In addition to the above two specific ways of improving 
the Cerno architecture, there are still plenty of open issues in 
cognitive architectures research that deserve attention and 
effort from researchers in the area, despite the many 
advances that have occurred during almost four decades of 
research and work. An outstanding issue is that each 
existing cognitive architecture exhibits many of the 

capacities described in this thesis and elsewhere, but few 
support all of them. However, a cognitive architecture as a 
UTC was defined as a single set of mechanisms and 
processes for all cognitive behaviour. The research 
community should perhaps devote more resources to trying 
to unify the existing capacities and capabilities into one 
universal and comprehensive framework of cognition. 

Moreover, methods for the evaluation and assessment of 
cognitive architectures and their cognitive abilities could be 
broadened to include more realistic terrains. Metrics like 
those used here for experimentation purposes are necessary, 
but not sufficient to provide an accurate way of comparing 
and contrasting competing architectures and cognitive 
systems. Despite evaluating various cognitive performances 
in different test-beds, more complex environments must be 
created, both physical and simulated, which exercise these 
cognitive capabilities and provide realistic opportunities for 
measurement [36]. Experimental comparisons among 
competing architectures can play an important role in 
measuring key variables in unbiased and informative ways. 
On the positive side, we now have over four decades worth 
of experience and development with constructing and using 
a variety of cognitive architectures for a wide range of 
problems and terrains 

VI. CONCLUSIONS 

Cognition is better viewed as solving probabilistic, 
rather than logical, inference problems; meaning cognition 
is better understood in terms of probability theory, rather 
than in terms of logic [37, 38]. The probabilistic approach to 
cognition has, therefore, become an established approach in 
recent decades –something that this body of work took 
advantage of. 

This paper presents a Probabilistic-BDI affective-
motivational cognitive architecture. There are many views 
on what constitutes a cognitive architecture or the place of 
affect and motivation in a cognitive architecture. Cerno 
pursued a perspective informed by affective and 
motivational control states, rationalized by a cognitive 
model of probabilistic reasoning using degrees of belief. 
Any thesis that deals with cognition and cognitive 
architectures needs some explanation as to its scope and 
focus. The scope and focus of the current cognitive 
architecture under investigation were to extend the original 
overarching cognitive architecture of CAMAL to enable it 
to reason probabilistically about domain model objects 
through perception. We have integrated probabilistic 
formalism into the BDI model to coalesce a number of 
mechanisms, in line with the Gibsonian affect and 
affordance theory, as well as Davis’s theory of affect [10, 11, 

39]. 

The succession of experiments in simulation and robotic 
test-beds established improvements in cognitive 
performance through the adoption of probabilistic inference. 
In applying the Cerno cognitive architecture to the Robo-
CAMAL platform similarly saw a significant improvement, 
with the number of wrong associations dramatically reduced. 
The latest version of CAMAL effectively presents a 
vigorous affect and affordance based core for mind. The 
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Probabilistic-BDI model is now valanced via affective 
values and affordances, allowing the entire BDI schema to 
run using numeric affective values to prioritize choices over 
the current belief set. Since affect is used across the 
cognitive architecture as a decision metric, affective values 
can be thought of as a currency. The BDI model that lacked 
an affective decision metric consistent with the affordances 
used in the affect and motivational models, is now grounded 
consistently in the use of affect. 
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