
International Journal of Computer Science and Artificial Intelligence Mar. 2013, Vol. 3 Iss. 1, PP. 10-26

- 10 -
DOI:10.5963/IJCSAI0301002

DDS on Top of FlexRay Vehicle Networks:
Scheduling Analysis

RimBouhouch1, HoudaJaouani2, Amel Ben Ncira3, Salem Hasnaoui4
Communications Systems Research Laboratory SYSTOM, Tunis, Tunisia

1rim.bouhouch@yahoo.fr; 2jouani_houda@yahoo.fr ;3amel_benncira@yahoo.fr;4Salem.Hasnaoui@enit.rnu.tn

Abstract-FlexRay is a new communication system that offers reliable and real-time capable high-speed data transmission between
electrical and mechatronic components to map current and future innovative functions into distributed systems within automotive
applications. In the same context, the real-time middleware Data Distribution Service (DDS) is an appropriate alternative for the
standard vehicular middleware considering that it handles Quality of Service (QoS) parameters. An interesting innovation would be
the use of the DDS middleware on top of FlexRay networks formed by FlexRay cards to guarantee the arrival of the right data on
the right time. In this paper, we will use as application an extended SAE(Society of Automotive Engineers) benchmark for the
FlexRay network to identify the DDS DataReaders and DataWriters, and calculate the response time, based on the full scheduling
model, and introduce it into the DDS QoS to further prove that the QoS of SAE benchmark are insured.

Keywords- DDS; FlexRay; QoS; Scheduling; Response time

I. INTRODUCTION

FlexRay Networks are one of the newest x-by wire communication systems[1] known for their speed and performance
which use ranges from planes to cars networks to insure communication over a shared medium. Thanks to its several features,
this communication protocol is meeting safety critical applications performance requirements (flexibility, fault-tolerance,
determinism, high-speed…). Therefore, FlexRay is emerging as a predominant protocol for in-vehicle x-by-wire applications
(i.e. drive-by-wire, steer-by-wire, brake-by-wire, etc.). As a result, there has been a lot of recent interest in timing analysis
techniques in order to provide bounds for the message communication times on FlexRay. On the other hand, the real-time Data
Distribution Service [2] based on the subscription-publication paradigm offers a clear distinction between the communicating
tasks by classifying them into DataReaders and DataWriters and that helps insuring the delivery of the right data on the right
time. Vehicles real-time networks such as FlexRay are based on the interaction between the scheduler, reflecting the working
process of the network, and the application in need of communication. But in this scheme a real-time middleware is necessary
to guarantee better performances since most of vehicle manufacturers usually use AUTOSAR as middleware. The OMG
(Object Management Group) Data Distribution Service provides a real-time Middleware that ensures the interaction between
the physical layer and the application layer providing a communication pattern. The performances of this combination must be
evaluated based on a real-time parameter to determine if the application requirements have been met.

Data Distribution Service is considered a standard in embedded systems implement. It is based on publish-subscribe
communication model, and supports both messaging and data-object centric data models. DDS was designed for real-time
systems; the API and Quality of Service (QoS) are chosen to balance predictable behavior and implementation
efficiency/performance. One of the promising approaches is to make an efficient use of QoS mechanisms propose in the DDS
specification when adopting real-time network such as FlexRay. DDS provides the DEADLINE QoS Policy,
LATENCY_BUDGET Qos Policy, TRANSPORT_PRIORITY QoS Policy and other policies specifically targeted to
minimum latency, predictable real-time operation in high-performance distributed data critical systems. However, DDS
specification is less explicit about the scheduling mechanisms that should be used to coordinate these policies and to make the
best benefit when exploiting the underlying facilities of the real-time network.

The Data Distribution Service (DDS) is an open standard managed by the Object Management Group (OMG) and
representing the first general-purpose middleware standard that addresses challenging real-time requirements. In fact, DDS
handles a wide range of data flows, from extremely high performance combat management or flight control to slower
command sequences. This specification describes two levels of interfaces: A lower level Data-Centric Publish-Subscribe
(DCPS) that is targeted towards the efficient delivery of the proper information to the proper recipients and an optional higher-
level Data-Local Reconstruction Layer (DLRL), which allows for a simpler integration into the application layer. The data-
centric publish-subscribe model employs a data-centric integration model to decouple applications composed of data providers
and/or consumers spread onto different computers. Thus, it creates a global shared data-space that greatly simplifies integration.
A data-object in data space, identified by its domain id, is uniquely identified by its keys and typed topic. The DCPS layer
consists of the following entities: Domain Participant, DataWriter, DataReader, Publisher, Subscriber, and Topic. The principle
is to transmit data directly from a publisher to all its subscribers with no intermediate servers. That is to say, applications
communicate by publishing the data they produce and subscribing to the type of data they consume. They require no
knowledge of each other, only of the data they exchange.

International Journal of Computer Science and Artificial Intelligence Mar. 2013, Vol. 3 Iss. 1, PP. 10-26

- 11 -
DOI:10.5963/IJCSAI0301002

DataWriter is a typed facade to a publisher; participants use DataWriters to communicate the value and changes to data of a
given type. Once new data values have been communicated to the publisher, it is the Publisher’s responsibility to determine
when it is appropriate to issue the corresponding message. A Subscriber receives published data of different specified types
and makes it available to the participants using a typed DataReader attached to the subscriber. The association of a DataWriter
object with DataReader objects is done by means of the Topic.

DDS goes beyond simple publish-subscribe middleware and enables a “plug in” open architecture approach to integration.
The key technology is the ability to capture all the timing, reliability, and other important interface constraints called “Quality
of Service” (QoS) properties. Indeed, a Quality of Service is a set of characteristics that controls some aspects of the behavior
of the DDS Service.

In addition to a set of QoS Policy values that are related to it, each DDS entity has a corresponding specialized listener
object able to notify it of events. It can also be configured through QoS policies, be enabled and support conditions that can be
waited upon by the application. Even if many other types of middleware support QoS, DDS still unique since it not only
ensures reliability and timeliness thanks to its data-centric approach, but also automatically discovers matching publishers and
subscribers, and then enforces the QoS contracts between them. This automatic discovery eliminates most configuration
control issues and supports networks that change at runtime. With those facilities, DDS systems can add, modify, restart or
update new modules without redesigning other interfaces and enables programs to evolve and mature without constant rework
because system integration is done one component at a time without impacting other components.

We mention some QoSpolicies that are related to real-time parameters:

• The DEADLINE QoSPolicy expresses the maximum duration (deadline) within which a DataReader expects a data-
object instance to be updated. If a sample is not received within the deadline, a listener method is called.

• The LATENCY_BUDGET QosPolicy provides a hint as to the maximum acceptable delay from the time the data is
written to the time it is received by the subscribing applications.

• The LIFESPAN QosPolicy, on a DataWriter and Topic, which specifies how long the data written by a DataWriter is
considered valid (“time to live”).

• The TIME_BASED_FILTER QosPolicy specifies a minimum_separation value that allows a DataReader to specify
that it interested only in (potentially) a sub-sampled set of the values for a data-object instance.

• TRANSPORT_PRIORITY QoSPolicy, in a DataWriter, which allows a DDS application to take advantage of
transports that are capable of sending messages with different priorities.

• The RELIABILITY QosPolicy, on a DataWriter, DataReader, or a Topic. This policy determines whether a message
should be sent best effort (send once without expecting acknowledgments) or reliably (resent until positively acknowledged).

With these QoS policies, and many others, the DDS publish-subscribe is suitable to the real-time communications context.
In fact, DDS is adopted in hundreds of commercial and government programs for its several features. It also has growing
footprint in commercial telecommunications, train, automotive, medical, science and financial applications.However, there is
not enough works dealing with implementing DDS upon real-time networks except those addressing the Controller Area
Network (CAN) [3]. On the other hand, there is an active community of government, industry and academic participants using
the OMG to clarify improve and update the DDS standard, ensuring its viability for years to come. Thirty-six companies are
voting to adopt the original specification, including Borland, Ericsson, Fujitsu, IBM, Oracle, Real-Time Innovations (RTI),
THALES, PrismTech, and Nokia. Ten companies now offer implementations of the OMG DDS specification, of which six
offer commercial versions of the product. Some of the companies currently offering DDS implementations include: Real-Time
Innovations [4] which has a product called NDDS that provides publish-subscribe architecture for time critical delivery of data.
PrismTech[5] which has a product called Open Splice[6] compliant with real-time networking. Thales Naval [7] having a product
called SPLICE [8] that provides a data-centric architecture for mission-critical applications.

In this paper, we propose the SAE benchmark as an automotive application to test our system based on FlexRay network
formed by Fujitsu Cards MB91F465X and the DDS real-time middleware and evaluate its performances using the worst case
response time calculated by the full scheduling model. The extended benchmark communicating tasks was classified according
to DDS into DataReaders and DataWriters on each node of the network.

The remainder of this paper is organized as follows: In Section 2, we discuss the related work, comparing our approach
with some existing solutions. Section 3 is dedicated to the extended SAE benchmark explaining the new signals and priority. In
Section 4 we give a classification of the DataReaders and DataWriters according to the used benchmark. In Section 5 we
summarize some parameters related to the scheduling in FlexRay networks. In Section 6, we give the equation relative to the
full scheduling method and how to use it to determine the response time. The Section 7 is dedicated to the description of our
studied architecture. In last two sections, we demonstrate how to approximate the DDS QoS using the response time and the
obtained results and conclusions.

International Journal of Computer Science and Artificial Intelligence Mar. 2013, Vol. 3 Iss. 1, PP. 10-26

- 12 -
DOI:10.5963/IJCSAI0301002

II. RELATED WORK

A. SAE Benchmark

In 1993, SAE published a document on the signaling requirements for a prototype electric car with point-to-point
communication Network [9]. Since then this document has been used as basis for building an intra-vehicle communication
benchmark [10, 11]. The benchmark consists of six main modules in the vehicle’s class C network: the vehicle controller,
Inverter/Motor Controller, Transmission, Battery, Brakes, and the Driver interface and control panel. Fifty-three signals are
shared among the different modules, some of them are periodic and some are sporadic. For sporadic signals, SAE does not
provide any indication to the signal average period. Kopetz addressed this by assuming these times based on the application
requirements [11]. Hence, He modeled sporadic signals as periodic ones with the period set implicitly to 20 msec. His argument
was that the latency of periodic signals should be less than or equal to their period i.e. for 20 msec periodic signal the latency
should be less than or equal to 20 msec. The 20 msec period was adopted based on the driver’s response time to changes in the
driving environment, and it hypnotizes that the driver can’t sense latencies of 20 msec or less. Hence, Kopetz set the latency
requirement for sporadic signals to 20 msec implying a period of 20 msec. However, Tindell and Burns [10] took a more relaxed
assumption, and probably more realistic, by setting the latency requirement for sporadic signals to 20 msec, and the
corresponding hypnotized period to 50 msec. A list of the all the fifty-three signals, their periods, and their latency requirement
are captured from[10]. It is important to notice that the aforementioned signals were not designed for any specific protocol;
rather, they represent the data that need to be exchanged between the five listed modules. Kopetz, designed his messages to
best serve the TTP protocol when under evaluation, while Tindell and Burns organized the messages to best fit the CAN
protocol. The later effort indicates that assigning each signal to a message will result in huge bandwidth consumption and will
require using 250 Kbps bus speed at minimum, 500 Kbps preferably, in order to meet the latency requirement. Therefore, Tindel
and Burns suggested combining multiple signals in a single message to reduce the effect of the protocol overhead and the
contention delay [10]. Basically, sporadic signals of low rate were piggybacked in fewer messages of higher rate, called server
messages. The resulting message structure contained 17 periodic messages [10].

B. Scheduling

Tasks in real-time networks such as FlexRay or CAN are scheduled according to a static or a dynamic scheduling method.
A static scheduler is based on time triggered scheduling according to the Time Division Multiple Access (TDMA) technic
where each participant is granted a specific fixed interval in a repetitive time window. TDMA scheduling guarantees a
deterministic transfer of messages, but has a major disadvantage that the bandwidth is not used efficiently. A dynamic
scheduling is an event triggered scheduling where participants can only send information if an event occurs, such as new data
is ready for transmission.

Our previous researches [12] were interested in scheduling for the Data Distribution Service (DDS) architecture over CAN.
We have developed in each node a local scheduling component, the Earliest Deadline First (EDF) scheduler. The latter, sends
scheduling parameters of tasks to the global scheduling system. Then, information is sent to a distributed information
collection service called the System Information Repository (SIR). In [13] we have presented how DDS API is implemented
on top of FlexRay Driver. In [14], we have presented a combined scheduling method that can be applied for both static and
dynamic scheduling in FlexRay.

Related studies to this research include time triggered, event triggered and automobile protocols.

First studies [15] illustrate how a window-based analysis technique can be used to find the Worst-Case Response time of a
task. It considers sporadic activities, where tasks arrive sporadically but, then execute periodically for some bounded time.

The Paper [16] proposes an analytical framework for compositional performance analysis of a network of Electronic
Controller Unit (ECU) that communicates via a FlexRay bus. The main contribution was a formal model of the protocol
governing the DYN segment of FlexRay.

In this paper, we focus our interest on the scheduling on the FlexRay node and so propose a new scheduling method that
handles all the delay sources to determine if the SAE benchmark QoS parameters has been met by calculating the worst case
response time.

III. EXTENDED SAE BENCHMARK

In order to translate signals to messages, the numbers of nodes taking part in the network and the way they map into
today’s ECUs have been defined in [17].Then, signals can be assigned to the individual node queues according to their location
and set of tasks. First, the SAE module names are translated to their equivalents in today’s terminology. The Driver and
Battery modules are combined in the Body Control Module (BCM), which acts usually as gate way between the low-data rate
and the high-data rate networks in a vehicle. Similarly, the Vehicle Controller and Inverter/Motor Controller can be combined
in a single node called Engine Control Module (ECM), while the Transmission Controller is denoted as the Transmission
Control Module(TCM). Finally, the Brake controller in the SAE testbed Maps to the Hydraulic Brake Control Unite(HBCU),
the Brakes Controller is usually called the Electronic Brake Control Module (EBCM) and the Steering Assist module is called

International Journal of Computer Science and Artificial Intelligence Mar. 2013, Vol. 3 Iss. 1, PP. 10-26

- 13 -
DOI:10.5963/IJCSAI0301002

Active Frame Steering(AFS), while the rest of the modules don’t have common names, and hence keep their terminology
unchanged. Table VIII summarizes all the signals in the extended benchmark and Table IX transforms those signals into
messages and assign them relative priorities[17] are presented in the appendix.

IV. DATAREADERS AND DATAWRITERS CLASSIFICATION

In this paper we are interested in studying the QoS related to the communicating process, these communicating tasks are
inspired from the SAE benchmark. In the DDS specification [2], communicating tasks are classified into DataWriters and
DataReaders using Publishers and Subscribers to transmit and receive data. Per node, we can find one Publisher and/or one
Subscriber attached to different DataWriters and DataReaders interested on different Topics.

Using the SAE benchmark we have classified the communicating applications into DataReaders and DataWriters and
attached each one to the interested Topic in the vehicular network, as shown in Table I.

TABLE I.DATAREADERS AND DATAWRITERS CLASSIFICATION

Topic ID Packaged Signals Transmitter Receiver
N° Signal Designation Node Data Writer Node Data Reader

Hi&Lo Contactor
Open/Close 1 14 Hi&Lo Contactor

Open/Close

BODY Control
Module

HLC_W_TASK()

Engine Controller
Module

HLC_R_TASK()

Accelerator Position 3 7 Accelerator Position AP_W_TASK() AP_R_TASK()
Brake Pedal
Position 13 71 Brake Pedal Position BPP_W_TASK() BPP_R_TASK()

Acknowledgments 17

23 12V Power Ack
Vehicle Control

ACK_W_TASK() ACK_R_TASK() 24 12V Power Ack
Inverter

25 12V Power Ack I/M
Control

28 Interlock

Control Switches 18

15 Key Switch Run

CSW_W_TASK() CSW_R_TASK()

16 Key Switch Start
17 Accelerator Switch
19 Emergency Brake

20 Shift Lever
(PRNDL)

22 Speed Control

26 Brake Mode
(Parallel/Split)

27 SOC Reset

Batteries Voltage
and Current 31

1 Traction Battery
Voltage

BVC_W_TASK() BVC_R_TASK()
2 Traction Battery

Current

4 Auxiliary Battery
Voltage

6 Auxiliary Battery
Current

Traction Battery
Measurement 34

3 Traction Battery
Temp,Average

TBM_W_TASK() TBM_R_TASK() 5 Traction Battery
Temp,Max

13 Traction Battery
Ground Fault

Motor Speed and
Torque 4

43 Torque Measured

Engine Controller
Module

MST_W_TASK() MST_W_TASK() 49 Processed Motor
Speed

Pressure and Main
Contactor 6

32 Clutch Pressure
Control PMC_W_TASK()

BODY Control
Module PMC_R_TASK()

42 Main Contactor
Close

Engine Controller
Module

Vehicle Controller
Sporadic Signals 19

31 Reverse and 2nd
Gear Clutches

VCS_W_TASK()

Transmission
Control Unit

VCS_R_TASK()

34 DC/DC Converter
Current Control BODY Control

Module 35 12V Power Relay
37 Brake Solenoid Hydraulic Brake

Control Unit 38 Backup Alarm
39 Warning Lights

Engine Controller
Module

40 Key Switch
44 FWD/REV
46 Idle

International Journal of Computer Science and Artificial Intelligence Mar. 2013, Vol. 3 Iss. 1, PP. 10-26

- 14 -
DOI:10.5963/IJCSAI0301002

48 Shift in Progress

53 Main Contactor
Acknowledge

Contactor Control
Signals 20

29 High Contactor
Control CCS_W_TASK() BODY Control

Module CCS_R_TASK()
30 Low Contactor

Control

Motor Controller
Sporadic Signals 21

41 Main Contactor
Close

MCS_W_TASK() Engine Controller
Module MCS_R_TASK()

45 FW/Rev Ack.
47 Inhibit

50 Inverter
Temperature Status

51 Shutdown
52 Status/Malfunction

Converter and
Battery Test 35

33 DC/DC Converter
CBT_W_TASK()

BODY Control
Module CBT_R_TASK()

36 Traction Battery
Ground Fault Test

Hydraulic Brake
Control Unit

Brake Pressure
Signals 2 8 Brake Pressure,

Master Cylinder

Hydraulic Brake
Control Unit

BPS_ W_TASK() Engine Controller
Module

BPS_ R_TASK()
9 Brake Pressure, Line

Brake Switch Signal 30 18 Brake Switch BSS_ W_TASK() BSS_ R_TASK()

Vehicle Speed
Signal 32 12 Vehicle Speed VSS_ W_TASK()

Engine Controller
Module

VSS_ R_TASK() Traction Control
Unit

ESP/ROM
Transaction
Pressure Signal 5 11 Transaction Clutch

Line Pressure

Transmission
Control Unit

TPS_ W_TASK()

Engine Controller
Module

TPS_ R_TASK()

Transaxle
Lubrication
Pressure

33 10 Transaxle
Lubrication Pressure TLP_ W_TASK() TLP_ R_TASK()

Motor/Trans Over
Temperature 36 21 Motor/Trans Over

Temperature
MOT_
W_TASK() MOT_ R_TASK()

Front-Left wheel
speed 9 67 Front-Left wheel

speed

Front-Left Wheel
Module

S_W_TASK()

Active Frame
Steering S_R_TASK() Electronic Brake

Control Module

Front-Left Wheel
Suspension Sensing
signals

23
54

Front-Left
Suspension
Deflection SSS_W_TASK() Active Suspension

Unit SSS_W_TASK()

58 Front-Left Unsprung
mass velocity

Front-Right wheel
speed 10 68 Front-Right wheel

speed

Front-Right Wheel
Module

S_W_TASK()

Active Frame
Steering S_R_TASK() Electronic Brake

Control Module

Front- Right Wheel
Suspension Sensing
signals

24

55
Front-Right
Suspension
Deflection SSS_W_TASK() Active Suspension

Unit SSS_R_TASK()

59
Front-Right
Unsprung mass
velocity

Rear-Left wheel
speed 11 69 Rear-Left wheel

speed

Rear-Left Wheel
Module

S_W_TASK()

Active Frame
Steering S_R_TASK() Electronic Brake

Control Module

Rear-Left Wheel
Suspension Sensing
signals

25
56

Rear-Left
Suspension
Deflection W_TASK() Active Suspension

Unit SSS_R_TASK()

60 Rear-Left Unsprung
mass velocity

Rear-Right wheel
speed 12 70 Rear-Right wheel

speed

Rear-Right Wheel
Module

S_W_TASK()

Active Frame
Steering S_R_TASK() Electronic Brake

Control Module

Rear-Right Wheel
Suspension Sensing
signals

26

57
Rear-Right
Suspension
Deflection SSS_W_TASK() Active Suspension

Unit SSS_R_TASK()

61
Rear-Right
Unsprungmass
velocity

International Journal of Computer Science and Artificial Intelligence Mar. 2013, Vol. 3 Iss. 1, PP. 10-26

- 15 -
DOI:10.5963/IJCSAI0301002

Active Suspension
Unit Control 27

62 Front-Left Control
Force

Active Suspension
Unit C_W_TASK()

Front-Left Wheel
Module

C_R_TASK()
63 Front-Right Control

Force
Front-Right Wheel

Module

64 Rear-Left Control
Force

Rear-Left Wheel
Module

65 Rear-Right Control
Force

Rear-Right Wheel
Module

Steering torque 22 66 Steering torque
sensor

Active Frame
Steering STS_W_TASK()

Front-Left Wheel
Module

STS_R_TASK()

Front-Right Wheel
Module

Rear-Left Wheel
Module

Rear-Right Wheel
Module

Brake Control 14 72 Brake Control
Command

Electronic Brake
Control Module BCS_W_TASK()

Front-Left Wheel
Module

BCS_R_TASK()

Front-Right Wheel
Module

Rear-Left Wheel
Module

Rear-Right Wheel
Module

Throttle opening 7 73 Throttle
opening(angle)

Throttle Control
Unit TOS_W_TASK() Traction Control

Unit TOS_R_TASK()

Throttle command 8 74 Throttle command Traction Control
Unit

TCS_W_TASK() Throttle Control
Unit TCS_R_TASK()

Brakes command 15 75 Brakes command BCS_W_TASK() Hydraulic Brake
Control Unit BCS_R_TASK()

Brake pressure 16 81 Brake pressure
command

ESP/ROM

BPS_W_TASK() Electronic Brake
Control Module BPS_R_TASK()

ESP Signals 28

76 Vehicle lateral
acceleration

ESP_W_TASK() Adaptive Cruise
Control VAA_R_TASK() 77 Vehicle longitudinal

acceleration
78 Sideslip angle
79 Yaw rate
80 Roll Angle

Adaptive Cruise
Control 29

82 Engine throttle
control command Adaptive Cruise

Control ACC_W_TASK()

Engine Controller
Module

ACC_R_TASK() 83 Brakes control
command

Electronic Brake
Control Module

84 RADAR Distance Local Sensor

V. SCHEDULING PARAMETERS IN FLEXRAY NETWORKS

A. FlexRay Bus

FlexRay is a real-time communication bus [1] designed to operate at speeds of up to 10 M bits/s. He is being developed by a
consortium that includes automobile builder. It offers time-triggered and an event triggered architecture. Data are transmitted in
payload segment containing between 0 and 254 bytes of data, 5 bytes for the Header segment and 3 bytes for the trailer segment.
The topology may be linear bus, star or hybrid topologies. This bus contains two channels; each node could be connected to
either one or both channels.

FlexRay bus contains a static segment for time triggered messages and a dynamic segment for event triggered messages. In
time triggered networks, nodes only obtain network access at specific time periods, also called time slots. In event triggered
networks, nodes may obtain network access at any time instant. The static (ST) segment and the dynamic (DYN) segment
lengths can differ, but are fixed over the cycles. Both the ST and DYN segments are composed of several slots. The first two
bytes of the payload segment are called message ID, this is used only in dynamic segment. The message ID can be used as a
filterable data.

In this paper we will study the transmission parameters of DDS nodes on a FlexRay bus. During any slot, only one node is
allowed to send on the bus, and that is the node which holds the message with the frame identifier (Frame ID) equal to the
current value of the slot counter. There are two slot counters, corresponding to the ST and DYN segments, respectively. The
assignment of frame identifiers to nodes is static and decided offline, during the design phase. Each node that sends messages
has one or more ST and /or DYN slots associated to it. The bus conflicts are solved by allocating offline one slot to at most one
node, thus making possible for two nodes to send during the same ST and DYN slot. FlexRay allows the sharing of the bus
among event driven (ET) and time driven (TT) messages.

International Journal of Computer Science and Artificial Intelligence Mar. 2013, Vol. 3 Iss. 1, PP. 10-26

- 16 -
DOI:10.5963/IJCSAI0301002

For a distributed system based on FlexRay, task scheduling can be SCS (Static Cyclic Scheduling) or FPS (Fixed Priority
Scheduling). For the SCS tasks and ST messages, the schedule table could be built. For FPS tasks and DYN messages, the
worst-case response times had to be determined.

B. Communication Cycle

The FlexRay protocol organizes time into communication cycles, every cycle is organized into four parts, segments of
configurable duration: The static segment is used to send critical, real-time data, and is divided into static slots, in which the
electronic control units (ECUs) can send a frame on the bus. These frames consist of a header, payload and trailer and are
assigned to the slots according to a static, TDMA-based schedule. Channel idle time is enforced between frames to prevent
overlapping consecutive frames. The dynamic segment enables event-triggered communication. The lengths of the mini slots in
the dynamic segment depend on whether or not an ECU sends data. The symbol window is used to transmit special symbols, for
example to start up the FlexRay cluster. The network idle time interval is used by the nodes to allow them to correct their local
time bases in order to stay synchronized to each other.

The length of an ST slot is specified by the FlexRay global configuration parameter gdStaticSlot. The length of the DYN
segment is specified in number of mini-slots gNumberOfMinislots.

C. Static Segment Parameters

In a general communication process, response time can be divided in four pieces, as shown in Fig.1; generation delay,
queuing delay, transmission delay and reception delay [18].

Generation delay is started when the transmitting node received the request of sending from a frame until the data are written
into the buffer and ready for being sent. Queuing delay is started when generation delay ended until the frame acquires the
occupation of the bus and begins to be sent. Transmission delay is the time during which the frame is being transmitted on the
bus. Reception delay is started when the frame gets off the bus and goes into the receiving node until the frame accomplishes its
task.

Fig. 1 Communication Model between DataReader and DataWriter

Note that the generation delay and reception delay are not related to the FlexRay network characteristics, but related to the
given MCU performance. Therefore, these two parts of delay should not be taken into account. In FlexRay protocol the average
response time Rm of a given frame is the sum of queuing delay average (tm) and transmission delay average (Cm):

Rm = tm + Cm (1)

Since the static segment is transmitting at fixed time points in each FlexRay communication cycle without any queuing
delays, the response time can be approximated by Cm.

Rm = Cm (2)

Transmission delay Cm refers to the time interval between being on the bus and completion of sending process. It depends
on the frame itself as well as bus parameters.

Cm,s = [TSS + FSS + FES + td + (HS + TS + Sm) × (8 + BSS)]τbit (3)

TSS is the Transmission Start Sequence (3~15 bits). FSS is the Frame Start Sequence (1 bit). FES is the Frame End
Sequence (2 bits). td is the delay related to sending and receiving nodes, which is around 2~3 bits. Sm represents the data field
length (number of bytes) of the data frames. In addition, two BSS (Bit Start Sequence) are added before each byte. The constant
“8” added to the data field length Sm refers to the sum of the FlexRay Header Segment (HS: 5) and Trailer Segment (TS: 3)
lengths (number of bytes). Finally, τbit refers to the one bit transmission delay.

Reception
delay

DR

Queuing
delay

Transmission delay

DW
Generation

delay

International Journal of Computer Science and Artificial Intelligence Mar. 2013, Vol. 3 Iss. 1, PP. 10-26

- 17 -
DOI:10.5963/IJCSAI0301002

D. Dynamic Segment Parameters

In the dynamic segment, the Time Division Multiple Access (TDMA) scheme is used for message scheduling. The Worst
Case Response Time Rm of a queued data message m is defined as the longest time taken by the message to reach the
destination station [19]. Then, for a dynamic (DYN) message m [20], the Worst Case Response Time is given by the following
equation [21]:

mR () ()m m mt W t Cσ= + + (4)

Where Cm is the message communication time and mσ is the longest delay endured during one bus cycle if the message is
generated by its sender task after its slot has passed. Thus, in the worst case, the delay σm has the value:

bus bus m=T -(ST +(FrameID -1) gdMinislot)mσ × (5)

Where Tbus is the length of the bus cycle, STbus is the ST segment length and gdMinislotis the smaller length of a slot when
no message is to be sent during a particular slot.

Finally, Wm(t) is the worst case queuing delay caused by the transmission of ST frames and higher priority DYN messages
during a given time interval t. Wm represents then the maximum amount of delay on the bus that can be produced by
interference from ST Frames and DYN messages m. During the DYN slot, Frame IDm can be delayed because of the following
causes:

Local messages with higher priority, that uses the same frame identifier as m denoted by hp(m);

Any message in the system that can use DYN slots with lower frame identifiers than the one used by m, denoted by lf(m);

Unused DYN slots with frame identifiers lower than the one used for sending m. Such mini-slots are denoted by ms(m).

mW () () ()m bus mt BusCycles t T W t′= × + (6)

Where BusCyclesm(t) is the number of bus periods for which the transmission of m is not possible because of messages
transmission from hp(m), lf(m) and ms(m).

() ((,))

((,), (,))
m m

m

BusCycles t BusCycles hp m t

BusCycles lf m t ms m t

= +
 (7)

W’m(t) denotes the time that passes, in the last bus cycle, until m is sent which is measured from the beginning of the bus
cycle, in which message m is sent, until the actual transmission of m starts.

Fig. 2 Time decomposition of response time over FlexRay

Compared to static segment, dynamic segment has at least more 4 bits consisting in the DTS (Dynamic Trailing Sequence)
that arranges the time slots at the end of each transmitted frame on the dynamic segment.

[
]

m,sC ()

(8)
d m

bit

TSS FSS FES t HS TS S

BSS DTS τ

= + + + + + + ×

+ +
 (8)

Where DTS is used to avoid an earlier detection of the channel idle by the receiver CAN. The DTS consists of two parts; a
variable-length period at low level, followed by a fixed-length period at high level [1].

In our study, we will not ignore the scheduling process on the node, but we will consider its impact on the response time and
evaluate its performance.

International Journal of Computer Science and Artificial Intelligence Mar. 2013, Vol. 3 Iss. 1, PP. 10-26

- 18 -
DOI:10.5963/IJCSAI0301002

VI. RESPONSE TIME CALCULATION

The full model is inspired from the FPS (First Priority Scheduling) approach, which is the most widely used approach in
the computing world. In this case, each task has a fixed, static, priority, which is ECU pre-run-time. The runnable tasks are
executed in the order determined by their priority, knowing that in real-time systems, the “priority” of a task is derived from its
temporal requirements, not its importance to the correct functioning of the system or its integrity.

The full model was conceived to be used in an industrial context[22], the temporal overheads of implementing the system
must be taken into account such as:

• Context switches (one per job);

• Interrupts (one per sporadic task release);

• Real-time clock overheads.

In this case the Response time equation is rather than:

Ri = Ci + ∑ �Ri
Tj
� Cjj∈hp (i) (9)

Where hp(i) is the set of tasks with priority higher than task i,Ci is the worst case computation time of the task iand Tjis the
minimum time between task releases, jobs or task period.

The new equation is:

Ri = CS1 + Ci + Bi + ∑ �Ri
Tj
�j∈hp (i) (CS1 + CS2 + Cj) (10)

Where the new termsCS1and CS2are the cost of switching tothe task, and the cost of switching away from it. And the term
Biis the cost of the task worst case blocking time.

The cost of handling interrupts is as flowing:

∑ �Ri
Tk
�k∈Γs IH (11)

Where Γs is the set of sporadic tasks and, IH is the cost of a single interrupt (which occur sat maximum priority level).

There is also a cost per clock interrupt, a cost for moving one task from delay to run queue and a (reduced) cost of moving
groups of tasks

Let CTcbe the cost of a single clock interrupt, Γpbe the set of periodic tasks, and CTs be the cost of moving onetask the
following equation can be derived

Ri = CS1 + Ci + Bi + ∑ �Ri
Tj
�jϵhp (i) �CS1 + CS2 + Cj� + ∑ �Ri

Tk
� IH + � Ri

Tclk
� CTc + ∑ �Ri

Tg
� CTsgϵΓpkϵΓs (12)

A. Full Model Applied on the Static Segment Tasks

Within the static segment a static time division multiple access scheme is applied to coordinate transmissions. In the static
segment all communication slots are of identical, statically configured duration and all frames are of identical, statically
configured length. In order to schedule transmissions each node maintains a slot counter state variable vSlotCounter for Channel
A and a slot counter state variable vSlotCounter for Channel B. Both slot counters are initialized with 1 at the start of each
communication cycle and incremented at the end boundary of each slot.

In the Implementations of the FlexRay bus, the periodic and safety-criticaldata arescheduled on the static time-triggered
segment, so the tasks in the static segment are periodic tasks that have the same priority per communication cycle.

Considering these facts, the Equation (12) applied on the static segment context becomes:

Ri = CS1 + Ci + Bi + +∑ �Ri
Tk
� IH + � Ri

Tclk
� CTc + ∑ �Ri

Tg
� CTsgϵΓpkϵΓs (13)

B. Full Model Applied on the Dynamic Segment Tasks

Within the dynamic segment a dynamic mini-slotting based scheme is used to arbitrate transmissions. In the dynamic
segment the duration of communication slots may vary in order to accommodate frames of varying length. In order to schedule
transmissions each node continues to maintain the two slot counters - one for each channel - throughout the dynamic segment.
While the slot counters for Channel A and for Channel B are incremented simultaneously within the static segment, they may
be incremented independently according to the dynamic arbitration scheme within the dynamic segment.

International Journal of Computer Science and Artificial Intelligence Mar. 2013, Vol. 3 Iss. 1, PP. 10-26

- 19 -
DOI:10.5963/IJCSAI0301002

In the Implementations of the FlexRay bus, the dynamic segment is mainly used for maintenance anddiagnosis data so the
tasks are event triggered sporadic tasks that have different priority by bus communication cycle.

Considering these facts the Equation (12) applied on the static segment context becomes:

Ri = CS1 + Ci + Bi + ∑ �Ri
Tj
�jϵhp (i) �CS1 + CS2 + Cj� + ∑ �Ri

Tk
� IH + � Ri

Tclk
� CTc + ∑ �Ri

Tg
� CTsgϵΓpkϵΓs (14)

VII. THE STUDIED ARCHITECTURE

To illustrate the utility of our Comprehensive Scheduling Strategy(CSS),we have chosen to work within a platform of a
vehicular network based on the SAE standard. In this system, a set of network processors subsystems produces routing data.
These data must be distributed along the vehicular network. In previous works[14], we have attempted to implement this system
using a combined scheduling but this kind of implementation introduced complexity and is inappropriate in case of automotive
systems.

The main goal of the proposed architecture is to reduce this complexity when adopting the data-centric publish- subscribe
paradigm which is very suitable for real-time communication along with a FPS full model scheduling used to schedule the
communicating tasks on the node. The framework architecture is a set of nodes formed by Fujitsu cards with an MB91F465X
controller, connected via a Real-Time Transport protocol. Each node is embedded a Real-Time Operating System µ COSII, a
middleware,andaPublish-SubscribeinterfaceaccordingtoDDSspecification, as represented in Fig.3.

Real Time Application
SAE benchmark

Publish-subscribe Communication
DDS

Middleware
Real-time operating system
µCOSIII

Real-time network FlexRay
Formed by Fujitsu Cards

Fig. 3 Architecture of distributed real-time system using a publish-subscribe paradigm

The communication between nodes is achieved due to publish subscribe interface via the Global Data Space that is
represented by arelational data model. The middle ware has to keep track of the data objects instances, which are considered as
rows in a table.Eachdataobjectisidentifiedbythecombinationofatopicandatopicspecifiedkey.

The results obtained in this paper are a based on a simulation under Matlab, using these environment parameters.

VIII. QOS APPROXIMATION

In this paper we will use the calculated response time to evaluate if the DDS QoS real-time parameters can be met in the
SAE benchmark application context. We will focus our interest on two real-time policies, the Deadline QoS policy represented
by the parameter deadline period of a task, and Time Based Filter Policy represented by the parameter minimum_seperation
period.

A. Deadline QoS Policy

This policy is used for cases where a Topic(i.e., SAE benchmark application Topic), is expected to have each instance
updated periodically. On the publishing side this setting establishes a contract that the application must meet. On the
subscribing side the setting establishes a minimum requirement for the remote publishers that are expected to supply the data
values [2]. When the Service ‘matches’ a DataWriter and a DataReader it checks whether the settings are compatible (i.e.,
offered deadline period<= requested deadline period). Assuming that the reader and writer ends have compatible settings, the
fulfillment of this contract is monitored by the Service and the application is informed of any violations by means of the proper
listener or condition. The value offered is considered compatible with the value requested if and only if the inequality “offered
deadline period <= requested deadline period” evaluates to ‘TRUE.’ The setting of the DEADLINE policy must be set
consistently with that of the TIME BASED FILTER. For these two policies to be consistent the settings must be such that
“deadline period>= minimum_separation”, and the deadline period should always be inferior to the application period T.

T ≥ D ≥ Min_Sep (15)

On the other hand, the response time of the application should not exceed its deadline to guarantee the freshness of the data
sample.

D ≥ R (16)

International Journal of Computer Science and Artificial Intelligence Mar. 2013, Vol. 3 Iss. 1, PP. 10-26

- 20 -
DOI:10.5963/IJCSAI0301002

B. Time Based Filter QoS Policy

This policy allows a DataReader to indicate that it does not necessarily want to see all values of each instance published
under the Topic. Rather, it wants to see at most one change every minimum_separationperiod. The TIME BASEDFILTER is
applied to each instance of the data separately, that is, the constraint is that the DataReader does not want to see more than one
sample of each instance per minumum_separation period. This setting allows a DataReader to further decouple itself from the
DataWriter objects. It accommodates the fact that for fast-changing data different subscribers may have different requirements
as to how frequently they need to be notified of the most current values. The TIME BASED FILTER specifies the samples that
are of interest to the DataReader [2]. The setting of the TIME BASED FILTER minimum_separation must be consistent with
the deadline period. For these two QoS policies to be consistent they must verify that “period >= minimum_separation”.

On the other hand, in order to verify the Time Based Filter QoS policy the response time of the application should be
superior to the minimum_seperation period to guarantee that theDataWriter doesn’t produce data faster than the DataReader
consumes it.

R ≥ Min_Sep (17)

To resume, we can validate these two QoS policies by following this equation:

T ≥ D ≥ R ≥ Min_Sep (18)

IX. RESULTS AND COMMENTS

In this section, we propose an algorithm to calculate the response time of the DataWariters tasks and evaluate the DDS QoS
based on the generated values.

The Equations (13) and (14) give us the needed parameters to determine the response time for both static and dynamic
segments tasks:

• Ci , the computing time is equivalent to the transmission delay Cm,s andCm,d , because the execution of a message
relative to a writing task is the fact to transmit data on the bus.

• The worst blocking time Bi is defined as follows:

Bi = Frame size −1 bit
Lowest flow rate used

 (19)

This equation is true for the CAN case but in the FlexRay case:

Bi = 0

• CS1is the cost of switching to the task, this parameter is given by the used real-time operating system µCOSIII [23].

CS1 = 0.005 ms

• CS2is the cost of switching away from the task, this parameter is also given by the used real-time operating system
µCOSIII[23].

CS2 = 0.009 ms

• IHis the cost of executing an interrupt service routine which occurs at maximum priority level, the more there are
STATUS register in the system, the handler time to execute the interrupt routine is longer, the FlexRay driver interrupt routine
is the longest on the status of receipt of communications data. For our study we approximate this parameter as follow:

IH = 10 × CTc

• CTcis the cost of a single clock interrupt for the microcontroller MB91F465X we have approximated its value:

CTc =
1

10
× Tclk

• CTsis the cost of moving one task, which is equivalent to switching a task.

CTs = CS2

• Tclk is the clock period calculated for a given core frequency.

The response time calculation process is described by the following algorithm:

Algorithm Worst Case Response Time Computing

International Journal of Computer Science and Artificial Intelligence Mar. 2013, Vol. 3 Iss. 1, PP. 10-26

- 21 -
DOI:10.5963/IJCSAI0301002

for iin1..N loop
 n := 0
 loop
 Calculate Cifor periodic tasks
 Calculate Cifor sporadic tasks
 n := n + 1
 end loop
end loop
for iin1..N loop
 n := 0

n
i iW C=

 loop

 calculate new
1n

iw +

 if
1n n

i iw w+ = then
n

i iR w=

exit value found
end if

if
1n

i iw T+ > then
exit value notfound
end if
 n := n + 1
end loop
end loop

For the simulation, we consider a set of FlexRay nodes the sending 36 messages on the FlexRay bus. Since each node in
the system that generates static messages that needs at least one static slot, the minimum number of static slots is the number of
nodes (nodesST) that send static messages [1]. In the extended benchmark [17], there are 15 nodes sending 36 messages among
which there are 30 periodic messages that need to be scheduled on the FlexRay static segment, but we will regroup them into 6
nodes. The remaining six messages are sporadic and needs to be mapped into the dynamic segment.

The period of the bus cycle (gdCycle) must be lower than the maximum cycle length cdCycleMax equal to 16 ms and has,
also, to be an integer divisor of the period of the global static segment. In addition, each node has a counter vCycleCounter in
the interval [0…63]. Thus, during a period of the global static schedule there can be at most 64 bus cycles, observing our
message set, we have noticed that almost all of the message periods are multipliers of 5ms; So we can fix the period of the bus
cycle to 5 ms and adjust some message periods, especially the messages introduced by Ben Gaid, M-M in [24] and others
introduced by M. Utayba in [17]. All messages with period equal to 8 ms will have a new period of 5 ms, and messages with
period equal to 12 ms will have 10 ms as new period, as the bus cycle length is equal to 5 ms the distance between each data
sample, or, period should be 5ms or a multiple of it. This will not affect our system efficiency since it will make it faster and
more reactive. There is another problem with messages with a 1000 msperiod that are not schedulable. In fact, even if we
consider the longest period of the global static schedule (64 bus cycles), we wouldn’t manage to reach the 1000 ms. Thus, we
have to decrease this period to 64*5=320 ms. We have also replaced the original bus priorities designed for an event triggered
bus (CAN) by a local priority able to order transmission of messages having the same Frame Identifier on different slots
assigned to their source node.

Applying the previous algorithm with 3 different bus speeds; 5 M bit/s and 10 M bit/s for one channel transmission scheme,
and 20 M bit/s for both channels transmission scheme, we obtain the following results.

TABLE II.BODY CONTROL MODULE RESULTS

Vehicle Module Message ID Size (Bytes) Deadline
[ms]

Min Separation [ms]
T [ms] Task Priority

Worst Case Response Time R (ms)
Bus Speed

5Mbit/s
Bus Speed
10 Mbit/s

Bus Speed
20 Mbit/s

S1 S2 S3 Core F
12 Mhz

Core F
100 Mhz

Core F
12 Mhz

Core F
100 Mhz

Core F
12 Mhz

Core F
100 Mhz

BODY Control Module

1 1 5 0.0214 0.0107 0.0054 50 2 0.4502 0.1629 0.2795 0.1010 0.1941 0.0701
3 1 5 0.0206 0.0103 0.0052 5 1 0.1706 0.0616 0.1397 0.0504 0.1242 0.0448
13 1 5 0.0206 0.0103 0.0052 5 1 0.1706 0.0616 0.1397 0.0504 0.1242 0.0448
17 1 10 0.0214 0.0107 0.0054 10 3 0.5144 0.1861 0.3115 0.1126 0.2102 0.0759
18 2 10 0.0234 0.0117 0.0059 10 4 0.5846 0.2116 0.3467 0.1254 0.2277 0.0823
31 4 100 0.0266 0.0133 0.0067 100 1 0.1886 0.0681 0.1487 0.0536 0.1287 0.0464
34 3 320 0.0246 0.0123 0.0062 320 1 0.1825 0.0659 0.1457 0.0525 0.1272 0.0458

TABLE III.ENGINE CONTROLLER MODULE RESULTS

Vehicle Module Message
ID Size (Bytes) Deadline

[ms]

Min Separation [ms]
T [ms] Task

Priority

WORST CASE RESPONSE TIME R (MS)
Bus Speed
5 Mbit/s

Bus Speed
10 Mbit/s

Bus Speed
20 Mbit/s

S1 S2 S3 Core F
12 Mhz

Core F
100 Mhz

Core F
12 Mhz

Core F
100 Mhz

Core F
12 Mhz

Core F
100
Mhz

Engine Controller 4 2 5 0.0226 0.0113 0.0057 5 1 0.1763 0.0637 0.1424 0.0514 0.1255 0.0453

International Journal of Computer Science and Artificial Intelligence Mar. 2013, Vol. 3 Iss. 1, PP. 10-26

- 22 -
DOI:10.5963/IJCSAI0301002

Module 6 2 5 0.0226 0.0113 0.0057 5 1 0.1763 0.0637 0.1424 0.0514 0.1255 0.0453
19 6 10 0.0314 0.0157 0.0079 10 2 0.4679 0.1694 0.2882 0.1043 0.1984 0.0717
20 2 10 0.0226 0.0113 0.0057 10 1 0.1763 0.0637 0.1424 0.0514 0.1255 0.0453
21 3 10 0.0254 0.0127 0.0064 10 3 0.5441 0.1970 0.3263 0.1181 0.2174 0.0786
35 1 320 0.0206 0.0103 0.0052 320 1 0.1703 0.0615 0.1394 0.0503 0.1240 0.0447

TABLE IV.CENTRAL CONTROL UNIT RESULTS

Vehicle Module Message
ID

Size
(Bytes)

Deadline
[ms]

Min Separation [ms]
T ms] Task

Priority

Worst Case Response Time R (ms)

Bus Speed
5Mbit/s

Bus Speed
10 Mbit/s

Bus Speed
20 Mbit/s

S1 S2 S3 Core F
12 Mhz

Core F
100 Mhz

Core F
12 Mhz

Core F
100
Mhz

Core F
12 Mhz

Core F
100
Mhz

Active Suspension Unit 27 2 10 0.0226 0.0113 0.0057 10 1 0.2568 0.0930 0.2229 0.0808 0.2060 0.0746
Active Frame Steering 22 2 10 0.0226 0.0113 0.0057 10 1 0.2568 0.0930 0.2229 0.0808 0.2060 0.0746

Electronic Brake
Control Module 14 4 5 0.266 0.0133 0.0067 5 1 0.2688 0.0974 0.2289 0.0829 0.2090 0.0757

Traction Control Unit 8 1 5 0.0206 0.0103 0.0052 5 1 0.2508 0.0909 0.2199 0.0797 0.2045 0.0741
15 4 5 0.266 0.0133 0.0067 5 1 0.2688 0.0974 0.2289 0.0829 0.2090 0.0757

ESP/ROM 16 4 5 0.266 0.0133 0.0067 5 1 0.2688 0.0974 0.2289 0.0829 0.2090 0.0757
28 5 10 0.286 0.143 0.0072 10 1 0.2748 0.0996 0.2319 0.0840 0.2105 0.0762

TABLE V.FRONT CONTROL UNIT

Vehicle Module Message
ID

Size
(Bytes)

Deadline
[ms]

Min Separation [ms] T [ms] Task Priority
Worst Case Response Time R (ms)

Bus Speed
5Mbit/s

Bus Speed
10Mbit/s

Bus Speed
20Mbit/s

S1 S2 S3 Core F
12 Mhz

Core F
100 Mhz

Core F
12 Mhz

Core F
100 Mhz

Core F
12 Mhz

Core F
100
Mhz

Hydraulic Brake
Control Unit

2 2 5 0.0226 0.0113 0.0057 5 1 0.2838 0.1028 0.2499 0.0905 0.2329 0.0844
30 1 20 0.0206 0.0103 0.0052 50 1 0.2778 0.1007 0.2469 0.0895 0.2315 0.0839
32 1 100 0.0206 0.0103 0.0052 100 1 0.2778 0.1007 0.2469 0.0895 0.2315 0.0839

Transmission
Control Unit

5 1 5 0.0206 0.0103 0.0052 5 1 0.2778 0.1007 0.2469 0.0895 0.2315 0.0839
33 1 100 0.0206 0.0103 0.0052 100 1 0.2778 0.1007 0.2469 0.0895 0.2315 0.0839
36 1 320 0.0206 0.0103 0.0052 320 1 0.2778 0.1007 0.2469 0.0895 0.2315 0.0839

Throttle Control
Unit 7 1 5 0.0206 0.0103 0.0052 5 1 0.2778 0.1007 0.2469 0.0895 0.2315 0.0839

Adaptive Cruise
Control 29 3 10 0.0246 0.0123 0.0062 10 1 0.2898 0.1050 0.2529 0.0916 0.2344 0.0849

TABLE VI.RIGH WHEEL UNIT

Vehicle
Module

Message
ID

Size
(Bytes)

Deadline
[ms]

Min Separation [ms]
T [ms] Task

Priority

Worst Case Response Time R (ms)

Bus Speed
5Mbit/s

Bus Speed
10 Mbit/s

Bus Speed
20 Mbit/s

S1 S2 S3 Core F
12 Mhz

Core F
100 Mhz

Core F
12 Mhz

Core F
100 Mhz

Core F
12 Mhz

Core F
100 Mhz

Front-Right
Wheel

Module

10 1 5 0.0206 0.0103 0.0052 5 1 0.1698 0.0615 0.1389 0.0503 0.1235 0.0447

24 2 10 0.0226 0.0113 0.0057 10 1 0.1758 0.0637 0.1419 0.0514 0.1250 0.0453

Rear-Right
Wheel

Module

12 1 5 0.0206 0.0103 0.0052 5 1 0.1698 0.0615 0.1389 0.0503 0.1235 0.044

26 2 10 0.0226 0.0113 0.0057 10 1 0.1758 0.0637 0.1419 0.0514 0.1250 0.0453

TABLE VII.LEFT WHEEL UNIT

Vehicle
Module

Message
ID

Size
(Bytes)

Deadline
[ms]

Min Separation [ms]

T [ms] Task
Priority

Worst Case Response Time R (ms)

Bus Speed
5Mbit/s

Bus Speed
10 Mbit/s

Bus Speed
20 Mbit/s

S1 S2 S3 Core F
12 Mhz

Core F
100 Mhz

Core F
12 Mhz

Core F
100 Mhz

Core F
12 Mhz

Core F
100 Mhz

Front-Left
Wheel

Module

10 1 5 0.0206 0.0103 0.0052 5 1 0.1698 0.0615 0.1389 0.0503 0.1235 0.0447

24 2 10 0.0226 0.0113 0.0057 10 1 0.1758 0.0637 0.1419 0.0514 0.1250 0.0453

Rear-Left
Wheel

Module

12 1 5 0.0206 0.0103 0.0052 5 1 0.1698 0.0615 0.1389 0.0503 0.1235 0.044

26 2 10 0.0226 0.0113 0.0057 10 1 0.1758 0.0637 0.1419 0.0514 0.1250 0.0453

International Journal of Computer Science and Artificial Intelligence Mar. 2013, Vol. 3 Iss. 1, PP. 10-26

- 23 -
DOI:10.5963/IJCSAI0301002

We have regrouped in the Central Control Unit, Table V all the critical modules and signal responsible for the vehicle
control.

In the Front Control Unit, Table VI, we have regrouped all the modules and signals responsible for the cruise control.

The Right Wheel Unit and the Left Wheel Unit contains the modules and signals of respectively right and left sides of the
vehicle.

We have used for the simulation two different Core frequencies, the best case Core frequency which is 100 Mhz and the
worst case Core frequency which is 12 Mhz. For both cases, we have noticed that the deadline has been met and the equation
below is verified.

T ≥ D ≥ R

Thanks to FlexRay bus speed, we can assume that the DDS Deadline QoS Policy always be reached.

As for the Time Based Filter we have approximated the minimum_separation parameter to be the reception delay which is
for FlexRay case the transmission delay Cm. So for each bus speed we have a different value for the minimum_separation
period.

Same as the DDS Deadline QoS Policy, we can assume that the Time Based Filter QoS Policy is verified.

R ≥ Min_Sep

For a fixed bus speed and two different frequencies the response time is the lowest when the Core frequency is the highest.
This is a logical result the ECU in this case can treat the tasks faster and consequently the response time has a lower value
represented by the execution time in the full model equation.

For a fixed frequency and a variable bus speed the worst case response time is the lowest when the bus speed is the highest.
This is a logical result as the response time is dependent of the bus speed.

X. CONCLUSION

The DDS middleware, based on the publish-subscribe paradigm, is very suitable for real-time distributed communication
systems, allowing the distribution of hard real-time applications. In this paper, we have proposed to use DDS on top of the
real-time network FlexRay to take advantage of its high speed and to profit of the DDS QoS management in an automotive
context. We have proposed a scheduling model based full FPS scheduling to first calculate the worst case response time for our
vehicular system and evaluate its performance on a benchmark application, an extended SAE benchmark. After the simulations,
results have shown that not only the applications QoS requirement has been met but also this combination is very appropriate
for the vehicular context. One promising research direction would be the evaluation of the rest of real-time QoS parameters
offered by DDS on the same system configuration and the extension of DDS to be integrated with control engineering domain.

In fact, DDS is not yet mature for use in vehicle domain without some extension like DDS ports and connectors for DDS
software composition, the mapping of DDS based components to Simulink variant blocks, the converting of Simulink models
with DDS to an AADL framework and integration of behavioral implementations. The implementation of an authoring tool for
DDS is also required. DDS has not specifications for the integration of vehicle networks like CAN, LIN and FlexRay. All these
points must be clarified in the future. We plan to have a complete platform to argue our future propositions to improve the
actual situation.

ACKNOWLEDGMENT

The researches presented in this paper would not have been possible without the support of many people. We wish to
express our gratitude to the SYSCOM ENIT members for their help and assistance.

REFERENCES
[1] FlexRay Consortium, FlexRay Communications System-Protocol Specification, Version 2.1, Revision A, 2005.
[2] Object Management Group, Data distribution service for real-time systems, version 1.2, Massachusetts: Needham, January 2007.
[3] T. Guesmi, R. Rekik, S. Hasnaoui, H. Rezig, “Design and Performance of DDS-based Middleware for Real-Time Control

Systems,”International Journal of Computer Science and Network SecurityIJCSNS, twelvethed, vol.7, 2007, pp 188-200.
[4] G. P. -Castellote, B.Farabaugh, R. Warren, “An Introduction to DDS and Data-Centric Communications,” Real-Time Innovations,

Available http://www.rti.com.
[5] Prism Tech, “Opensplice C reference guide”, version 2.2, Massachusetts: Burlington, 2006, pp. 22-25.
[6] H. V. Hag, OpenSlice Overview, white paper, 2006.
[7] Thales Netherland, http://www.thales-nederland.nl/.

http://www.rti.com/

International Journal of Computer Science and Artificial Intelligence Mar. 2013, Vol. 3 Iss. 1, PP. 10-26

- 24 -
DOI:10.5963/IJCSAI0301002

[8] J. H. van 't Hag Data-Centric to the Max - The SPLICE Architecture Experience, Proceedings of the 23rd International Conference on
Distributed Computing Systems Workshops (ICDCSW'03), May 19 - 22, 2003.

[9] Christopher A. Lupini, “Vehicle Multiplex Communication - Serial Data Networking Applied to Vehicular Engineering”, SAE, April
2004.

[10] Tindel, K., Burns, A., “Guaranteeing Message Latencies On Control Area Network (CAN)”, Real-Time Systems Research Group,
Department of Computer Science, University of York, England, 1994. [Online] available:
http://citeseerx.ist.psu.edu/viewdoc/download?doi=10.1.1.110.3545&rep =rep1&type=pdf.

[11] Kopetz, H., “A solution to an automotive Control System Benchmark”, Real-Time Systems Symposium, 7-9 Dec. 1994, pp. 154-158.
[12] T. Guesmi, R. Rekik, S. Hasnaoui, H. Rezig, Design and Performance of DDS-based Middleware for Real-Time Control Systems,

IJCSNC, VOL.7, No.12, 2007, pp 188-200.
[13] Rim Bouhouch, WafaNajjar, HoudaJaouani, Salem Hasnaoui, Implementation of Data Distribution Service Listeners on Top of FlexRay

Driver, INFOCOMP 2011 : The First International Conference on Advanced Communications and Computation, IARIA, 64-69.
[14] W. Najjar, R. Bouhouch, H. Jaouani, S. Hasnaoui, “Static and Dynamic Scheduling for FlexRay Network Using the Combined Method”,

International Journal of Information Technology and Systems, Vol. 1, No. 1, pp. 18-26, January 2012.
[15] K. W. Tindell, A. Burns, A. J. WELLINGS; An extendible approach for analyzing fixed priority hard real-time tasks, Real_Time

Systems, Vol.6, No.2, 1994, pp.133-151.
[16] A. Hagiescu, U. Bordoloi, S. Chakraborty, Performance Analysis of FlexRay-based ECU Networks; DAC proceedings, 2007, pp.284-

289.
[17] M. Utayba Mohammad, N. Al-Holou, “Development of An Automotive Communication Benchmark”, Canadian Journal on Electrical

and Electronics Engineering, Vol. 1, No. 5, August 2010.
[18] T. Guangyn, B. Peng, C. Quanshi, Response Time Analysis of FlexRay Communication in Fuel Cell Hybrid Vehicle, Vehicle Power

and Propulsion Conference VPPC’08. IEEE, 2008, pp. 1-4.
[19] P. Pop, P. Eles and Z. Peng, Schedulability-Driven Communication Synthesis for Time Triggered Embedded Systems, IEEE: Real-Time

Computing Systems and Applications, RTCSA '99, Sixth International Conference on Real-Time Computing Systems and Applications.
RTCSA'99 (Cat. No.PR00306), 1999, pp. 287-294.

[20] N. Navet, Y. Song, F. Simonot-lion, C. Wilwert, Trends in automotive communication systems, Proceedings of the IEEE, Vol.93, No.6,
2005, pp. 1204-1223.

[21] T. Pop, P. Pop, P. Eles, Z. Peng, Timing Analysis of the FlexRay communication Protocol; Real-Time Syst, Vol.39, 2008, pp. 205-235.
[22] A. Burns, A. Wellings, “Scheduling Real-Time Systems”, Chapter 11, Real-Time Systems and Programming Languages,The university

of York, Department of Computer Science.
[23] A J. J. Labrosse. “MicroC/OS-II The Real Time Kernel”. Miller Freeman, Inc, United States of America, 1999.
[24] Ben Gaid, M-M, Cela, A, Diallo, S., Kocik, R., Hamouche, R. and Reama, A, "Performance Evaluation of the Distributed

Implementation of a Car Suspension System", In Proceedings of the IFAC Workshop on Programmable Devices and Embedded
Systems, February 2006.

APPENDIX

We have added Table VII and Table IX taken from [17] to identify the extended SAE benchmark new signals and
parameters used in our approach and simulation.

TABLE VIII.ASUMMARYOFALLSIGNALSINTHEEXTENDED BENCHMARK

Module SignalNumber SignalDescription Size[bit] Period[msec] Deadline[msec]

Body Control
Module(BCM)

1 Traction Battery
Voltage 8 100 100

2 Traction Battery
Current 8 100 100

3 TractionBatteryTemp, Average 8 1000 1000

4 Auxiliary Battery
Voltage 8 100 100

5 TractionBatteryTemp,
Max 8 1000

6 Auxiliary Battery
Current 8 100 100

13 Traction Battery
GroundFault 1 1000 1000

14 Hi&Lo Contactor
Open/Close 4 50/S 5

23 12V Power Ack
VehicleControl 1 50/S 20

24 12V Power Ack
Inverter 1 50/S 20

25 12V Power AckI/M
Control 1 50/S 20

28 Interlock 1 50/S 20
7 AcceleratorPosition 8 5 5

http://ieeexplore.ieee.org/xpl/mostRecentIssue.jsp?punumber=6590
http://ieeexplore.ieee.org/xpl/mostRecentIssue.jsp?punumber=6590
http://ieeexplore.ieee.org/xpl/mostRecentIssue.jsp?punumber=6590

International Journal of Computer Science and Artificial Intelligence Mar. 2013, Vol. 3 Iss. 1, PP. 10-26

- 25 -
DOI:10.5963/IJCSAI0301002

15 KeySwitchRun 1 50/S 20
16 KeySwitchStart 1 50/S 20
17 AcceleratorSwitch 2 50/S 20
19 EmergencyBrake 1 50/S 20
20 ShiftLever(PRNDL) 3 50/S 20
22 Speed Control 3 50/S 20

26 Brake Mode
(Parallel/Split) 1 50/S 20

27 SOCReset 1 50/S 20
71 BrakePedal Position 8 8 8

EngineControlModule
(ECM)

29 HighContactorControl 8 10 10
30 LowContactorControl 8 10 10

31 Reverse and 2nd Gear
Clutches 2 50/S 20

32 ClutchPressureControl 8 5 5
33 DC/DCConverter 1 1000 1000

34 DC/DC Converter
CurrentControl 8 50/S 20

35 12VPowerRelay 1 50/S 20

36 Traction Battery
Ground FaultTest 2 1000 1000

37 BrakeSolenoid 1 50/S 20
38 Backup Alarm 1 50/S 20
39 WarningLights 7 50/S 20
40 KeySwithc 1 50/S 20
42 MainContactorClose 8 5 5
44 FWD/REV 1 50/S 20
46 Idle 1 50/S 20
48 ShiftinProgress 1 50/S 20

53 Main Contactor
Acknowledge 1 50/S 20

41 MainContactorClose 1 50/S 20
43 TorqueMeasured 8 5 5
45 FW/RevAck. 1 50/S 20
47 Inhibit 1 50/S 20
49 ProcessedMotorSpeed 8 5 5

50 Inverter Temperature
Status 2 50/S 20

51 Shutdown 1 50/S 20
52 Status/Malfunction 8 50/S 20

HydraulicBrakeContr
olUnit (HBCU)

8 BrakePressure, Master
Cylinder 8 5 5

9 BrakePressure,Lines 32 5 5
12 VehicleSpeed 8 100 100
18 BrakeSwitch 1 20/S 20

Transmission
ControlModule(TCM)

10 TransaxleLubrication
Pressure 8 100 100

11 TransactionClutchLine
Pressure 8 5 5

21 Motor/Trans Over
Temperature 2 1000 1000

Front-LeftWheel
Module

54 Front-LeftSuspension
Deflection 8 12 12

58 Front-Left Unsprung
MassVelocity 8 12 12

67 Front-Leftwheelspeed 8 8 8

Front-RightWheel
Module

55 Front-RightSuspension
Deflection 8 12 12

59 Front-RightUnsprung
MassVelocity 8 12 12

68 Front-Right wheel
Speed 8 100 100

Rear-LeftWheel

Module

56 Rear-Left Suspension
Deflection 8 12 12

60 Rear-Left Unsprung
MassVelocity 8 12 12

69 Rear-Leftwheelspeed 8 8 8

Rear-RightWheel
Module

57 Rear-RightSuspension
Deflection 8 12 12

61 Rear-Right Unsprung
MassVelocity 8 12 12

70 Rear-Rightwheelspeed 8 8 8
ActiveSuspension 62 Front-Left Control 8 12 12

International Journal of Computer Science and Artificial Intelligence Mar. 2013, Vol. 3 Iss. 1, PP. 10-26

- 26 -
DOI:10.5963/IJCSAI0301002

Unit Force

63 Front-Right Control
Force 8 12 12

64 Rear-LeftControl Force 8 12 12

65 Rear-Right Control
Force 8 12 12

ActiveFrame
Steering(AFS) 66 Steeringtorquesensor 16 10 10

ElectronicBrake
ControlModule

(EBCM)

72

Brake Control
Command 32 8 8

ThrottleControl
Unit 73 Throttleopening 8 5 5

TractionControl
Unit

74 Throttlecommand 8 5 5
75 Brakes command 32 8 8

ESP/ROM

76 Vehicle lateral
acceleration 8 12 12.5

77 Vehicle longitudinal
acceleration 8 12 12.5

78 Sideslipangle 8 12 12.5
79 Yawrate 8 12 12.5
80 RollAngle 8 12 12.5

81 Brake pressure
command 32 8 8

AdaptiveCruise

Control

82 Enginethrottlecontrol
command 8 12 12.5

83 Brakes control
command 8 12 12.5

84 RADARDistance 8 12.5 12.5

Rim Bouhouchreceived the Engineering degree in Telecommunications Engineering from the National Engineering
School of Tunis, Tunisia, in 2008, a master degree in Communication Systems in the same institute, in 2009, and is a
PhD student in Telecommunications. Her current research interests are the implement and evaluation of Real-time
Middleware for Real-time vehicular networks.

HoudaJaouani received the engineering degree in Electrical Engineering from the National Engineering School of
Tunis, Tunisia, in 2007, a master degree in Automatic and Signal Processing in the same institute, in 2008, and is a
PhD student in Telecommunications. Her current research interests are performance evaluation of the DDS
Middleware on Real-time vehicular networks using the SAE Benchmark as a standard vehicle prototype.

Amel Ben Ncira received the engineering degree in Electrical Engineering from the National Engineering School of
Tunis, Tunisia, in 2005, a master degree in electrical systems in the same institute, in 2006, and is a PhD student in
Electrical Engineering.

Salem Hasnaoui is a professor in the Department of Computer and Communication Technologies at the National
School of Engineering of Tunis. He received the Engineer diploma degree in electrical and computer engineering from
National School of Engineering of Tunis. He obtained a M.Sc. and third cycle doctorate in electrical engineering, in
1988 and 1993 respectively. The later is extended to a PhD. degree in telecommunications with a specialization in
networks and real-time systems, in 2000. He is author and co-author of more than 200 refereed publications, a patent
and a book. His current research interests include real-time systems, sensor networks, QoS control & networking,
adaptive distributed real-time middleware and protocols that provide performance assured services in unpredictable
environments. Prof. Hasnaoui is the responsible of the research group "Networking and Distributed computing" within
the Communications Systems Laboratory at the National School of Engineering of Tunis. He served on many
conference committees and journals reviewing processes and he is the designated inventor of the Patent "CAN Inter-

Orb protocol-CIOP and a Transport Protocol for Data Distribution Service to be used over CAN, TTP and FlexRay protocols".

	introduction
	related work
	SAE Benchmark
	Scheduling

	extended sae benchmark
	datareaders and datawriters classification
	scheduling parameters in flexray networks
	FlexRay Bus
	Communication Cycle
	Static Segment Parameters
	Dynamic Segment Parameters

	response time calculation
	Full Model Applied on the Static Segment Tasks
	Full Model Applied on the Dynamic Segment Tasks

	The Studied Architecture
	qos approximation
	Deadline QoS Policy
	Time Based Filter QoS Policy

	results and comments
	conclusion
	acknowledgment
	references
	Appendix

