DDS on Top of FlexRay Vehicle Networks: Scheduling Analysis

RimBouhouch¹, HoudaJaouani², Amel Ben Ncira³, Salem Hasnaoui⁴

Communications Systems Research Laboratory SYSTOM, Tunis, Tunisia

¹rim.bouhouch@yahoo.fr; ²jouani_houda@yahoo.fr; ³amel_benncira@yahoo.fr; ⁴Salem.Hasnaoui@enit.rnu.tn

Abstract-FlexRay is a new communication system that offers reliable and real-time capable high-speed data transmission between electrical and mechatronic components to map current and future innovative functions into distributed systems within automotive applications. In the same context, the real-time middleware Data Distribution Service (DDS) is an appropriate alternative for the standard vehicular middleware considering that it handles Quality of Service (QoS) parameters. An interesting innovation would be the use of the DDS middleware on top of FlexRay networks formed by FlexRay cards to guarantee the arrival of the right data on the right time. In this paper, we will use as application an extended SAE(Society of Automotive Engineers) benchmark for the FlexRay network to identify the DDS DataReaders and DataWriters, and calculate the response time, based on the full scheduling model, and introduce it into the DDS QoS to further prove that the QoS of SAE benchmark are insured.

Keywords- DDS; FlexRay; QoS; Scheduling; Response time

I. INTRODUCTION

FlexRay Networks are one of the newest x-by wire communication systems^[1] known for their speed and performance which use ranges from planes to cars networks to insure communication over a shared medium. Thanks to its several features, this communication protocol is meeting safety critical applications performance requirements (flexibility, fault-tolerance, determinism, high-speed...). Therefore, FlexRay is emerging as a predominant protocol for in-vehicle x-by-wire applications (i.e. drive-by-wire, steer-by-wire, brake-by-wire, etc.). As a result, there has been a lot of recent interest in timing analysis techniques in order to provide bounds for the message communication times on FlexRay. On the other hand, the real-time Data Distribution Service ^[2] based on the subscription-publication paradigm offers a clear distinction between the communicating tasks by classifying them into DataReaders and DataWriters and that helps insuring the delivery of the right data on the right time. Vehicles real-time networks such as FlexRay are based on the interaction between the scheduler, reflecting the working process of the network, and the application in need of communication. But in this scheme a real-time middleware is necessary to guarantee better performances since most of vehicle manufacturers usually use AUTOSAR as middleware. The OMG (Object Management Group) Data Distribution Service provides a real-time Middleware that ensures the interaction between the physical layer and the application layer providing a communication pattern. The performances of this combination must be evaluated based on a real-time parameter to determine if the application requirements have been met.

Data Distribution Service is considered a standard in embedded systems implement. It is based on publish-subscribe communication model, and supports both messaging and data-object centric data models. DDS was designed for real-time systems; the API and Quality of Service (QoS) are chosen to balance predictable behavior and implementation efficiency/performance. One of the promising approaches is to make an efficient use of QoS mechanisms propose in the DDS specification when adopting real-time network such as FlexRay. DDS provides the DEADLINE QoS Policy, LATENCY_BUDGET Qos Policy, TRANSPORT_PRIORITY QoS Policy and other policies specifically targeted to minimum latency, predictable real-time operation in high-performance distributed data critical systems. However, DDS specification is less explicit about the scheduling mechanisms that should be used to coordinate these policies and to make the best benefit when exploiting the underlying facilities of the real-time network.

The Data Distribution Service (DDS) is an open standard managed by the Object Management Group (OMG) and representing the first general-purpose middleware standard that addresses challenging real-time requirements. In fact, DDS handles a wide range of data flows, from extremely high performance combat management or flight control to slower command sequences. This specification describes two levels of interfaces: A lower level Data-Centric Publish-Subscribe (DCPS) that is targeted towards the efficient delivery of the proper information to the proper recipients and an optional higher-level Data-Local Reconstruction Layer (DLRL), which allows for a simpler integration into the application layer. The data-centric publish-subscribe model employs a data-centric integration model to decouple applications composed of data providers and/or consumers spread onto different computers. Thus, it creates a global shared data-space that greatly simplifies integration. A data-object in data space, identified by its domain id, is uniquely identified by its keys and typed topic. The DCPS layer consists of the following entities: Domain Participant, DataWriter, DataReader, Publisher, Subscriber, and Topic. The principle is to transmit data directly from a publisher to all its subscribers with no intermediate servers. That is to say, applications communicate by publishing the data they produce and subscribing to the type of data they consume. They require no knowledge of each other, only of the data they exchange.

DataWriter is a typed facade to a publisher; participants use DataWriters to communicate the value and changes to data of a given type. Once new data values have been communicated to the publisher, it is the Publisher's responsibility to determine when it is appropriate to issue the corresponding message. A Subscriber receives published data of different specified types and makes it available to the participants using a typed DataReader attached to the subscriber. The association of a DataWriter object with DataReader objects is done by means of the Topic.

DDS goes beyond simple publish-subscribe middleware and enables a "plug in" open architecture approach to integration. The key technology is the ability to capture all the timing, reliability, and other important interface constraints called "Quality of Service" (QoS) properties. Indeed, a Quality of Service is a set of characteristics that controls some aspects of the behavior of the DDS Service.

In addition to a set of QoS Policy values that are related to it, each DDS entity has a corresponding specialized listener object able to notify it of events. It can also be configured through QoS policies, be enabled and support conditions that can be waited upon by the application. Even if many other types of middleware support QoS, DDS still unique since it not only ensures reliability and timeliness thanks to its data-centric approach, but also automatically discovers matching publishers and subscribers, and then enforces the QoS contracts between them. This automatic discovery eliminates most configuration control issues and supports networks that change at runtime. With those facilities, DDS systems can add, modify, restart or update new modules without redesigning other interfaces and enables programs to evolve and mature without constant rework because system integration is done one component at a time without impacting other components.

We mention some QoSpolicies that are related to real-time parameters:

• The DEADLINE QoSPolicy expresses the maximum duration (deadline) within which a DataReader expects a dataobject instance to be updated. If a sample is not received within the deadline, a listener method is called.

• The LATENCY_BUDGET QosPolicy provides a hint as to the maximum acceptable delay from the time the data is written to the time it is received by the subscribing applications.

• The LIFESPAN QosPolicy, on a DataWriter and Topic, which specifies how long the data written by a DataWriter is considered valid ("time to live").

• The TIME_BASED_FILTER QosPolicy specifies a minimum_separation value that allows a DataReader to specify that it interested only in (potentially) a sub-sampled set of the values for a data-object instance.

• TRANSPORT_PRIORITY QoSPolicy, in a DataWriter, which allows a DDS application to take advantage of transports that are capable of sending messages with different priorities.

• The RELIABILITY QosPolicy, on a DataWriter, DataReader, or a Topic. This policy determines whether a message should be sent best effort (send once without expecting acknowledgments) or reliably (resent until positively acknowledged).

With these QoS policies, and many others, the DDS publish-subscribe is suitable to the real-time communications context. In fact, DDS is adopted in hundreds of commercial and government programs for its several features. It also has growing footprint in commercial telecommunications, train, automotive, medical, science and financial applications. However, there is not enough works dealing with implementing DDS upon real-time networks except those addressing the Controller Area Network (CAN)^[3]. On the other hand, there is an active community of government, industry and academic participants using the OMG to clarify improve and update the DDS standard, ensuring its viability for years to come. Thirty-six companies are voting to adopt the original specification, including Borland, Ericsson, Fujitsu, IBM, Oracle, Real-Time Innovations (RTI), THALES, PrismTech, and Nokia. Ten companies now offer implementations of the OMG DDS specification, of which six offer commercial versions of the product. Some of the companies currently offering DDS implementations include: Real-Time Innovations ^[4] which has a product called NDDS that provides publish-subscribe architecture for time critical delivery of data. PrismTech^[5] which has a product called Open Splice^[6] compliant with real-time networking. Thales Naval ^[7] having a product called SPLICE ^[8] that provides a data-centric architecture for mission-critical applications.

In this paper, we propose the SAE benchmark as an automotive application to test our system based on FlexRay network formed by Fujitsu Cards MB91F465X and the DDS real-time middleware and evaluate its performances using the worst case response time calculated by the full scheduling model. The extended benchmark communicating tasks was classified according to DDS into DataReaders and DataWriters on each node of the network.

The remainder of this paper is organized as follows: In Section 2, we discuss the related work, comparing our approach with some existing solutions. Section 3 is dedicated to the extended SAE benchmark explaining the new signals and priority. In Section 4 we give a classification of the DataReaders and DataWriters according to the used benchmark. In Section 5 we summarize some parameters related to the scheduling in FlexRay networks. In Section 6, we give the equation relative to the full scheduling method and how to use it to determine the response time. The Section 7 is dedicated to the description of our studied architecture. In last two sections, we demonstrate how to approximate the DDS QoS using the response time and the obtained results and conclusions.

II. RELATED WORK

A. SAE Benchmark

In 1993, SAE published a document on the signaling requirements for a prototype electric car with point-to-point communication Network ^[9]. Since then this document has been used as basis for building an intra-vehicle communication benchmark ^[10, 11]. The benchmark consists of six main modules in the vehicle's class C network: the vehicle controller, Inverter/Motor Controller, Transmission, Battery, Brakes, and the Driver interface and control panel. Fifty-three signals are shared among the different modules, some of them are periodic and some are sporadic. For sporadic signals, SAE does not provide any indication to the signal average period. Kopetz addressed this by assuming these times based on the application requirements^[11]. Hence, He modeled sporadic signals as periodic ones with the period set implicitly to 20 msec. His argument was that the latency of periodic signals should be less than or equal to their period i.e. for 20 msec periodic signal the latency should be less than or equal to 20 msec. The 20 msec period was adopted based on the driver's response time to changes in the driving environment, and it hypnotizes that the driver can't sense latencies of 20 msec or less. Hence, Kopetz set the latency requirement for sporadic signals to 20 msec implying a period of 20 msec. However, Tindell and Burns^[10] took a more relaxed assumption, and probably more realistic, by setting the latency requirement for sporadic signals to 20 msec, and the corresponding hypotized period to 50 msec. A list of the all the fifty-three signals, their periods, and their latency requirement are captured from [10]. It is important to notice that the aforementioned signals were not designed for any specific protocol; rather, they represent the data that need to be exchanged between the five listed modules. Kopetz, designed his messages to best serve the TTP protocol when under evaluation, while Tindell and Burns organized the messages to best fit the CAN protocol. The later effort indicates that assigning each signal to a message will result in huge bandwidth consumption and will require using 250 Kbps bus speed at minimum, 500 Kbps preferably, in order to meet the latency requirement. Therefore, Tindel and Burns suggested combining multiple signals in a single message to reduce the effect of the protocol overhead and the contention delay ^[10]. Basically, sporadic signals of low rate were piggybacked in fewer messages of higher rate, called server messages. The resulting message structure contained 17 periodic messages ^[10].

B. Scheduling

Tasks in real-time networks such as FlexRay or CAN are scheduled according to a static or a dynamic scheduling method. A static scheduler is based on time triggered scheduling according to the Time Division Multiple Access (TDMA) technic where each participant is granted a specific fixed interval in a repetitive time window. TDMA scheduling guarantees a deterministic transfer of messages, but has a major disadvantage that the bandwidth is not used efficiently. A dynamic scheduling is an event triggered scheduling where participants can only send information if an event occurs, such as new data is ready for transmission.

Our previous researches^[12] were interested in scheduling for the Data Distribution Service (DDS) architecture over CAN. We have developed in each node a local scheduling component, the Earliest Deadline First (EDF) scheduler. The latter, sends scheduling parameters of tasks to the global scheduling system. Then, information is sent to a distributed information collection service called the System Information Repository (SIR). In [13] we have presented how DDS API is implemented on top of FlexRay Driver. In [14], we have presented a combined scheduling method that can be applied for both static and dynamic scheduling in FlexRay.

Related studies to this research include time triggered, event triggered and automobile protocols.

First studies ^[15] illustrate how a window-based analysis technique can be used to find the Worst-Case Response time of a task. It considers sporadic activities, where tasks arrive sporadically but, then execute periodically for some bounded time.

The Paper [16] proposes an analytical framework for compositional performance analysis of a network of Electronic Controller Unit (ECU) that communicates via a FlexRay bus. The main contribution was a formal model of the protocol governing the DYN segment of FlexRay.

In this paper, we focus our interest on the scheduling on the FlexRay node and so propose a new scheduling method that handles all the delay sources to determine if the SAE benchmark QoS parameters has been met by calculating the worst case response time.

III. EXTENDED SAE BENCHMARK

In order to translate signals to messages, the numbers of nodes taking part in the network and the way they map into today's ECUs have been defined in [17]. Then, signals can be assigned to the individual node queues according to their location and set of tasks. First, the SAE module names are translated to their equivalents in today's terminology. The Driver and Battery modules are combined in the Body Control Module (BCM), which acts usually as gate way between the low-data rate and the high-data rate networks in a vehicle. Similarly, the Vehicle Controller and Inverter/Motor Controller can be combined in a single node called Engine Control Module (ECM), while the Transmission Controller is denoted as the Transmission Control Module(TCM). Finally, the Brake controller in the SAE testbed Maps to the Hydraulic Brake Control Unite(HBCU), the Brakes Controller is usually called the Electronic Brake Control Module (EBCM) and the Steering Assist module is called

Active Frame Steering(AFS), while the rest of the modules don't have common names, and hence keep their terminology unchanged. Table VIII summarizes all the signals in the extended benchmark and Table IX transforms those signals into messages and assign them relative priorities^[17] are presented in the appendix.

IV. DATAREADERS AND DATAWRITERS CLASSIFICATION

In this paper we are interested in studying the QoS related to the communicating process, these communicating tasks are inspired from the SAE benchmark. In the DDS specification ^[2], communicating tasks are classified into DataWriters and DataReaders using Publishers and Subscribers to transmit and receive data. Per node, we can find one Publisher and/or one Subscriber attached to different DataWriters and DataReaders interested on different Topics.

Using the SAE benchmark we have classified the communicating applications into DataReaders and DataWriters and attached each one to the interested Topic in the vehicular network, as shown in Table I.

Tonia	ID	I	Packaged Signals	Transr	nitter	Recei	ver	
Topic	ID	N°	Signal Designation	Node	Data Writer	Node	Data Reader	
Hi&Lo Contactor Open/Close	1	14	Hi&Lo Contactor Open/Close		HLC_W_TASK()		HLC_R_TASK()	
Accelerator Position	3	7	Accelerator Position		AP_W_TASK()		AP_R_TASK()	
Brake Pedal Position	13	71	Brake Pedal Position		BPP_W_TASK()		BPP_R_TASK()	
		23	12V Power Ack Vehicle Control					
Acknowledgments	17	24	12V Power Ack Inverter		ACK_W_TASK()		ACK_R_TASK()	
-		25	12V Power Ack I/M Control					
		28	Interlock					
		15	Key Switch Run					
		16	Key Switch Start					
		17	Accelerator Switch					
		19	Emergency Brake					
Control Switches	18	20	Shift Lever	BODV Control	CSW_W_TASK()		CSW_R_TASK()	
		22	(PKNDL)	BODY Control Modulo				
		22	Brake Mode	Moune		Engine Controller Module		
		27	(Faranel/Spiit)					
		21	Traction Battery					
		1	Voltage					
		2	Traction Battery					
Batteries Voltage and Current	21	2	Current		DUC W TACKO		DVC D TACKO	
	51	4	Auxiliary Battery		BVC_W_IASK()		BVC_K_IASK()	
		4	Voltage					
		6	Auxiliary Battery					
		Ŭ	Current					
		3	Traction Battery					
Traction Dottom			Temp, Average					
Measurement	34	5	Temp Max		TBM_W_TASK()		TBM_R_TASK()	
Wedstrement			Traction Battery					
		13	Ground Fault					
		43	Torque Measured					
Motor Speed and	4	40	Processed Motor		MST_W_TASK()		MST_W_TASK()	
Tolque		49	Speed					
		32	Clutch Pressure			BODY Control		
Pressure and Main	6		Control		PMC W TASK()	Module	PMC R TASK()	
Contactor		42	Main Contactor Close		`	Engine Controller Module		
		31	Reverse and 2nd			Transmission		
			Gear Clutches	Engine Controller		Control Unit		
		34	DC/DC Converter	Module		BODY Control		
		35	12V Power Relay			Module		
Vehicle Controller	10	37	Brake Solenoid		VCS W TASKO	Hydraulic Brake	VCS R TASKO	
Sporadic Signals	1)	38	Backup Alarm		· co_;;_17,51()	Control Unit	VCS_R_TASK()	
		39	Warning Lights					
		40	Key Switch			Engine Controller	r	
		44 FWD/REV			Module			
	-	46	Idle					

TABLE I.DATAREADERS AND DATAWRITERS CLASSIFICATION

		10	61.10.1 D				
		48	Shift in Progress				
		53	Main Contactor				
		00	Acknowledge				
		29	High Contactor				
Contactor Control	20	2)	Control		CCS W TASKO	BODY Control	CCS P TASKO
Signals	20	30	Low Contactor		CCS_w_IASK()	Module	CCS_R_IASK()
		30	Control				
		41	Main Contactor				
		41	Close				
		45	FW/Rev Ack.				
Motor Controller		47	Inhibit			Engine Controller	
Sporadic Signals	21		Inverter		MCS_W_TASK()	Module	MCS_R_TASK()
Sporudie Signais		50	Temperature Status			iniouule	
		51	Shutdown				
		52	Status/Malfunction				
		52	Status/Walluletion			PODV Control	
Convertor and		33	DC/DC Converter			Modulo	
Dottomy Test	35		Transform Detterme		CBT_W_TASK()	Hardana Ka Daraha	CBT_R_TASK()
battery rest		36	Grannel Facility			Hydraulic Brake	
			Ground Fault Test			Control Unit	
Brake Pressure		8	Brake Pressure,				
Signals	2		Master Cylinder		BPS_W_TASK()	Engine Controller	BPS_R_TASK()
~-8		9	Brake Pressure, Line			Module	
Brake Switch Signal	30	18	Brake Switch	Hydraulic Brake	BSS_W_TASK()		BSS_R_TASK()
				Control Unit		Engine Controller	
Vahicla Speed				Control Cint		Module	
Venicle Speed	32	12	Vehicle Speed		VSS_W_TASK()	Traction Control	VSS_R_TASK()
Signal			*			Unit	_
						ESP/ROM	
Transaction	~	1.1	Transaction Clutch				
Pressure Signal	5	11	Line Pressure		TPS_W_TASK()		TPS_R_TASK()
Transaxle							
Lubrication	33	10	Transaxle	Transmission	TLP W TASKO	Engine Controller	TLP R TASKO
Pressure	55	10	Lubrication Pressure	Control Unit		Module	
Motor/Trans Over			Motor/Trans Over		MOT		
Temperature	36	21	Temperature		W TASK()		MOT_ R_TASK()
Temperature			Temperature		w_IASK()	A ativa Frama	
Encod I offerstood			Enout Laft and a d			Active Frame	
Front-Left wheel	9	67	Front-Left wheel		S_W_TASK()	Steering	S_R_TASK()
speed			speed			Electronic Brake	
-			T	Front-Left Wheel		Control Module	
			Front-Left	Module			
Front-Left Wheel		54	Suspension			Active Suspension	
Suspension Sensing	23		Deflection SSS_W_TASK() Front-Left Unsprung	SSS_W_TASK()	Unit	SSS_W_TASK()	
signals		58		c int			
		50	mass velocity				
						Active Frame	
Front-Right wheel	10	68	Front-Right wheel		S W TASKO	Steering	S P TASKO
speed	10	08	speed		S_W_IASK()	Electronic Brake	S_K_TASK()
						Control Module	
			Front-Right	Front-Right Wheel			
F . D' 1. WH 1		55	Suspension	Module			
Front- Right wheel	24		Deflection		and W. Thata	Active Suspension	CCC D TACKO
Suspension Sensing	24		Front-Right		SSS_W_TASK()	Unit	SSS_R_TASK()
signals		59	Unsprung mass				
			velocity				
						Active Frame	
Rear-Left wheel			Rear-Left wheel			Steering	
speed	11	69	speed		S_W_TASK()	Electronic Brake	S_R_TASK()
speed			speed			Control Module	
			Pear Left	Rear-Left Wheel		Control Module	
Door Loft Wheel		56	Suspension	Module			
Sugnancian Sancing	25	50	Deflection		WTACKO	Active Suspension	CCC D TACKO
Suspension Sensing	23		Denection Described Linearcone		W_TASK()	Unit	335_K_1A5K()
signals		60	Rear-Left Unsprung				
			mass velocity				
						Active Frame	
Rear-Right wheel	12	70	Rear-Right wheel		S W TASKO	Steering	S R TASKO
speed			speed			Electronic Brake	()
						Control Module	
			Rear-Right	Rear-Right Wheel			
Rear-Right Wheel		57	Suspension	Module			
Suspension Service	26	L	Deflection		CCC W TACKA	Active Suspension	CCC D TACKO
suspension Sensing	26 Rear-Right	222_W_IA2K()	Unit	222_K_1A2K()			
signals	l	61 Unsprungmass velocity					
			velocity				

		62	Front-Left Control			Front-Left Wheel					
		62	Force			Module					
		(2)	Front-Right Control			Front-Right Wheel					
Active Suspension	27	03	Force	Active Suspension	C W TACKO	Module	C D TACKO				
Unit Control	27	64	Rear-Left Control	Unit	C_w_IASK()	Rear-Left Wheel	$C_K_IASK()$				
		04	Force			Module					
		65	Rear-Right Control			Rear-Right Wheel					
		65	Force			Module					
						Front-Left Wheel					
						Module					
						Front-Right Wheel					
Staaning tangua	22	66	Steering torque	Active Frame	CTC W TACKO	Module	STS D TASKO				
Steering torque	22	00	sensor	Steering	515_W_1A5K()	Rear-Left Wheel	515_K_1A5K()				
				0		Module					
						Rear-Right Wheel					
						Module					
						Front-Left Wheel					
						Module					
						Front-Right Wheel					
	1.4	70	Brake Control	Electronic Brake	DCG NI TAGKO	Module	DOG D THOMA				
Brake Control	14	72	Command	Control Module	BCS_W_TASK()	Rear-Left Wheel	BCS_R_TASK()				
						Module					
						Item Bort Wheel Module Rear-Right Wheel Module Front-Left Wheel Module Front-Right Wheel Module Rear-Left Wheel Module Rear-Right Wheel Module Rear-Right Wheel Module SK() Traction Control Unit SK() Throttle Control Unit SK() Throttle Control Unit SK() Hydraulic Brake Control Unit SK() Electronic Brake Control Module SK()					
						Module	TOS_R_TASK()				
Thurstille an endine	7	72	Throttle	Throttle Control	TOC W TACKO	Traction Control	TOC D TACKO				
Throttle opening	/	15	opening(angle)	Unit	$105_w_1ASK()$	Unit	105_K_1A5K()				
Thusttle commond	0	74	Thusttle commond	TCS W TASK() Throttle Control		Throttle Control	TCC D TACKO				
Throttle command	0	74	Throttle command	Traction Control	ICS_W_IASK()	Unit	ICS_K_IASK()				
Dualsas annumand	15	75	Dualsas acommand	Unit	DCC W TACKO	Hydraulic Brake	DCC D TACKO				
Brakes command	15	15	Brakes command		DCS_W_IASK()	Control Unit	DCS_K_IASK()				
Brake pressure	16	81	Brake pressure		BDS W TASKO	Electronic Brake	BDS D TASKO				
Blake plessule	10	01	command		DFS_W_IASK()	Control Module	DFS_K_IASK()				
		76	Vehicle lateral								
		70	acceleration				STS_R_TASK() STS_R_TASK() BCS_R_TASK() TCS_R_TASK() BCS_R_TASK() BPS_R_TASK() VAA_R_TASK() ACC_R_TASK()				
		77	Vehicle longitudinal	ESP/ROM							
ESP Signals	28	//	acceleration		ESP W TASK()	Adaptive Cruise	VAA R TASK()				
U		78	Sideslip angle			Control	•				
		79	Yaw rate								
		80	Roll Angle								
			Engine throttle			Engine Controller					
		82	control command			Module					
Adaptive Cruise	29	83	Brakes control	Adaptive Cruise	ACC W TASKO	Electronic Brake	ACC R TASKO				
Control		83	command	Control		Control Module					
		8/	RADAR Distance			L ocal Sansor					
		0-	ICIDAN DIStance		1	Local Scusol					

V. SCHEDULING PARAMETERS IN FLEXRAY NETWORKS

A. FlexRay Bus

FlexRay is a real-time communication bus ^[1] designed to operate at speeds of up to 10 M bits/s. He is being developed by a consortium that includes automobile builder. It offers time-triggered and an event triggered architecture. Data are transmitted in payload segment containing between 0 and 254 bytes of data, 5 bytes for the Header segment and 3 bytes for the trailer segment. The topology may be linear bus, star or hybrid topologies. This bus contains two channels; each node could be connected to either one or both channels.

FlexRay bus contains a static segment for time triggered messages and a dynamic segment for event triggered messages. In time triggered networks, nodes only obtain network access at specific time periods, also called time slots. In event triggered networks, nodes may obtain network access at any time instant. The static (ST) segment and the dynamic (DYN) segment lengths can differ, but are fixed over the cycles. Both the ST and DYN segments are composed of several slots. The first two bytes of the payload segment are called message ID, this is used only in dynamic segment. The message ID can be used as a filterable data.

In this paper we will study the transmission parameters of DDS nodes on a FlexRay bus. During any slot, only one node is allowed to send on the bus, and that is the node which holds the message with the frame identifier (Frame ID) equal to the current value of the slot counter. There are two slot counters, corresponding to the ST and DYN segments, respectively. The assignment of frame identifiers to nodes is static and decided offline, during the design phase. Each node that sends messages has one or more ST and /or DYN slots associated to it. The bus conflicts are solved by allocating offline one slot to at most one node, thus making possible for two nodes to send during the same ST and DYN slot. FlexRay allows the sharing of the bus among event driven (ET) and time driven (TT) messages.

For a distributed system based on FlexRay, task scheduling can be SCS (Static Cyclic Scheduling) or FPS (Fixed Priority Scheduling). For the SCS tasks and ST messages, the schedule table could be built. For FPS tasks and DYN messages, the worst-case response times had to be determined.

B. Communication Cycle

The FlexRay protocol organizes time into communication cycles, every cycle is organized into four parts, segments of configurable duration: The static segment is used to send critical, real-time data, and is divided into static slots, in which the electronic control units (ECUs) can send a frame on the bus. These frames consist of a header, payload and trailer and are assigned to the slots according to a static, TDMA-based schedule. Channel idle time is enforced between frames to prevent overlapping consecutive frames. The dynamic segment enables event-triggered communication. The lengths of the mini slots in the dynamic segment depend on whether or not an ECU sends data. The symbol window is used to transmit special symbols, for example to start up the FlexRay cluster. The network idle time interval is used by the nodes to allow them to correct their local time bases in order to stay synchronized to each other.

The length of an ST slot is specified by the FlexRay global configuration parameter gdStaticSlot. The length of the DYN segment is specified in number of mini-slots gNumberOfMinislots.

C. Static Segment Parameters

In a general communication process, response time can be divided in four pieces, as shown in Fig.1; generation delay, queuing delay, transmission delay and reception delay ^[18].

Generation delay is started when the transmitting node received the request of sending from a frame until the data are written into the buffer and ready for being sent. Queuing delay is started when generation delay ended until the frame acquires the occupation of the bus and begins to be sent. Transmission delay is the time during which the frame is being transmitted on the bus. Reception delay is started when the frame gets off the bus and goes into the receiving node until the frame accomplishes its task.

Fig. 1 Communication Model between DataReader and DataWriter

Note that the generation delay and reception delay are not related to the FlexRay network characteristics, but related to the given MCU performance. Therefore, these two parts of delay should not be taken into account. In FlexRay protocol the average response time R_m of a given frame is the sum of queuing delay average (t_m) and transmission delay average (C_m):

$$R_{\rm m} = t_{\rm m} + C_{\rm m} \tag{1}$$

Since the static segment is transmitting at fixed time points in each FlexRay communication cycle without any queuing delays, the response time can be approximated by Cm.

$$R_{\rm m} = C_{\rm m} \tag{2}$$

Transmission delay Cm refers to the time interval between being on the bus and completion of sending process. It depends on the frame itself as well as bus parameters.

$$C_{m,s} = [TSS + FSS + FES + t_d + (HS + TS + S_m) \times (8 + BSS)]\tau_{bit}$$
(3)

TSS is the Transmission Start Sequence (3~15 bits). FSS is the Frame Start Sequence (1 bit). FES is the Frame End Sequence (2 bits). t_d is the delay related to sending and receiving nodes, which is around 2~3 bits. S_m represents the data field length (number of bytes) of the data frames. In addition, two BSS (Bit Start Sequence) are added before each byte. The constant "8" added to the data field length S_m refers to the sum of the FlexRay Header Segment (HS: 5) and Trailer Segment (TS: 3) lengths (number of bytes). Finally, τ_{bit} refers to the one bit transmission delay.

D. Dynamic Segment Parameters

In the dynamic segment, the Time Division Multiple Access (TDMA) scheme is used for message scheduling. The Worst Case Response Time Rm of a queued data message m is defined as the longest time taken by the message to reach the destination station ^[19]. Then, for a dynamic (DYN) message m ^[20], the Worst Case Response Time is given by the following equation ^[21]:

$$\mathbf{R}_{m}(t) = \sigma_{m} + W_{m}(t) + C_{m} \tag{4}$$

Where Cm is the message communication time and σ_m is the longest delay endured during one bus cycle if the message is generated by its sender task after its slot has passed. Thus, in the worst case, the delay σ_m has the value:

$$\sigma_m = T_{\text{bus}} - (ST_{\text{bus}} + (FrameID_m - 1) \times gdMinislot)$$
(5)

Where T_{bus} is the length of the bus cycle, ST_{bus} is the ST segment length and gdMinislotis the smaller length of a slot when no message is to be sent during a particular slot.

Finally, Wm(t) is the worst case queuing delay caused by the transmission of ST frames and higher priority DYN messages during a given time interval t. Wm represents then the maximum amount of delay on the bus that can be produced by interference from ST Frames and DYN messages m. During the DYN slot, Frame ID_m can be delayed because of the following causes:

Local messages with higher priority, that uses the same frame identifier as m denoted by hp(m);

Any message in the system that can use DYN slots with lower frame identifiers than the one used by m, denoted by lf(m);

Unused DYN slots with frame identifiers lower than the one used for sending m. Such mini-slots are denoted by ms(m).

$$W_{m}(t) = BusCycles_{m}(t) \times T_{bus} + W'_{m}(t)$$
(6)

Where BusCyclesm(t) is the number of bus periods for which the transmission of m is not possible because of messages transmission from hp(m), lf(m) and ms(m).

$$BusCycles_{m}(t) = BusCycles_{m}(hp(m,t)) + BusCycles_{m}(lf(m,t), ms(m,t))$$
(7)

W'm(t) denotes the time that passes, in the last bus cycle, until m is sent which is measured from the beginning of the bus cycle, in which message m is sent, until the actual transmission of m starts.

Fig. 2 Time decomposition of response time over FlexRay

Compared to static segment, dynamic segment has at least more 4 bits consisting in the DTS (Dynamic Trailing Sequence) that arranges the time slots at the end of each transmitted frame on the dynamic segment.

$$C_{m,s} = [TSS + FSS + FES + t_d + (HS + TS + S_m) \times (8 + BSS) + DTS]\tau_{bir}$$
(8)

Where DTS is used to avoid an earlier detection of the channel idle by the receiver CAN. The DTS consists of two parts; a variable-length period at low level, followed by a fixed-length period at high level^[1].

In our study, we will not ignore the scheduling process on the node, but we will consider its impact on the response time and evaluate its performance.

VI. RESPONSE TIME CALCULATION

The full model is inspired from the FPS (First Priority Scheduling) approach, which is the most widely used approach in the computing world. In this case, each task has a fixed, static, priority, which is ECU pre-run-time. The runnable tasks are executed in the order determined by their priority, knowing that in real-time systems, the "priority" of a task is derived from its temporal requirements, not its importance to the correct functioning of the system or its integrity.

The full model was conceived to be used in an industrial context^[22], the temporal overheads of implementing the system must be taken into account such as:

- Context switches (one per job);
- Interrupts (one per sporadic task release);
- Real-time clock overheads.

In this case the Response time equation is rather than:

$$R_{i} = C_{i} + \sum_{j \in hp(i)} \left[\frac{R_{i}}{T_{j}} \right] C_{j}$$
(9)

Where hp(i) is the set of tasks with priority higher than task i, C_i is the worst case computation time of the task iand T_j is the minimum time between task releases, jobs or task period.

The new equation is:

$$R_{i} = CS^{1} + C_{i} + B_{i} + \sum_{j \in hp(i)} \left[\frac{R_{i}}{T_{j}} \right] (CS^{1} + CS^{2} + C_{j})$$
(10)

Where the new terms CS^1 and CS^2 are the cost of switching to the task, and the cost of switching away from it. And the term B_i is the cost of the task worst case blocking time.

The cost of handling interrupts is as flowing:

$$\sum_{\mathbf{k}\in\Gamma_{\mathbf{s}}} \left[\frac{\mathbf{R}_{\mathbf{i}}}{\mathbf{T}_{\mathbf{k}}}\right] \mathbf{I} \mathbf{H}$$
(11)

Where Γ_s is the set of sporadic tasks and, IH is the cost of a single interrupt (which occur sat maximum priority level).

There is also a cost per clock interrupt, a cost for moving one task from delay to run queue and a (reduced) cost of moving groups of tasks

Let CT_c be the cost of a single clock interrupt, Γ_p be the set of periodic tasks, and CT_s be the cost of moving onetask the following equation can be derived

$$R_{i} = CS^{1} + C_{i} + B_{i} + \sum_{j \in hp(i)} \left[\frac{R_{i}}{T_{j}} \right] \left(CS^{1} + CS^{2} + C_{j} \right) + \sum_{k \in \Gamma_{s}} \left[\frac{R_{i}}{T_{k}} \right] IH + \left[\frac{R_{i}}{T_{clk}} \right] CT_{c} + \sum_{g \in \Gamma_{p}} \left[\frac{R_{i}}{T_{g}} \right] CT_{s}$$
(12)

A. Full Model Applied on the Static Segment Tasks

Within the static segment a static time division multiple access scheme is applied to coordinate transmissions. In the static segment all communication slots are of identical, statically configured duration and all frames are of identical, statically configured length. In order to schedule transmissions each node maintains a slot counter state variable vSlotCounter for Channel A and a slot counter state variable vSlotCounter for Channel B. Both slot counters are initialized with 1 at the start of each communication cycle and incremented at the end boundary of each slot.

In the Implementations of the FlexRay bus, the periodic and safety-criticaldata arescheduled on the static time-triggered segment, so the tasks in the static segment are periodic tasks that have the same priority per communication cycle.

Considering these facts, the Equation (12) applied on the static segment context becomes:

$$R_{i} = CS^{1} + C_{i} + B_{i} + \sum_{k \in \Gamma_{s}} \left[\frac{R_{i}}{T_{k}} \right] IH + \left[\frac{R_{i}}{T_{clk}} \right] CT_{c} + \sum_{g \in \Gamma_{p}} \left| \frac{R_{i}}{T_{g}} \right| CT_{s}$$
(13)

B. Full Model Applied on the Dynamic Segment Tasks

Within the dynamic segment a dynamic mini-slotting based scheme is used to arbitrate transmissions. In the dynamic segment the duration of communication slots may vary in order to accommodate frames of varying length. In order to schedule transmissions each node continues to maintain the two slot counters - one for each channel - throughout the dynamic segment. While the slot counters for Channel A and for Channel B are incremented simultaneously within the static segment, they may be incremented independently according to the dynamic arbitration scheme within the dynamic segment.

In the Implementations of the FlexRay bus, the dynamic segment is mainly used for maintenance and diagnosis data so the tasks are event triggered sporadic tasks that have different priority by bus communication cycle.

Considering these facts the Equation (12) applied on the static segment context becomes:

$$R_{i} = CS^{1} + C_{i} + B_{i} + \sum_{j \in hp(i)} \left[\frac{R_{i}}{T_{j}}\right] \left(CS^{1} + CS^{2} + C_{j}\right) + \sum_{k \in \Gamma_{s}} \left[\frac{R_{i}}{T_{k}}\right] IH + \left[\frac{R_{i}}{T_{clk}}\right] CT_{c} + \sum_{g \in \Gamma_{p}} \left[\frac{R_{i}}{T_{g}}\right] CT_{s}$$
(14)

VII. THE STUDIED ARCHITECTURE

To illustrate the utility of our Comprehensive Scheduling Strategy(CSS), we have chosen to work within a platform of a vehicular network based on the SAE standard. In this system, a set of network processors subsystems produces routing data. These data must be distributed along the vehicular network. In previous works^[14], we have attempted to implement this system using a combined scheduling but this kind of implementation introduced complexity and is inappropriate in case of automotive systems.

The main goal of the proposed architecture is to reduce this complexity when adopting the data-centric publish- subscribe paradigm which is very suitable for real-time communication along with a FPS full model scheduling used to schedule the communicating tasks on the node. The framework architecture is a set of nodes formed by Fujitsu cards with an MB91F465X controller, connected via a Real-Time Transport protocol. Each node is embedded a Real-Time Operating System μ COSII, a middleware,andaPublish-SubscribeinterfaceaccordingtoDDSspecification, as represented in Fig.3.

Real Time Application SAE benchmark	
Publish-subscribe Communication DDS Middleware	
Real-time operating system µCOSIII	
Real-time network FlexRay Formed by Fujitsu Cards	

Fig. 3 Architecture of distributed real-time system using a publish-subscribe paradigm

The communication between nodes is achieved due to publish subscribe interface via the Global Data Space that is represented by arelational data model. The middle ware has to keep track of the data objects instances, which are considered as rows in a table.Eachdataobjectisidentifiedbythecombinationofatopicandatopicspecifiedkey.

The results obtained in this paper are a based on a simulation under Matlab, using these environment parameters.

VIII. QOS APPROXIMATION

In this paper we will use the calculated response time to evaluate if the DDS QoS real-time parameters can be met in the SAE benchmark application context. We will focus our interest on two real-time policies, the Deadline QoS policy represented by the parameter deadline period of a task, and Time Based Filter Policy represented by the parameter minimum_seperation period.

A. Deadline QoS Policy

This policy is used for cases where a Topic(i.e., SAE benchmark application Topic), is expected to have each instance updated periodically. On the publishing side this setting establishes a contract that the application must meet. On the subscribing side the setting establishes a minimum requirement for the remote publishers that are expected to supply the data values ^[2]. When the Service 'matches' a DataWriter and a DataReader it checks whether the settings are compatible (i.e., offered deadline period<= requested deadline period). Assuming that the reader and writer ends have compatible settings, the fulfillment of this contract is monitored by the Service and the application is informed of any violations by means of the proper listener or condition. The value offered is considered compatible with the value requested if and only if the inequality "offered deadline period <= requested deadline period" evaluates to 'TRUE.' The setting of the DEADLINE policy must be set consistently with that of the TIME BASED FILTER. For these two policies to be consistent the settings must be such that "deadline period>= minimum_separation", and the deadline period should always be inferior to the application period T.

$$T \ge D \ge Min_Sep$$
 (15)

On the other hand, the response time of the application should not exceed its deadline to guarantee the freshness of the data sample.

$$\mathsf{D} \ge \mathsf{R} \tag{16}$$

B. Time Based Filter QoS Policy

This policy allows a DataReader to indicate that it does not necessarily want to see all values of each instance published under the Topic. Rather, it wants to see at most one change every minimum_separationperiod. The TIME BASEDFILTER is applied to each instance of the data separately, that is, the constraint is that the DataReader does not want to see more than one sample of each instance per minumum_separation period. This setting allows a DataReader to further decouple itself from the DataWriter objects. It accommodates the fact that for fast-changing data different subscribers may have different requirements as to how frequently they need to be notified of the most current values. The TIME BASED FILTER specifies the samples that are of interest to the DataReader^[2]. The setting of the TIME BASED FILTER minimum_separation must be consistent with the deadline period. For these two QoS policies to be consistent they must verify that "period >= minimum_separation".

On the other hand, in order to verify the Time Based Filter QoS policy the response time of the application should be superior to the minimum_seperation period to guarantee that theDataWriter doesn't produce data faster than the DataReader consumes it.

$$R \ge Min_Sep$$
 (17)

To resume, we can validate these two QoS policies by following this equation:

$$T \ge D \ge R \ge Min_Sep$$
(18)

IX. RESULTS AND COMMENTS

In this section, we propose an algorithm to calculate the response time of the DataWariters tasks and evaluate the DDS QoS based on the generated values.

The Equations (13) and (14) give us the needed parameters to determine the response time for both static and dynamic segments tasks:

• C_i , the computing time is equivalent to the transmission delay $C_{m,s}$ and $C_{m,d}$, because the execution of a message relative to a writing task is the fact to transmit data on the bus.

• The worst blocking time Bi is defined as follows:

$$B_{i} = \frac{\text{Frame size} - 1 \text{ bit}}{\text{Lowest flow rate used}}$$
(19)

This equation is true for the CAN case but in the FlexRay case:

 $B_{i} = 0$

• CS¹ is the cost of switching to the task, this parameter is given by the used real-time operating system μCOSIII [23].

 $CS^1 = 0.005 ms$

• CS^2 is the cost of switching away from the task, this parameter is also given by the used real-time operating system $\mu COSIII^{[23]}$.

$$CS^2 = 0.009 \text{ ms}$$

• IHis the cost of executing an interrupt service routine which occurs at maximum priority level, the more there are STATUS register in the system, the handler time to execute the interrupt routine is longer, the FlexRay driver interrupt routine is the longest on the status of receipt of communications data. For our study we approximate this parameter as follow:

$$IH = 10 \times CT_c$$

• CT_c is the cost of a single clock interrupt for the microcontroller MB91F465X we have approximated its value:

$$CT_c = \frac{1}{10} \times T_{clk}$$

• CT_s is the cost of moving one task, which is equivalent to switching a task.

$$CT_s = CS^2$$

• T_{clk} is the clock period calculated for a given core frequency.

The response time calculation process is described by the following algorithm:

Algorithm Worst Case Response Time Computing

```
for iin1..N loop
  n := 0
  1000
     Calculate C_i for periodic tasks
     Calculate Cifor sporadic tasks
    n := n + 1
  end loop
end loop
for iin1..N loop
  n := 0
W_i^n = C_i
  1000
     calculate new W_i^{n+1}
     if W_{i}^{n+1} = W_{i}^{n}
                     then R_i = w_i^n
exit value found
end if
if w_i^{n+1} > T_i then
exit value notfound
end if
     n := n + 1
end loop
end loop
```

For the simulation, we consider a set of FlexRay nodes the sending 36 messages on the FlexRay bus. Since each node in the system that generates static messages that needs at least one static slot, the minimum number of static slots is the number of nodes (nodesST) that send static messages^[11]. In the extended benchmark^[17], there are 15 nodes sending 36 messages among which there are 30 periodic messages that need to be scheduled on the FlexRay static segment, but we will regroup them into 6 nodes. The remaining six messages are sporadic and needs to be mapped into the dynamic segment.

The period of the bus cycle (gdCycle) must be lower than the maximum cycle length cdCycleMax equal to 16 ms and has, also, to be an integer divisor of the period of the global static segment. In addition, each node has a counter vCycleCounter in the interval [0...63]. Thus, during a period of the global static schedule there can be at most 64 bus cycles, observing our message set, we have noticed that almost all of the message periods are multipliers of 5ms; So we can fix the period of the bus cycle to 5 ms and adjust some message periods, especially the messages introduced by Ben Gaid, M-M in [24] and others introduced by M. Utayba in [17]. All messages with period equal to 8 ms will have a new period of 5 ms, and messages with period equal to 12 ms will have 10 ms as new period, as the bus cycle length is equal to 5 ms the distance between each data sample, or, period should be 5ms or a multiple of it. This will not affect our system efficiency since it will make it faster and more reactive. There is another problem with messages with a 1000 msperiod that are not schedulable. In fact, even if we consider the longest period to 64*5=320 ms. We have also replaced the original bus priorities designed for an event triggered bus (CAN) by a local priority able to order transmission of messages having the same Frame Identifier on different slots assigned to their source node.

Applying the previous algorithm with 3 different bus speeds; 5 M bit/s and 10 M bit/s for one channel transmission scheme, and 20 M bit/s for both channels transmission scheme, we obtain the following results.

TABLE II.BODY CONTROL MODULE RESULTS	
--------------------------------------	--

		Size (Bytes)							W	orst Ca	se Resp	onse Ti	me R (1	ms)
Vehicle Module	Message ID		Deadline	Min So	Tin Separation [ms]		T [ms]	Task Priority	Bus S 5M	Worst Case Response Time R (n us Speed Bus Speed Bus S Speed Bus S Speed 5Mbit/s 10 Mbit/s 20 M F Core F Core F Core F 100 Mbz 12 Mbz 100 Mbz 12 Mbz 02 0.1629 0.2795 0.1010 0.1941 06 0.0616 0.1397 0.0504 0.1242 06 0.0616 0.3197 0.0504 0.1242 44 0.1861 0.3115 0.1126 0.2102 46 0.2116 0.3467 0.1254 0.2277 80 0.0681 0.1487 0.0536 0.1287		Speed Ibit/s		
			[ms]	S1	S2	S 3			Core F 12 Mhz	Vorst Case Response Time R (ms s Speed Bus Speed Bus Speed 10 Mbit/s 20 Mbit 20 Mbit r Core F Core F Core F Core F 100 Mhz 12 Mhz 100 Mhz 12 Mhz 10 2 0.1629 0.2795 0.1010 0.1941 0. 6 0.0616 0.1397 0.0504 0.1242 0. 6 0.0616 0.1397 0.0504 0.1242 0. 6 0.1616 0.3115 0.1126 0.2102 0. 6 0.2116 0.3467 0.1254 0.2277 0. 6 0.2116 0.3467 0.1254 0.2277 0.		Core F 100 Mhz		
	1	1	5	0.0214	0.0107	0.0054	50	2	0.4502	0.1629	0.2795	0.1010	0.1941	0.0701
	3	1	5	0.0206	0.0103	0.0052	5	1	0.1706	0.0616	0.1397	0.0504	0.1242	0.0448
	13	1	5	0.0206	0.0103	0.0052	5	1	0.1706	0.0616	0.1397	0.0504	0.1242	0.0448
BODY Control Module	17	1	10	0.0214	0.0107	0.0054	10	3	0.5144	0.1861	0.3115	0.1126	0.2102	0.0759
	18	2	10	0.0234	0.0117	0.0059	10	4	0.5846	0.2116	0.3467	0.1254	0.2277	0.0823
	31	4	100	0.0266	0.0133	0.0067	100	1	0.1886	0.0681	0.1487	0.0536	0.1287	0.0464
	34	3	320	0.0246	0.0123	0.0062	320	1	0.1825	0.0659	0.1457	0.0525	0.1272	0.0458

	Message	Sin (D -4)							Wo	RST CAS	SE RESI	PONSE T	IME R ((MS)
Vehicle Module			Deadline	Min So	eparatio	on [ms]	T [1	Task	Bus Speed 5 Mbit/s		Bus Speed 10 Mbit/s		Bus Speed 20 Mbit/s	
	ID	Size (Bytes)	[ms]	S1	S2	S 3	I [ms]	Priority	Core F 12 Mhz	Core F 100 Mhz	Core F 12 Mhz	Core F 100 Mhz	Core F 12 Mhz	Core F 100 Mhz
Engine Controller	4	2	5	0.0226	0.0113	0.0057	5	1	0.1763	0.0637	0.1424	0.0514	0.1255	0.0453

Module	6	2	5	0.0226	0.0113	0.0057	5	1	0.1763	0.0637	0.1424	0.0514	0.1255	0.0453
	19	6	10	0.0314	0.0157	0.0079	10	2	0.4679	0.1694	0.2882	0.1043	0.1984	0.0717
	20	2	10	0.0226	0.0113	0.0057	10	1	0.1763	0.0637	0.1424	0.0514	0.1255	0.0453
	21	3	10	0.0254	0.0127	0.0064	10	3	0.5441	0.1970	0.3263	0.1181	0.2174	0.0786
	35	1	320	0.0206	0.0103	0.0052	320	1	0.1703	0.0615	0.1394	0.0503	0.1240	0.0447

				Min Separation [ms]					W	orst Cas	se Resp	Response Time R (ms) Bus Speed 10 Mbit/s Bus Spee 20 Mbit/ ore F 2 Mbz Core F 100 Core F 12 Mbz Core F 12 Mbz 2229 0.0808 0.2060 0.0 2229 0.0808 0.2060 0.0 2229 0.0808 0.2060 0.0 2289 0.0829 0.2090 0.0 2199 0.0797 0.2045 0.0 2289 0.0829 0.2090 0.0 2289 0.0829 0.2090 0.0 2289 0.2040 0.2045 0.0		ns)
Vehicle Module	Message ID	Size (Bytes)	Deadline				T ms]	Task Priority	Bus Speed 5Mbit/s		Bus 5 10 M	Bus Speed 10 Mbit/s		Speed Ibit/s
	ID.	(1)	[ms]	S1	S2	S 3		Thorney	Core F 12 Mhz	Core F 100 Mhz	Core F 12 Mhz	Core F 100 Mhz	Core F 12 Mhz	Core F 100 Mhz
Active Suspension Unit	27	2	10	0.0226	0.0113	0.0057	10	1	0.2568	0.0930	0.2229	0.0808	0.2060	0.0746
Active Frame Steering	22	2	10	0.0226	0.0113	0.0057	10	1	0.2568	0.0930	0.2229	0.0808	0.2060	0.0746
Electronic Brake Control Module	14	4	5	0.266	0.0133	0.0067	5	1	0.2688	0.0974	0.2289	0.0829	0.2090	0.0757
Traction Control Unit	8	1	5	0.0206	0.0103	0.0052	5	1	0.2508	0.0909	0.2199	0.0797	0.2045	0.0741
Traction Control Unit	15	4	5	0.266	0.0133	0.0067	5	1	0.2688	0.0974	0.2289	0.0829	0.2090	0.0757
ESD/DOM	16	4	5	0.266	0.0133	0.0067	5	1	0.2688	0.0974	0.2289	0.0829	0.2090	0.0757
ESF/ROM	28	5	10	0.286	0.143	0.0072	10	1	0.2748	0.0996	0.2319	0.0840	0.2105	0.0762

TABLE IV.CENTRAL CONTROL UNIT RESULTS

			Deadline [ms]						W	Worst Case Response Time R (ms)					
Vehicle Module	Message	Size (Bytes)		Min Separation [ms]			T [ms]	Task Priority	Bus 5M	Speed lbit/s	Bus S 10M	Response Time Bus Speed 10Mbit/s ore F Core F 2499 0.0905 0 2499 0.0895 0 2469 0.0895 0 2469 0.0895 0 2469 0.0895 0 2469 0.0895 0 2469 0.0895 0 2469 0.0895 0 2469 0.0895 0 2469 0.0895 0 2459 0.0895 0 2459 0.0895 0		Speed bit/s	
	ID.	(Dytes)		S1	S2	S 3			Core F 12 Mhz	Core F 100 Mhz	Core F 12 Mhz	Core F 100 Mhz	Core F 12 Mhz	Core F 100 Mhz	
Uriduoulio Duolio	2	2	5	0.0226	0.0113	0.0057	5	1	0.2838	0.1028	0.2499	0.0905	0.2329	0.0844	
Gentrel Unit	30	1	20	0.0206	0.0103	0.0052	50	1	0.2778	0.1007	0.2469	0.0895	0.2315	0.0839	
Control Cint	32	1	100	0.0206	0.0103	0.0052	100	1	0.2778	0.1007	0.2469	0.0895	0.2315	0.0839	
T	5	1	5	0.0206	0.0103	0.0052	5	1	0.2778	0.1007	0.2469	0.0895	0.2315	0.0839	
Control Unit	33	1	100	0.0206	0.0103	0.0052	100	1	0.2778	0.1007	0.2469	0.0895	0.2315	0.0839	
Control Unit	36	1	320	0.0206	0.0103	0.0052	320	1	0.2778	0.1007	0.2469	0.0895	0.2315	0.0839	
Throttle Control Unit	7	1	5	0.0206	0.0103	0.0052	5	1	0.2778	0.1007	0.2469	0.0895	0.2315	0.0839	
Adaptive Cruise Control	29	3	10	0.0246	0.0123	0.0062	10	1	0.2898	0.1050	0.2529	0.0916	0.2344	0.0849	

TABLE VI.RIGH WHEEL UNIT

	Message ID	Size (Bytes)	Deadline [ms]						Worst Case Response Time R (ms)					
Vehicle Module				Min Separation [ms]		T [ms]	Task Priority	Bus Speed 5Mbit/s		Bus Speed 10 Mbit/s		Bus Speed 20 Mbit/s		
				S1	S2	S 3			Core F 12 Mhz	Core F 100 Mhz	Core F 12 Mhz	Core F 100 Mhz	Core F 12 Mhz	Core F 100 Mhz
Front-Right	10	1	5	0.0206	0.0103	0.0052	5	1	0.1698	0.0615	0.1389	0.0503	0.1235	0.0447
Wheel Module	24	2	10	0.0226	0.0113	0.0057	10	1	0.1758	0.0637	0.1419	0.0514	0.1250	0.0453
Rear-Right	12	1	5	0.0206	0.0103	0.0052	5	1	0.1698	0.0615	0.1389	0.0503	0.1235	0.044
Wheel Module	26	2	10	0.0226	0.0113	0.0057	10	1	0.1758	0.0637	0.1419	0.0514	0.1250	0.0453

TABLE VII.LEFT WHEEL UNIT

	Message ID	Size (Bytes)	Deadline [ms]					Task Priority	Worst Case Response Time R (ms)					
Vehicle Module				Min Separation [ms]		T [ms]	Bus Speed 5Mbit/s		Bus Speed 10 Mbit/s		Bus Speed 20 Mbit/s			
				S 1	S2	S 3			Core F 12 Mhz	Core F 100 Mhz	Core F 12 Mhz	Core F 100 Mhz	Core F 12 Mhz	Core F 100 Mhz
Front-Left	10	1	5	0.0206	0.0103	0.0052	5	1	0.1698	0.0615	0.1389	0.0503	0.1235	0.0447
Wheel Module	24	2	10	0.0226	0.0113	0.0057	10	1	0.1758	0.0637	0.1419	0.0514	0.1250	0.0453
Rear-Left	12	1	5	0.0206	0.0103	0.0052	5	1	0.1698	0.0615	0.1389	0.0503	0.1235	0.044
Wheel Module	26	2	10	0.0226	0.0113	0.0057	10	1	0.1758	0.0637	0.1419	0.0514	0.1250	0.0453

We have regrouped in the Central Control Unit, Table V all the critical modules and signal responsible for the vehicle control.

In the Front Control Unit, Table VI, we have regrouped all the modules and signals responsible for the cruise control.

The Right Wheel Unit and the Left Wheel Unit contains the modules and signals of respectively right and left sides of the vehicle.

We have used for the simulation two different Core frequencies, the best case Core frequency which is 100 Mhz and the worst case Core frequency which is 12 Mhz. For both cases, we have noticed that the deadline has been met and the equation below is verified.

$T \geq D \geq R$

Thanks to FlexRay bus speed, we can assume that the DDS Deadline QoS Policy always be reached.

As for the Time Based Filter we have approximated the minimum_separation parameter to be the reception delay which is for FlexRay case the transmission delay Cm. So for each bus speed we have a different value for the minimum_separation period.

Same as the DDS Deadline QoS Policy, we can assume that the Time Based Filter QoS Policy is verified.

$R \geq Min_Sep$

For a fixed bus speed and two different frequencies the response time is the lowest when the Core frequency is the highest. This is a logical result the ECU in this case can treat the tasks faster and consequently the response time has a lower value represented by the execution time in the full model equation.

For a fixed frequency and a variable bus speed the worst case response time is the lowest when the bus speed is the highest. This is a logical result as the response time is dependent of the bus speed.

X. CONCLUSION

The DDS middleware, based on the publish-subscribe paradigm, is very suitable for real-time distributed communication systems, allowing the distribution of hard real-time applications. In this paper, we have proposed to use DDS on top of the real-time network FlexRay to take advantage of its high speed and to profit of the DDS QoS management in an automotive context. We have proposed a scheduling model based full FPS scheduling to first calculate the worst case response time for our vehicular system and evaluate its performance on a benchmark application, an extended SAE benchmark. After the simulations, results have shown that not only the applications QoS requirement has been met but also this combination is very appropriate for the vehicular context. One promising research direction would be the evaluation of the rest of real-time QoS parameters offered by DDS on the same system configuration and the extension of DDS to be integrated with control engineering domain.

In fact, DDS is not yet mature for use in vehicle domain without some extension like DDS ports and connectors for DDS software composition, the mapping of DDS based components to Simulink variant blocks, the converting of Simulink models with DDS to an AADL framework and integration of behavioral implementations. The implementation of an authoring tool for DDS is also required. DDS has not specifications for the integration of vehicle networks like CAN, LIN and FlexRay. All these points must be clarified in the future. We plan to have a complete platform to argue our future propositions to improve the actual situation.

ACKNOWLEDGMENT

The researches presented in this paper would not have been possible without the support of many people. We wish to express our gratitude to the SYSCOM ENIT members for their help and assistance.

REFERENCES

- [1] FlexRay Consortium, FlexRay Communications System-Protocol Specification, Version 2.1, Revision A, 2005.
- [2] Object Management Group, Data distribution service for real-time systems, version 1.2, Massachusetts: Needham, January 2007.
- [3] T. Guesmi, R. Rekik, S. Hasnaoui, H. Rezig, "Design and Performance of DDS-based Middleware for Real-Time Control Systems,"International Journal of Computer Science and Network SecurityIJCSNS, twelvethed, vol.7, 2007, pp 188-200.
- [4] G. P. -Castellote, B.Farabaugh, R. Warren, "An Introduction to DDS and Data-Centric Communications," Real-Time Innovations, Available http://www.rti.com.
- [5] Prism Tech, "Opensplice C reference guide", version 2.2, Massachusetts: Burlington, 2006, pp. 22-25.
- [6] H. V. Hag, OpenSlice Overview, white paper, 2006.
- [7] Thales Netherland, http://www.thales-nederland.nl/.

- [8] J. H. van 't Hag Data-Centric to the Max The SPLICE Architecture Experience, Proceedings of the 23rd International Conference on Distributed Computing Systems Workshops (ICDCSW'03), May 19 - 22, 2003.
- [9] Christopher A. Lupini, "Vehicle Multiplex Communication Serial Data Networking Applied to Vehicular Engineering", SAE, April 2004.
- [10] Tindel, K., Burns, A., "Guaranteeing Message Latencies On Control Area Network (CAN)", Real-Time Systems Research Group, Department of Computer Science, University of York, England, 1994. [Online] available: http://citeseerx.ist.psu.edu/viewdoc/download?doi=10.1.1.110.3545&rep=rep1&type=pdf.
- [11] Kopetz, H., "A solution to an automotive Control System Benchmark", Real-Time Systems Symposium, 7-9 Dec. 1994, pp. 154-158.
- [12] T. Guesmi, R. Rekik, S. Hasnaoui, H. Rezig, Design and Performance of DDS-based Middleware for Real-Time Control Systems, IJCSNC, VOL.7, No.12, 2007, pp 188-200.
- [13] Rim Bouhouch, WafaNajjar, HoudaJaouani, Salem Hasnaoui, Implementation of Data Distribution Service Listeners on Top of FlexRay Driver, INFOCOMP 2011 : The First International Conference on Advanced Communications and Computation, IARIA, 64-69.
- [14] W. Najjar, R. Bouhouch, H. Jaouani, S. Hasnaoui, "Static and Dynamic Scheduling for FlexRay Network Using the Combined Method", International Journal of Information Technology and Systems, Vol. 1, No. 1, pp. 18-26, January 2012.
- [15] K. W. Tindell, A. Burns, A. J. WELLINGS; An extendible approach for analyzing fixed priority hard real-time tasks, Real_Time Systems, Vol.6, No.2, 1994, pp.133-151.
- [16] A. Hagiescu, U. Bordoloi, S. Chakraborty, Performance Analysis of FlexRay-based ECU Networks; DAC proceedings, 2007, pp.284-289.
- [17] M. Utayba Mohammad, N. Al-Holou, "Development of An Automotive Communication Benchmark", Canadian Journal on Electrical and Electronics Engineering, Vol. 1, No. 5, August 2010.
- [18] T. Guangyn, B. Peng, C. Quanshi, Response Time Analysis of FlexRay Communication in Fuel Cell Hybrid Vehicle, Vehicle Power and Propulsion Conference VPPC'08. IEEE, 2008, pp. 1-4.
- [19] P. Pop, P. Eles and Z. Peng, Schedulability-Driven Communication Synthesis for Time Triggered Embedded Systems, IEEE: Real-Time Computing Systems and Applications, RTCSA '99, Sixth International Conference on Real-Time Computing Systems and Applications. RTCSA'99 (Cat. No.PR00306), 1999, pp. 287-294.
- [20] N. Navet, Y. Song, F. Simonot-lion, C. Wilwert, Trends in automotive communication systems, Proceedings of the IEEE, Vol.93, No.6, 2005, pp. 1204-1223.
- [21] T. Pop, P. Pop, P. Eles, Z. Peng, Timing Analysis of the FlexRay communication Protocol; Real-Time Syst, Vol.39, 2008, pp. 205-235.
- [22] A. Burns, A. Wellings, "Scheduling Real-Time Systems", Chapter 11, Real-Time Systems and Programming Languages, The university of York, Department of Computer Science.
- [23] A J. J. Labrosse. "MicroC/OS-II The Real Time Kernel". Miller Freeman, Inc, United States of America, 1999.
- [24] Ben Gaid, M-M, Cela, A, Diallo, S., Kocik, R., Hamouche, R. and Reama, A, "Performance Evaluation of the Distributed Implementation of a Car Suspension System", In Proceedings of the IFAC Workshop on Programmable Devices and Embedded Systems, February 2006.

APPENDIX

We have added Table VII and Table IX taken from [17] to identify the extended SAE benchmark new signals and parameters used in our approach and simulation.

Module	SignalNumber	SignalDescription	Size[bit]	Period[msec]	Deadline[msec]
	1	Traction Battery Voltage	8	100	100
	2	Traction Battery Current	8	100	100
	3	TractionBatteryTemp, Average	8	1000	1000
	4	Auxiliary Battery Voltage	8	100	100
	5	TractionBatteryTemp, Max	8		1000
Pody Control	6	Auxiliary Battery Current	8	100	100
Module(BCM)	13	Traction Battery GroundFault	1	1000	1000
	14	Hi&Lo Contactor Open/Close	4	50/S	5
	23	12V Power Ack VehicleControl	1	50/S	20
	24	12V Power Ack Inverter	1	50/S	20
	25	12V Power AckI/M Control	1	50/S	20
	28	Interlock	1	50/S	20
	7	AcceleratorPosition	8	5	5

TABLE VIII.ASUMMARYOFALLSIGNALSINTHEEXTENDED BENCHMARK

	15	KevSwitchRun	1	50/S	20
	16	KeySwitchStart	1	50/\$	20
	10	AcceleratorSwitch	2	50/5	20
	17	Acceleratorswitch	2	50/5	20
	19	EmergencyBrake	1	50/8	20
	20	ShiftLever(PRNDL)	3	50/S	20
	22	Speed Control	3	50/S	20
	26	Brake Mode	1	50/5	20
	20	(Parallel/Split)	1	50/8	20
	27	SOCReset	1	50/S	20
	71	BrakePedal Position	8	8	8
	20	LighContectorControl	0	10	0
	29	HighContactorControl	8	10	10
	30	LowContactorControl	8	10	10
	31	Reverse and 2nd Gear	2	50/S	20
		Clutches			
	32	ClutchPressureControl	8	5	5
	33	DC/DCConverter	1	1000	1000
		DC/DC Converter	0	50/9	20
	34	CurrentControl	8	50/8	20
	35	12VPowerRelay	1	50/8	20
	55	Traction Battery		50/5	20
	36	Ground FaultTest	2	1000	1000
	27	D l C l i l	1	50/8	20
	3/	DiakeSolenoid	1	50/5	20
	38	Backup Alarm	1	50/S	20
	39	WarningLights	7	50/S	20
EngineControlModule	40	KeySwithc	1	50/S	20
(ECM)	42	MainContactorClose	8	5	5
	44	FWD/REV	1	50/S	20
	46	Idle	1	50/S	20
	48	ShiftinProgress	1	50/8	20
	40	Main Contactor	1	50/5	20
	53	Asknowladaa	1	50/S	20
	41	Acknowledge		50/9	20
	41	MainContactorClose	1	50/8	20
	43	TorqueMeasured	8	5	5
	45	FW/RevAck.	1	50/S	20
	47	Inhibit	1	50/S	20
	49	ProcessedMotorSpeed	8	5	5
	50	Inverter Temperature		50/8	20
	50	Status	2	50/8	20
	51	Shutdown	1	50/S	20
	52	Status/Malfunction	8	50/8	20
	52	BrokePressure Moster	0	50/5	20
	8	Culindar	8	5	5
HydraulicBrakeContr	0	Droleo Drocouro Linoc	20	5	5
olUnit (HBCU)	9	BrakePressure,Lines	32	3	3
``´´	12	VehicleSpeed	8	100	100
	18	BrakeSwitch	1	20/S	20
	10	TransaxleLubrication	8	100	100
	10	Pressure	3	100	100
Transmission	11	TransactionClutchLine	0	5	5
ControlModule(TCM)	11	Pressure	8	5	5
	21	Motor/Trans Over	2	1000	1000
	21	Temperature	2	1000	1000
		Front-LeftSuspension			
	54	Deflection	8	12	12
Front-LeftWheel		Front-Left Unsprung			1
Module	58	MassVelocity	8	12	12
	67	Front-I aftwheelsneed	Ŷ	Q	R
	07	Front DightSugnangian	8	0	0
	55	Front-Rightsuspension	8	12	12
		Deflection			
Front-Right wheel	59	Front-RightUnsprung	8	12	12
Module		MassVelocity			-
	68	Front-Right wheel	8	100	100
	50	Speed	0	100	100
	56	Rear-Left Suspension	0	12	12
	50	Deflection	0	12	12
Rear-LeftWheel	<u>(</u>)	Rear-Left Unsprung	0	10	10
Module	60	MassVelocity	8	12	12
	69	Rear-Leftwheelspeed	8	8	8
		Rear-RightSuspension	Ŭ.	Ŭ	Ŭ Ŭ
	57	Deflection	8	12	12
Rear-RightWheel		Pear Dight Unserner			
Module	61	MagaWala sites	8	12	12
	70	wass velocity	0	0	0
	/0	Kear-Kigntwheelspeed	8	8	8
ActiveSuspension	62	Front-Left Control	8	12	12

Unit		Force			
	63	Front-Right Control Force	8	12	12
	64	Rear-LeftControl Force	8	12	12
	65	Rear-Right Control Force	8	12	12
ActiveFrame Steering(AFS)	66	Steeringtorquesensor	16	10	10
ElectronicBrake ControlModule (EBCM)	72	Brake Control Command	32	8	8
ThrottleControl Unit	73	Throttleopening	8	5	5
TractionControl	74	Throttlecommand	8	5	5
Unit	75	Brakes command	32	8	8
	76	Vehicle lateral acceleration	8	12	12.5
	77	Vehicle longitudinal acceleration	8	12	12.5
	78	Sideslipangle	8	12	12.5
	79	Yawrate	8	12	12.5
ESP/ROM	80	RollAngle	8	12	12.5
	81	Brake pressure command	32	8	8
	82	Enginethrottlecontrol command	8	12	12.5
AdaptiveCruise Control	83	Brakes control command	8	12	12.5
	84	RADARDistance	8	12.5	12.5

Rim Bouhouchreceived the Engineering degree in Telecommunications Engineering from the National Engineering School of Tunis, Tunisia, in 2008, a master degree in Communication Systems in the same institute, in 2009, and is a PhD student in Telecommunications. Her current research interests are the implement and evaluation of Real-time Middleware for Real-time vehicular networks.

HoudaJaouani received the engineering degree in Electrical Engineering from the National Engineering School of Tunis, Tunisia, in 2007, a master degree in Automatic and Signal Processing in the same institute, in 2008, and is a PhD student in Telecommunications. Her current research interests are performance evaluation of the DDS Middleware on Real-time vehicular networks using the SAE Benchmark as a standard vehicle prototype.

Amel Ben Ncira received the engineering degree in Electrical Engineering from the National Engineering School of Tunis, Tunisia, in 2005, a master degree in electrical systems in the same institute, in 2006, and is a PhD student in Electrical Engineering.

Salem Hasnaoui is a professor in the Department of Computer and Communication Technologies at the National School of Engineering of Tunis. He received the Engineer diploma degree in electrical and computer engineering from National School of Engineering of Tunis. He obtained a M.Sc. and third cycle doctorate in electrical engineering, in 1988 and 1993 respectively. The later is extended to a PhD. degree in telecommunications with a specialization in networks and real-time systems, in 2000. He is author and co-author of more than 200 refereed publications, a patent and a book. His current research interests include real-time systems, sensor networks, QoS control & networking, adaptive distributed real-time middleware and protocols that provide performance assured services in unpredictable environments. Prof. Hasnaoui is the responsible of the research group "Networking and Distributed computing" within the Communications Systems Laboratory at the National School of Engineering of Tunis. He served on many conference committees and journals reviewing processes and he is the designated inventor of the Patent "CAN Inter-

Orb protocol-CIOP and a Transport Protocol for Data Distribution Service to be used over CAN, TTP and FlexRay protocols".