
International Journal of Computer Science and Artificial Intelligence Sept. 2012, Vol. 2 Iss. 3, PP. 32-42

32
DOI: 10.5963/IJCSAI0203004

Dynamic Service Composition
A Bidirectional Approach using forward and Backward Chaining

Sandip Khakhkhar1, Vikas Kumar2, Sanjay Chaudhary3
DA-IICT, Gandhinagar Gujarat, India

1sandip_khakhkhar@daiict.ac.in; 2vikas_kumar@daiict.ac.in; 3sanjay_chaudhary@daiict.ac.in

Abstract- Service is a network addressable software component
to perform a specific task. A service discovery mechanism can
be used to find services that can be executed to satisfy a service
request. A service composition generates a composition plan
and a composite service to satisfy a service request. Static
composition process consumes considerable amount of time
and effort. It is also vulnerable to changes in input/output of
services. A dynamic composition algorithm can automatically
select services involved in composite plan and generate a
composite service on-the-fly. Composition time taken by the
algorithm to generate a composite service is the main issue
with dynamic composition algorithms. Dynamic composition
algorithms presented in previous work mainly follow either
forward chaining approach (FCA) or backward chaining
approach (BCA) to generate a composite service. Their
performance suffers for certain cases to generate a composite
service where the number of services explored increases
exponentially as number of iterations increases. This work
proposes a dynamic composition algorithm that gives
consistent performance across all the cases. Proposed
algorithm approaches from two directions alternatively, one
follows FCA and another follows BCA. Proposed algorithm
explores less number of services and takes less composition
time compared to algorithms FCA or BCA.

Keywords- Service Composition; Forward Chaining
Approach; Backward Chaining Approach

I. INTRODUCTION

Service is a network addressable software component to
perform a specific task. Services like search engine, e-
commerce, on-line shopping etc. are a few examples of
services accessible on the web that performs certain tasks
required by users [1]. Service interface is represented in
terms of input parameters it consumes and output parameter
it provides. User uses a service to perform a required task. A
service request specifies required task in terms of input
parameters that can be provided and output parameters that
are required. A service discovery mechanism can be used to
find services that can be executed to satisfy service request.
A service request is satisfied if at least one service exists
which provides output parameters required by service
request, and, all its input parameters can be provided by
service request [2]. Service and service request is matched by
comparing their input/output parameters [5].

An individual service may not be able to satisfy the
complete service request. It might be possible to execute a
chain of services in a particular order to satisfy service
request. This chain of services is referred to as composition
plan and service offered by executing this composition plan
is referred as composite service. Service request provides
the input parameters to the service at the start of

composition plan. A service at the end of composition plan
provides output parameters required by service request.
Intermediate services consume its input parameters from the
output parameters provided by services executed before
each one of them. Intermediate services provide their output
parameters to be consumed by services to be executed after
it. The aim of service composition algorithm is to generate a
composition plan and generate composite service to satisfy
service request [3], [4].

Service composition processes can be divided in two
ways based on time when services involved in the
composition plan are selected (i) in static composition
process, services are selected at the time of designing the
composite service, and (ii) in dynamic composition process
services are selected at the time of execution of the
composite service [6], [7], [8]. Composite service design by
static composition process involves the services which exist
at the time of its design. Composite services generated using
static composition process is vulnerable to changes in
service environment. Services existing at design time may
be inaccessible due to various reasons, or replaced by other
services at the time of execution of the composite service [7].

Dynamic composition process can deal with such
changes in service environment as services involved in the
composition plan are selected at the time of executing
composite service [6]. Dynamic composition has been the hot
topic both in academia and industry. There have been a lot
of researches in the area of dynamic service composition.
The main issue with dynamic composition algorithm is
related to the composition time taken by algorithm to
generate a composite service [10], [11], [12]. Composition time
indicates duration of the time at which the service request
was submitted to the algorithm till the algorithm generates a
composite service that can satisfy service request.
Composition time depends upon the number of services
explored by a dynamic composition algorithm in order to
find services that can take part in composite plan. This was
the main focus of Web Service Challenge 2009 competition
[14] and many researchers proposed their technique targeting
to reduce composition time. [10] And [12] won the first rank
in WWW competition for their performance and
architecture respectively. [10] And [12] mainly follow
forward chaining approach (FCA) that starts from the source;
explore all paths until destination is reached. Another
architecture [11] that won the second best architecture award
in same WSC 2009 competition follows backward chaining
approach (BCA) in which algorithm starts from destination,
explore all the nodes from which destination is reachable
until all the explored nodes can be reached from the source.

International Journal of Computer Science and Artificial Intelligence Sept. 2012, Vol. 2 Iss. 3, PP. 32-42

33
DOI: 10.5963/IJCSAI0203004

FCA and BCA are described in detail in Section III-A and
Section III-B respectively. For dynamic web service
composition the technique will depend on the criteria, which
may be automation, quality of service (QoS) or composition
time [15], [16], [17].

Researchers model the dynamic composite service
problem in terms of graph searching problem. A service is
represented by a node in the graph. There is an edge
between two nodes if any of input parameters of one service
matches with any of the output parameter of other services.
In terms of graph, dynamic composition problem can be
described as finding the path from source node to
destination node. Source node represents the service whose
input parameters are provided by service request whereas
destination node represents service whose output parameters
are required by service request. However, for an algorithm
to qualify as dynamic it should act on services existing at
the execution time. With reference to graph, it means that
algorithm will have knowledge about only nodes, services,
and should not assume any pre-existing knowledge of edges
and how services are organized. Keyword match requires
parameters to have the similar name to match, whereas in
semantic matching parameters are considered to match if
they are semantically interoperable. Proposed approach
considers keyword match and semantic matching can be
performed with very minimal changes. Result of experiment
following proposed algorithm shows improvement
compared to that of algorithm following FCA [10] and BCA

[11]. Mathematical analysis also proves that proposed
algorithm is scalable and improvement in performance
increases as the length of composition plan increases and it
is well supported by the result of experiments.

A. Problem Statement and Motivation

Performance of algorithms based on FCA or BCA
depends upon the service organization - graph connectivity
and service request. We intuitively thought that FCA and
BCA will suffer for certain cases as mentioned in Section
III-D. Results of experiment confirmed our intuition.
Experiment 1 is one such case where performance of FCA
degrades, whereas in Experiment 2 performance of BCA
degrades. With FCA and BCA the number of services
explored by an algorithm grows exponentially as the
number of iterations required by an algorithm increases.
They tend to suffer severely as the length of the composition
plan increases. Mathematically, in a graph having branching
factor of b, one service connected to b a number of other
services, FCA or BCA will explore maximum of (bn)
services to find a composition plan of length n. Research has
proposed solution to solve this exponential problem up to
certain limit using heuristic. Heuristic nature helps FCA and
BCA to narrow down its search space and follow only some
paths that has high probability of leading to a solution. This
reduces the number of services explored by an algorithm but
it creates new problem of incompleteness. Heuristic
algorithm does not ensure that solution will be found even if
it exists. A heuristic solution looses the completeness of an
algorithm in effort to reduce the composition time.

An algorithm is required that can give consistent
performance and composition time in all the cases. We use

the fact that service request specifies available inputs, that is
starting node, and required outputs, that is destination node.
In this scenario, we can approach from two directions to
find the composite service. Motivation to proposed bi-
directional algorithm based on finding the path by following
two directions, one moves forward from starting point,
named FCA and another moves backward from destination
point. In this way, each of them has to perform only half the
number of the iteration, as they are meeting in the middle,
compare to the number of iterations needed if only one
direction is followed. This will reduce the number of
services to be explored. Mathematically, proposed bi-
direction algorithm will explore maximum of (bn/2 + bn/2)
services, to find a composition plan of length n in a graph
having branching factor of b. Thus, its space complexity is
O(bn/2) and since composition time directly depends on the
number of services required to explore, time complexity is
also O(bn/2). As length of composition plan, n, is not known
in advance, proposed algorithm follows alternative step in
each direction. This ensures that algorithm performs n/2
iteration in both the directions to achieve the optimum
results. Proposed algorithm follows the FCA approach from
one direction and BCA in another direction. Proposed
algorithm does not strictly force to use this strategy, one is
free to follow any algorithms, apply heuristic, use semantic
services but ensure implementation should allow algorithms
to meet in the middle.

II. DEFINITION

We have defined some terms in this section that will
allow the reader to grasp the remaining part of the paper.

Definition 1—Service: It is a 4-tuple S = <SN, IPSet,
OPSet, QoS> where SN is a service name, IPSet = { IP 1 ,
IP 2 , IP 3 ...IP n } is a set of input parameters required by a
service, OPSet = { OP 1 , OP 2 , OP 3 ...OP n } is a set of
output parameters provided by a service, and QoS = {Attr 1 ,
Attr 2 , Attr 3 , ... } is a set of attributes that defines the
quality of a service. Table I shows an example of a service
related to an agriculture domain. ‘GetStorageLocation’
service accepts the ‘crop variety’ and ‘quantity’ as input
parameters. It finds all the locations where specified
quantity of given crop variety can be stored. Service returns
back a list of storage locations that match these parameters.
QoS parameter like ResponseTime indicates the amount of
time required to execute the service and get the results.

TABLE I EXAMPLE OF A SERVICE

Description Example

Service name GetStorageLocation

Input Set CropVariety, qantity

Output Set StorageLocation

Quality of Service ResponseTime (µs)(400)

Definition 2—Service Request (SR): It is a 2 -tuple SR
= <IPSet, OPSet> where IPSet = { IP 1 , IP 2 , IP 3 ...IP n }
is a set of input parameters provided with service request
and OPSet = { OP 1 , OP 2 , OP 3 ...OP n } is a set of output
parameters required by service request. A service request
related to agriculture domain is shown in Table II. Service

International Journal of Computer Science and Artificial Intelligence Sept. 2012, Vol. 2 Iss. 3, PP. 32-42

34
DOI: 10.5963/IJCSAI0203004

requester provides ‘crop variety’ and ‘quantity’ as input and
wants availability as output.

TABLE II EXAMPLE OF A SERVICE REQUEST

Tuple Example

Input CropVariety, Quantity

Output Storage Offer

Definition 3—Usable Service (US): A Service becomes

usable service when all its input parameters are provided
directly in a service request or indirectly by other usable
services.

 Definition 4 — Relevant Service (RS): A Service
becomes relevant service when it provides at least one of
output required by a service request or other relevant service.

III. APPROACHES TO SERVICE COMPOSITION

A. Forward Chaining Approach (FCA)

Forward Chaining Approach for dynamic service
composition is described in [9] and is followed by [10] and
[12]. FCA starts with the available input as shown in Figure
1. Initially available input is same as input provided in
service request. Procedure starts, where matching algorithm
finds a set of services whose required input is present in the
available input set. Services found by matching algorithm
are marked as usable services (Definition 3) and are
considered to be candidates for taking part in the composite
service. A usable service also marks its output as usable
parameters and some are added to currently available input
set. Thus, available input set grows. Now available input set
contains the inputs that are either provided directly in
service request or indirectly provided by a usable service as
its output. If any usable service provides the output required
by service request then it would be present in available input
set. Procedure is repeated again to execute matching
algorithm with the updated available input set. Procedure
stops when required output of a service request is present in
the available input. This happens when composite service
exists which can satisfy the required task. Procedure also
stops when matching algorithm does not find any usable
service. If a composite service exists, then backward search
as mentioned in Section III-C is performed to get the
composite service from the usable services.

Fig. 1 Flow Chart of Forward Chaining Approach

B. Backward Chaining Approach (BCA)

Backward Chaining Approach starts with the goal and
works backward to convert it into sub-goals until it can be
achieved. Backward Chaining Approach for dynamic
service composition is introduced by [9] and is followed by
[11]. Figure 2 shows the flow chart of BCA. Initially
required output is same as output required by service request.
During the execution of procedure, matching algorithm
finds services that can provide any of the output present in
required output set. Services found by matching algorithm
are marked as relevant services (Definition 4). If all input
parameters required by relevant service are present in
available input then it is also marked as usable service.
Usable relevant services also mark its output as usable and
add them to currently available input set. An unusable
relevant service adds its unusable input (input which is not
present in available input) to the required output set.
Procedure is repeated again to execute matching algorithm
with the updated required output set. Procedure stops when
output required by service request is present in the available
input. In this case, there exists a composite service which
can satisfy the service request. A backward search (as
mentioned in Section III-C) is performed to get the
composite service from the usable services. Procedure also
stops if matching algorithm cannot find any relevant service.

Fig. 2 Flow Chart of Backward Chaining Approach

C. Backward Search

Backward search is performed to generate composition
plan and composite service [9], [10], [11], [12] from the candidate
services. Candidate services are services which found to be
relevant to service request and can be a part of the required
composite service. Algorithms like BCA, FCA and
proposed algorithm performs the main time consuming task
of finding such candidate services.

Backward search only considers the services that are
usable as candidate services to take part in composition plan.
Initially outputs required by service request are added to the
set of required outputs. Procedure starts by finding the
services, from candidate services, that can provide a set of

International Journal of Computer Science and Artificial Intelligence Sept. 2012, Vol. 2 Iss. 3, PP. 32-42

35
DOI: 10.5963/IJCSAI0203004

required output. These services are added to composition
plan. These services are usable and can be executed directly
or indirectly using the input provided in the service request.
This allows us to remove all the outputs provided by these
services from the set of required output. This in turn will
empty the required output set. This is required because
when composite service exists then we would have at least
one service for each of the entries in a set of required output.
Now, we have to find the service that can provide the input
required by services added to composition plan. This can be
done by reinitializing the required output set by input
required by services which were added to the composition
plan. Only that input is added, which are not provided by the
service request. Procedure is repeated with a current set of
required output. Procedure stops when required output set
becomes empty and composition plan contains a chain of
existing services, which can satisfy the service requested by
user.

A situation may occur where one of the required outputs
is provided by multiple services. This situation is resolved
by considering quality of service attribute specified in
service description. In proposed work, response time
(Quality of service attribute) is used. Service which provides
the minimum response time will be selected.

D. Open Issues in FCA and BCA

FCA stores and processes all usable services. All usable
services do not help to get the output required by a service
request. These services are referred to as irrelevant services.
Ideally FCA should process only usable and relevant
services but it does not know which usable services are
relevant until it performs last iteration where it finds a
service that gives output required by service request. FCA
performance suffers from the overhead of storing and
processing irrelevant services. Number of usable and
irrelevant services among them increase in each iteration.
This overhead in turn increases the composition time
required to find a composite service. Performance of
forward chaining approach suffers significantly when usable
services, and thus irrelevant services among them, increases
exponentially with each iteration [13], [9]. Experiment 1
shown in Section VI-A shows such a case.

Similarly in BCA, all relevant services cannot be
executed using the input provided by service request. These
services are referred as unusable services. Ideally BCA
should process only relevant and usable services, but it does
not know which relevant services are usable until it
performs last iteration where it finds services that can be
executed using input provided by a service request. BCA
performance suffers from overhead of storing and
processing unusable services. Number of relevant services,
and unusable services among them increase with each
iteration. This overhead in turn increases the composition
time required to find a composite service. Performance of
backward chaining approach suffers significantly when
relevant services, and thus unusable services among them,
increase exponentially with each iteration [13], [9]. Experiment
2 shown in Section VII shows such a case.

IV. DOCUMENT SPECIFICATION FOR PROPOSED APPROACH

This section contains the required documents
specification and formats for proposed service composition
approach, which is based on the forward chaining approach
and backward chaining approach. Section IV-A defines the
data structure used by the proposed algorithm. Section IV-B
introduces the document format for service and service
request used by matching algorithm. Section V describes the
proposed service composition algorithm.

A. Proposed Data Structure AND Definition

Data structure of parameters used by proposed algorithm
is as shown in Table III. This data structure contains four
types of information (i) parameter name (ii) its service
consumers, i.e. services having parameter as its input (iii)
and its service providers, i.e. services having parameter as
its output and (iv) a variable, named IsUsableParameter, that
indicates whether a parameter is usable or not according to
Definition 5.

TABLE III DATA STRUCTURE OF A PARAMETER

Class Parameter

{

String ParameterName;

Service[] SCSet; // a set of service
consumers

Service[] SPSet; // a set of service providers

Boolean IsUsableParameter = false;

}

For example, from Table I, parameter ‘CropVariety’ and

‘Quantity’ will have service named ‘GetStorageLocation’
mentioned in SCSet as one of its service consumers and
‘StorageLocation’ will have it in SPSet as one of its
providers.

Definition 5—Usable Parameter (UP): A parameter
becomes usable parameter if it is either directly provided
with service request or indirectly provided by one of the
services. This service is one among services, in service
provider list of a parameter, who’s all input parameters are
usable parameter. When a parameter becomes usable its
IsUsableParameter variable is set to true.

Proposed algorithm maintains a list of parameters. This
list is virtually divided in two parts: (i) available input (ii)
required output. Parameters which are usable (Definition 5)
are considered as a part of available input set. Parameters
which are not usable are considered as a part of required
output set. Initially input and output of service request are
added to available input and required output respectively.
Input is added by the user as its service provider and output
is added by the user as its service consumer. Available input
and required output are updated by the input/output of
services, foundling each iteration of proposed algorithm.

B. Document Formats

1) Service Advertisement Document:

Service advertisement document for service illustrated in
Table I is given in Table IV. Service name is mentioned in

International Journal of Computer Science and Artificial Intelligence Sept. 2012, Vol. 2 Iss. 3, PP. 32-42

36
DOI: 10.5963/IJCSAI0203004

the name attribute of <Service>. <Service> has <Input>,
<Output> and <QoS> as child nodes corresponding to input
parameter, output parameter, and a set of quality of service
attributes of a service. <QoS> has several child tags named
with corresponding quality of service attribute, e.g.
Response Time.

TABLE IV SERVICE ADVERTISEMENT DOCUMENT

<Service name=”GetStorageLoaction”>

<Input>CropVariety</Input>

<Input>Quantity</Input>

<Output>StorageLocation</Output>

<QoS>

<ResponseTime>100</ResponseTime>

</QoS>

</Service>

2) Service Request Document:

Service request document for service illustrated in Table
II is given in Table V. Service request description is
encapsulated inside <ServiceRequest>. <ServiceRequest>
has <Input> and <Output> as child nodes corresponding to
input parameter, output parameter of a service request.

TABLE V SERVICE REQUEST DOCUMENT

<ServiceRequest>

<Input>CropVariety</Input>

<Input>Quantity</Input>

<Output>StorageOffer</Output>

</ServiceRequest>

V. PROPOSED ALGORITHM AND PROCEDURES USED

Service Composition algorithm (Algorithm 1), as shown
in Table VI, performs the iteration in direction of forward
chaining and backward chaining alternatively. A service
request (Definition 2) contains the information about the
input provided by the user and output required by the user.
As previously discussed, information about the current
status of available input parameters and required output
parameters is maintained. Initially, parameters provided
with the service request are considered as usable parameters
and added to available input parameters.

Parameters required by the service request are
considered as unusable parameters and added to required
output parameters. We say that service request is satisfied
when all the required output parameters of a service request
are present in the available input set (line 5, 7 and 9). At this
time, backward search as specified in section III-C is
performed to find the composite service.

Service composition algorithm (Algorithm 1) first
executes the iteration in forward chaining (Algorithm 2)
direction as shown in Table VII. Forward chaining finds the
services whose all input parameters are present in the

current available input set. These services are set as usable
services (Definition 3) by Algorithm 3 shown in Table VIII.
Usable services add its output parameters to the available
input set. Algorithm also inserts usable services as service
provider of the current parameter according to Definition 5.
This may cause some unusable services in the list of service
consumer of a parameter to become usable service. This
happens if all other input parameters required by a service
consumer are already present in the available input set.
These services are also marked as usable services by
recursively calling by Algorithm 3 shown in Table VIII.

Service Composition Algorithm (Algorithm 1) checks
whether service request can be satisfied after executing the
iteration of forward chaining. Algorithm stops if service
request is satisfied otherwise it continues to execute the next
iterations. Once algorithm stops then backward search is
performed to find out composite services from the current
set of usable services.

In the next phase, Service Composition Algorithm
(Algorithm 1) executes iteration in backward chaining
(Algorithm 4) direction as shown in Table IX. Backward
chaining finds the services which provide any of the
parameters in the list of required output parameters. These
services are marked as relevant services using Algorithm 5
shown in Table X.

If all the input parameters required by a relevant service
are present in the available input set then that relevant
service is also marked as usable service using Algorithm 3
shown in Table VIII otherwise input parameters which are
not present in the available input set are added to the
required output set.

TABLE VII ALGORITHM BASED ON FCA

ALGORITHM 2: Forward Chaining

INPUT : A list of available input and Service set

OUTPUT: Services who’s all input parameter are present in
list of available input and mark them as usable services. If any
usable service found then return true else return false.

1. begin

2. Find the services (from unusable services in service set)

 whose all input parameters are present in the list of

 available input

3. if Any service found in step 2

4. then

5. for each Service S found in step 2

6. begin

7. Set Service Usable(S);

8. end

9. return true;

10. else

11. return false;

12. end if

13. end

International Journal of Computer Science and Artificial Intelligence Sept. 2012, Vol. 2 Iss. 3, PP. 32-42

37
DOI: 10.5963/IJCSAI0203004

TABLE VIII ALGORITHM TO MARK USABLE SERVICES

ALGORITHM 3: Set Service Usable

GLOBAL : A list of available input and Service set

INPUT : A Service S to set usable

OUTPUT : Set Service S to usable

1. begin

2. Mark the service S as usable service

3. for each Parameter P in output of S

4. begin

5. if (P ∉set of available input or required output)

6. then

7. Add P in available input

8. end if

9. Add S in service provider list of P

10. for each Service SC in service consumer of P

11. begin

12. if all input of SC is present in available
input

13. then

14. Set Service Usable(SC);

15. end if

16. end

17. end

18. end

TABLE IX ALGORITHM BASED ON BCA

ALGORITHM 4: Backward Chaining

INPUT : A list of required output and Service set

OUTPUT: Services can provide any of the current required
output are found, and mark them as relevant service. If any
relevant service found then return true else return false.

1. begin

2. Find the services (from irrelevant services in service

 set) which provides any of the parameter in the list of

 required output parameter

3. if Any service found in step 2

4. then

5. for each Service S found in step 2

6. begin

7. Set Service Relevant(S);

8. end

9. return true;

10. else

11. return false;

12. end if

13. end

TABLE X ALGORITHM TO MARK RELEVANT SERVICES

ALGORITHM 5: Set Service Relevant

GLOBAL : A list of required output and Service set

INPUT : A Service S to set relevant OUTPUT : Set

 Service S to relevant

1. begin

2. Mark the service S as relevant service

3. for each Parameter P in input of S

4. begin

5. if P does not exists in required

 output or available input

6. then

7. Add P in required output

8. end if

9. Add S in service consumer list of P

10. end

11. if all input of S is present in available input

12. then

13. Set Service Usable(S);

14. end if

15. end

After executing the iteration of backward chaining,

service composition algorithm (Algorithm 1) checks
whether service request can be satisfied. If service request is
satisfied then backward search is performed to find the
composite services from the current set of usable services.
In this case, algorithm stops at this point, otherwise it
continues to execute the next iterations.

Fig. 3 Flow Chart of Proposed algorithm

Service composition algorithm is stopped, if either
forward chaining does not find any usable services or
backward chaining does not find any relevant services. This
case can occur when there is no chain of existing services
which can provide the required output from input provided
by the user. Service composition performs iteration of
forward chaining (Algorithm 2) and backward matching

International Journal of Computer Science and Artificial Intelligence Sept. 2012, Vol. 2 Iss. 3, PP. 32-42

38
DOI: 10.5963/IJCSAI0203004

(Algorithm 4) alternatively until service request can be
satisfied. Figure 3 shows the entire procedure followed by
proposed service composition algorithm in the form of flow
chart.

VI. EXPERIMENTS

We have used the service set shown in Appendix-A and
Appendix-B. In real world, each service is represented by a
Web Service Definition Language (WSDL) file that
contains lots of information about service. Parsing WSDL
file to get the required information makes implementation of
algorithm much complex and shifts the focus of algorithm
from its main task of finding composite service. Hence a
service advertisement document as mention in section IV-
B1 containing only the information necessary for algorithm
is prepared. Main focus of the experiment is to highlight
issues with FCA and BCA, and how proposed algorithm
performs efficiently in given scenarios. Results of proposed
algorithm are compared with FCA algorithm given by [10]
and BCA given by [11] as they achieved the first and second
rank in WSC’2009 competition for their work on reducing
composition time among all other algorithms.

A. Experiment 1

FCA, BCA and proposed algorithms are executed to find
the composite service for the service request shown in Table
XI. Service set used for this experiment is shown in
Appendix A.

TABLE XI SERVICE REQUEST 1
Service Request-1 based on Service Set-1

Input CropVariety, Quantity

Output StorageOffer

TABLE XII COMPARISON OF SERVICES (USABLE AND

RELEVANT) EXPLORED IN EACH ITERATION TO FIND A
COMPOSITE SERVICE FOR SERVICE REQUEST AS MENTIONED

IN TABLE XI

Iteration

No.

FCA BCA Proposed
Algorithm

Usable

Service

Usable

Service

Relevant

Service

Usable

Service
Relevant
Service

1 {1} {18} {1}

2 {2,3} {8,9} {18}

3 {4,5,7} {4} {2,3}

4
{8,9,10,

11,12,15,
16,17 }

 {2} {8,9}

5
18,19,20,
21,22,23,
24,25,30,
31,32,33}

{1,2,4,
8,9,18} {1} {4,5,7,

8,9,18}

Total
Services

Processed
26 6 9

Matching algorithm finds the services based on exact
match between two words in keyword base composition.
Services explored by FCA, BCA and proposed algorithm in
each iteration are shown in Table XII. As discussed earlier,
the proposed algorithm performs the iteration in direction of

FCA and BCA alternatively. Thus, the usable and relevant
services found by proposed algorithm in Iterations 1 and 3
are same as usable services found by FCA in Iterations 1
and 2 respectively. Output parameters of these services are
added to available input with their service provider
information (Definition 5). Similarly proposed algorithm
follows BCA in Iterations 2 and 4 and the relevant services
found are same as relevant services found by BCA in
Iterations 1 and 2. Input parameters required by these
services are added to required output and service is added to
its service consumer set.

FCA stops when service number 18 is explored since it
provides the required output. In case of BCA, required
output is initialized with the output required by service
request. BCA starts with the services that provide the
required output and mark them as relevant services. It
selects Service 18, which provides the required output. BCA
finds that input parameters required by Service 18 are not
present in available input, i.e. it is unusable service, so it
adds it to the required output and BCA executes again with
updated required output. BCA stops when it finds the
service number 1 as input required by this service is
provided by user. Hence, Service 1 becomes usable and
adds its output to available input, which in turn causes
Service 2 to become usable and so on Services 4, 8, 9 and
18 becomes usable. After that BCA stops since Service 18
provides required output by service request.

Proposed algorithm does not have to perform all the
iterations performed by FCA or BCA. In the last iteration,
proposed algorithm performs forward matching, where it
finds Services 4, 5 and 7 (same as in 3rd iteration of FCA).
Thus, output parameters of these services are marked as
usable. As this parameter becomes usable, proposed
algorithm checks its service consumers and finds the
Services 8 and 9, so it checks whether these services
become usable services due to transition of current
parameters from unusable to usable. Algorithm finds that all
input parameters required by Services 8 and 9 are usable
parameters and they are usable services. Thus, Service 8 and
9 are marked as usable services, and their output parameters
are marked as usable. This in turn makes the relevant
Service 18 to become usable service, which provides the
required output of service request. Here, required output by
service request becomes usable and proposed algorithm
stops.

After the required output becomes usable, backward
search is performed. All the unusable parameters are
removed from required output. The unusable services in the
service provider and service consumer list of usable
parameters are removed before backward search is applied.
Backward search starts from the required output by service
request and finds that Service 18 is in service provider list.
It adds Service 18 to composition plan. Required output is
reinitialized with input required by 18. Parameters which are
provided by the input of service request are removed from
the required output set since they are already usable and
there is no need to search for its service providers.
Backward search continues with the current required output
set. It finds that Services 8 and 9 both provide the required
output. Here, Service 8 is selected since response time of

International Journal of Computer Science and Artificial Intelligence Sept. 2012, Vol. 2 Iss. 3, PP. 32-42

39
DOI: 10.5963/IJCSAI0203004

Service 8 is less than Service 9. Service 8 is added to the
composition plan and procedure continues until required
output becomes empty. At the end, composition plan
includes the Services {1, 2, 4, 8, 18}.

Table XII shows the number of services explored by
FCA, BCA and proposed algorithm. A graph shown in
Figure 4 indicates how the number of services explored
increases as number of iterations increases. Proposed
algorithm follows bidirectional approach where it follows
half number of steps of FCA from one direction which finds
usable services and other half number of steps of BCA from
other direction which finds relevant services. For this
experiment, proposed algorithm gets the advantage over
BCA but suffers compared to FCA. Graph shown in Figure
4 shows that for Service Request 1, number of services
explored by proposed algorithm is much less than FCA and
comparable to BCA. This shows that performance of FCA
suffers compared to proposed algorithm and BCA, in cases
where the number of usable services increase rapidly in each
iteration. BCA gives optimal performance since relevant
services increase slowly in each iteration. In Experiment 2,
we have shown that just like FCA, BCA also suffers in
certain situations, where relevant services increases rapidly
with each iteration. The proposed algorithm gives consistent
performance across all the cases.

Fig. 4 Graph of number of services explored by FCA, BCA and proposed algorithm

for service request mention in Table XI

A graph shown in Figure 5 compares the time required
by FCA, BCA and proposed algorithm. It can be seen that
proposed algorithm requires much less time than FCA and
similar to that of BCA.

Fig. 5 Graph of composition time required by FCA, BCA and proposed algorithm for

service request as mentioned in Table XI

B. Experiment 2

FCA, BCA and proposed algorithm are executed to find
the composite service for the service request shown in Table
XIII. Service set used for this experiment is shown in
Appendix-B. Services explored by FCA, BCA and proposed
algorithm in each iteration are shown in Table XIV. After
finding the candidate services, backward search is applied,
which generates composite services {17, 18, 19, 3, 1}.

TABLE XIII SERVICE REQUEST-2

Service Request - 2 based on Service Set - 2

Input CropVariety, Quantity

Output TransportationPrice

TABLE XIV COMPARISON OF SERVICES (USABLE AND
RELEVANT) EXPLORED BY FCA, BCA AND PROPOSED

ALGORITHM IN EACH ITERATION TO FIND A COMPOSITE
SERVICE FOR SERVICE REQUEST AS MENTIONED IN TABLE XIII

Iteration

No.

FCA BCA Proposed
Algorithm

Usable

Service

Usable

Service

Relevant

Service

Usable

Service
Relevant
Service

1 {17,18,
19} {1} {17,18,

19}

2 {5,6,7} {2,3,5,7} {1}

3 {1}
{17,18,
19,5,7,

1}

{8,9,10,
11,12,13,
14,15,17,

18,19}

{5,6,7,
1}

Total
Services

Processed
7 16 7

Graph, in Figure 6 and Figure 7, shows comparison of
number of services explored and composition time required
by FCA, BCA and proposed algorithm. It shows number of
services explored and composition time required by
proposed algorithm is less than BCA and comparable to
FCA

Fig. 6 Graph of number of services explored by FCA, BCA and proposed algorithm

for service request as mentioned in Table XIII

International Journal of Computer Science and Artificial Intelligence Sept. 2012, Vol. 2 Iss. 3, PP. 32-42

40
DOI: 10.5963/IJCSAI0203004

Fig. 7 Graph of composition time required by FCA, BCA and proposed algorithm for

service request mention in Table XIII

VII. SUMMARY OF RESULTS

Results of the experiments performed on for service
composition are summarized as under. Overall performance
of the FCA, BCA and proposed algorithm based on
keywords matching, to find a composite service is evaluated.
Table XV shows the total number of services explored for
experiment 1 and Experiment 2. It also shows the average
number of services explored by each approach. It can be
concluded from the Table XV that proposed algorithm
explores less number of services than FCA or BCA.

TABLE XV TOTAL NUMBER OF SERVICES (USABLE AND
RELEVANT) EXPLORED BY FCA, BCA AND PROPOSED
ALGORITHM FOR EXPERIMENT 1 AND EXPERIMENT 2

Type of
Approach

Composition Time (µs)

Experiment
-1

(Figure 5)

Experiment
-2

(Figure 7)
Total Avera

ge

FCA 101 6 107 53

BCA 68 58 126 63

Proposed

Approach
68 17 85 42

TABLE XVI COMPOSITION TIME BY FCA, BCA AND PROPOSED
ALGORITHM IN EXPERIMENT 1 AND EXPERIMENT 2

Type of
Approach

Number of services explored

Experiment-
1

(Table XII)

Experiment-
2

(Table XIV)
Total Average

FCA 26 7 33 16

BCA 6 16 22 11

Proposed

Approach
9 7 16 8

Table XVI shows the composition time required for
Experiment 1 and Experiment 2. It also shows the average
composition time taken by each of the approach. It can be
concluded from Table XVI that overall composition time

required by proposed algorithm is less compared to FCA or
BCA. With BCA more number of relevant services become
usable compare to our proposed algorithm (from Table XII),
which consumes more processing time. So time required by
BCA is more than proposed algorithm even if same number
of services is explored.

VIII. CONCLUSIONS

Most algorithms present in the literature to find a
composition plan dynamically either follows FCA or BCA.
It can be seen from the experiment that FCA and BCA
suffer severely in certain cases as shown in Experiment 1
and Experiment 2 respectively.

Performance of algorithm based on only FCA or BCA
suffers due to the fact it only finds usable services or
relevant services respectively which increases exponentially
in each iteration. FCA does not know which of the usable
services will help to get the output required by service
request until it finally gets them in the last iteration.
Similarly, BCA does not have knowledge of which relevant
services can be executed using the input provided by service
request until the last iteration.

Proposed algorithm follows iteration in two directions,
one follows FCA and other follows BCA alternatively.
Algorithm following only FCA or BCA performs all the
iterations in one direction, where as the proposed algorithm
requires only half number of iterations in both the directions.
This improves the performance due to the fact discussed
above that the number of services explored increases
exponentially as number of iterations increases. Thus,
proposed algorithm is better than FCA or BCA in terms of (i)
Number of services to be explored and (ii) time required to
discover a composition plan.

Experiments uses smaller service set but it can be very
well seen that same scenarios will occur even in larger
service set. Scalability of the proposed algorithm can be
realized from the discussion made in Section I-A, there is no
doubt on scalability. Performance increase may seem
minimal in our results but as the length of composition plan
increases the performance improvement increases. This can
be realized by looking at improvement in composition time
by the proposed algorithm with respect to FCA and BCA in
Experiment 1 where length of composition plan is 5, is
higher than in Experiment 2 where length of composition
plan is 3.

IX. FUTURE WORK

Matching algorithm does not consider semantic or
context while finding the usable services. A semantic and
context based matching algorithm can be developed to
identify services more effectively. Backward search takes
the decision of selecting services, when multiple services
provide the same required output based on the local
information of quality of service attribute. This selection
may not be correct for the overall composite service.
Selection based on the global information of the entire
composition plan can be considered as a future direction. An
update in service should be propagated to all the composite

International Journal of Computer Science and Artificial Intelligence Sept. 2012, Vol. 2 Iss. 3, PP. 32-42

41
DOI: 10.5963/IJCSAI0203004

services that use corresponding service as a part of it. An
approach of how to keep composite service up to date is also
an interesting research area.

REFERENCES
[1] R. Hull, M. Benedikt, V. Christophides, J. Su, “E-services: A

Look Behind the Curtain”, in Proceedings of the twenty-
second ACM SIGMOD-SIGACT-SIGART symposium on
Principles of database systems, pp. 1-14, 2003.

[2] P. Patel, S. Chaudhary, “Context Aware Semantic Service
Discovery”, in Services Part II, IEEE Congress on Services,
pp. 1-8, 2009.

[3] G. Alonso, F. Casati, H. Kuno, V. Machiraju, “Web Services:
Concepts, Architectures and Applications”, in Springer
Verlag, pp. 1-150, 2004.

[4] Z. Laliwala, R. Khosla, P. Majumdar, S. Chaudhary,
“Semantic and Rules Based Event-Driven Dynamic Web
Services Composition for Automation of Business
Processes”, in IEEE Services Computing Workshops, pp.
175-182, 2006.

[5] T. Broens, S. Pokraev,M. Sinderen,J. Koolwaaij, P. Costa,
“Context-Aware, Ontology-Based Service Discovery”, in
EUSAI, pp. 72-83, 2006.

[6] A. Alamri, M. Eid, A. El Saddik, “Classification of the state-
of-the-art Dynamic Web Services Composition Techniques”,
in The Semantic Web ISWC 2002, pp. 148-166, 2006.

[7] S. Dustdar, W. Schreiner, “A Survey on Web Services
Composition”, in International Journal of Web and Grid
Services, pp. 1-30, 2005.

[8] J. Rao, X. Su, “A Survey of Automated Web Service
Composition Methods”, in Semantic Web Services and Web
Process Composition, pp. 43-54, 2005.

[9] N. Milanovic, M. Malek, “Search Strategies for Automatic
Web Service Composition”, in International Journal of Web
Services Research, pp. 1-32, 2006.

[10] P. Bartalos, M. Bielikov´a, “Semantic Web Service
Composition Frame-work Based on Parallel Processing”, in
IEEE Conference on Commerce and Enterprise Computing,
pp. 495-498, 2009.

[11] M. Aiello, E. el Khoury, A. Lazovik, P. Ratelband, ”Optimal
QoS-aware Web Service Composition”, in Proceedings of
the 2009 IEEE Conference on Commerce and Enterprise
Computing-Volume 00, pp. 491-494, 2009.

[12] Z. Huang, W. Jiang, S. Hu, Z. Liu, ”Effective Pruning
Algorithm for QoS-Aware Service Composition”, in
Proceedings of the 2009 IEEE Conference on Commerce and
Enterprise Computing-Volume 00, pp. 519-522, 2009.

[13] U. K¨uster, M. Stern, B. K¨onig-Ries, “A Classification of
Issues and p- approaches in Automatic Service
Composition”, in International Workshop on Engineering
Service Compositions, 2005.

[14] Web Services Challenge 2009,
http://wschallenge.georgetown.edu/wsc09/index.html, IEEE
Conference on Commerce and Enterprise Computing 2009,
Vienna, Austria, July 20-23, 2009.

[15] Xudong Song, Wanchun Dou, Jinjun Chen, “A workflow
framework for intelligent service composition 2010”, in
Future Generation Computer System, Elsevier, July 2010.

[16] Frederico G. Alvares de Oliveira, Jose M. Parente de
Oliveira, “QoS- based Approach for Dynamic Web Service
Composition”, in Journal of Universal Computer Science,
vol. 17, no. 5 (2011)

[17] Rui Wang, Chaitanya Guttula, Maryam Panahiazar, Haseeb
Yousaf, John A. Miller, Eileen T. Kraemer and Jessica C.
Kissinger, “Web Service Composition using Service
Suggestions”, in IEEE World Congress on Web Services
2011.

Sandip Khakhkhar is currently
working in Cisco, before joining cisco he
worked as a M.Tech. student at
Dhirubhai Ambani Institute of
Information and Communication
Technology (DA-IICT), Gandhinagar,
India. He has completed M.Tech. from
DA-IICT in 2010. His areas of research
interest are distributing computing and

Service oriented architecture.

Vikas Kumar has done B.Sc. from MJP
Rohilkhand University Barailly and
MCA from UPTU Lucknow. Currently
he is a Ph.D. candidate at Dhirubhai
Ambani Institute of Information and
Communication Technology (DA-IICT),
Gandhinagar, India. His area of research
interest are content mining, semantic
web, service oriented architecture and

social network analysis.

Sanjay Chaudhary is a Professor and
Dean (Academic Programs) at Dhirubhai
Ambani Institute of Information and
Communication Technology (DA-IICT),
Gandhinagar, India. His research areas
are Distributed Computing, Service-
Oriented Computing, and ICT
Applications in Agriculture. He has
authored four books and a number of

book chapters. He has published a number of research papers
in international conferences, workshops and journals. He is
an active member of program committees of leading
International conferences and workshops. He is also a
member of review committees of leading journals. He has
received research grants from leading companies including
IBM and Microsoft.

International Journal of Computer Science and Artificial Intelligence Sept. 2012, Vol. 2 Iss. 3, PP. 32-42

42
DOI: 10.5963/IJCSAI0203004

Appendix A : Service Set 1

Appendix B : Service Set 2

