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Abstract-In this paper, some  new  exact  solutions  for  the  vari 
able-coefficient generalized KdV-mKdV equation (VGKdV-
mKdV) with nonlinear terms of any order are obtained by 
using the generalized Jacobi elliptic functions expansion 
method with computerized symbolic computation, some of 
these solutions are degenerated to soliton-like solutions and 
trigonometric function solutions in the limit cases, which shows 
that the applied method is more powerful and will be used in 
further works to establish more entirely new exact solutions 
for other kinds of nonlinear partial differential equations with 
nonlinear terms of any order arising in mathematical physics. 
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I. INTRODUCTION 

Looking for exact solutions to nonlinear evolution 
equations (NEEs) has long been a major concern for both 
mathematicians and physicists. These solutions may well 
describe various phenomena in physics and other fields, 
such as solitons and propagation with a finite speed, and 
thus they may give more insight into the physical aspects of 
the problems. Up to now, many effective methods have been 
presented, such as inverse scattering transformation [1], 
Hirota bilinear method [2], homogeneous balance method [3], 
B¨acklund transformation [4], Darboux transformation [5], the 
extended tanh-function method [6], the extended F-expansion 
method [7], projective Riccati equations method [8], the 
Jacobi elliptic function expansion method [9] and so on [10]. 

The main goal of this paper is to find the new and more 
general exact solutions of the VGKdVmKdV equation by 
using the generalized Jacobi elliptic functions expansion 
method [11, 12] proposed recently. The character feature of 
our method is that, without much extra effort, we can get 
series of exact solutions using a uniform way. Another 
advantage of our method is that it also applies to general 
nonlinear differential equations with nonlinear terms of any 
order. 

This paper is arranged as follows. In Section 2, we 
briefly describe the generalized Jacobi elliptic function 
expansion method. In Section 3, several families of 
solutions to the VGKdV-mKdV equation are obtained. In 
Section 4, some conclusions are given. 

II. SUMMARY OF THE GENERALIZED JACOBI ELLIPTIC 

FUNCTIONS EXPANSION METHOD 

For a given partial differential equation, say, in two 
variables x and t 

( , , , , , , ) 0t x xt tt xxP u u u u u u                          (1) 

We seek the following formal solutions of the given system: 
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Where 0 , ( 1, 2, , )i i i iA A B C i n 、 、 、 、D are time-

dependent functions to be determined later. ( , )x t  are 

arbitary functions with the variables x and t, The parameter 
 can be determined by balancing the highest order 

derivative terms with the nonlinear terms in Eq.(2). 
And

N

E( ) F( ) , ,G( ) ,H( )  are an arbitrary array of 

the four functions e e( ) ( )f f g ( )g   , ,

( )
  and 

h h  , the selection obey the principle which makes the 

calculation  simpler. Here we ansatz 
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where , , ,p q r l

,g h
are arbitrary constants，the four function 

 satisfy the restricted relations(4) and (5a-5d) 

mentioned in [11,12].  

, ,e f

Substituting (2) along with (4) (5a-5d) into Eq.(1) separately 
yields four families of polynomial equations for 

( ) ( )E F 、 、 ( ) ( )G H 、 .Setting the coefficients  

of 31 2( ) ( ) ( ) ( ) jj jiF E G H   
=0,1; 1 2 3j j j =0）

i (= 0,1,2, )

0 i i

1 3j（  to zero yields a set of over-

determined differential equations (ODEs) in A A B, , , 

, ( 1, 2, , )C i ni i   ( , ),D  and x t , solving the ODEs by 

Mathematica and Wu elimination, we can obtain many exact 

solutions of Eq.(1).according to（2）and（3）. 

III. EXACT SOLUTIONS OF THE GENERALIZED KDV–MKDV 

EQUATION 

 The variable-coefficient generalized KdV–mKdV 
equation with nonlinear terms of any order 
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2( ) ( ) ( ) ( ) ( ) (4)n n
t x x x xxxu t u t u u M t u u t u R t                          

where  is a  positive  constant, in particular, n  can  be  an 
arbitrary positive integer, 

,

n

( , )u u x t ( ), ( ), ( ), ( )t t M t t    and the forced term 

( )R t  are arbitrary functions of ,x t . Eq. (6) includes a 

class of physically important equations.  

In fact, if one takes ( ) ( ) 0, 1t M t n    , Eq.       

(4) represents VKdV equation [13-15] 

( ) ( ) ( )t x xxxu t uu t u R t                                 (5)                                                    

If one takes ( ) 0, ( ) 0, 1t M t n   

t

,Eq. (4) becomes 

VCKdV equation [16-17] 

2( ) ( ) ( ) ( )t x x xxxu t uu M t u u t u R         (6)                                    

If one takes ( ) ( ) ( ) 0, ( ) 1t M t R t t     , Eq.  

(4) turns to GVKdV equation [18-19] 

( ) 0n
t x xxxu t u u u                                            (7)                                  

If one takes ( ) 0, ( ), ( ), ( ), ( )R t t t M t t     as 

arbitrary constants, Eq. (4) turns to GKdV-mKdV equation 
[20-24] 

2( )n n
t x xxxu u Mu u u       0                (8)                                  

In the follows, we construct exact solutions of Eq. (4). 

Using transformation 
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Where 
( , ), ( , ), ( ), ( ),u u x t v v x t t t      

( ), ( )M M t t   . 

Making the gauge transformation 
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d d  
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to be determined later.  

    

A. The Jacobi Elliptic Function Solutions to Eq. (5)  

By balancing the highest-order linear term  and the 

nonlinear '  in (5), we obtain , thus we assume 
that (5) have the following solutions： 
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 to zero yield an ODEs 

with respect to the unknowns  ( 1,  

,10), , , , , , ,k p q r l m . After solving the ODEs by 

Mathematica and Wu elimination we could determine the 
following solutions: 
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where  are arbitary constants in Case 1-Case 

4. The other coefficients  

0, 0C k 
, ( 1, , 4;i jc d i   1, ,j    

 don’t mention in all above cases are zero. Therefore 

from (3), (10), (12) and Cases 1–4, we obtain the Jacobi 
elliptic wave-like solutions to Eq. (5): 
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Remark1: If we let 

( ) , , 1,R t dt const k p C m k  

( ) 0, , , 1R t dt k p m k C   

  or 1,  is 

equivalent to the Solutions (23, 25, 26) and the famous bell-
shape soliton Solution (48) given in [18]. If we 

let ,  is 

equivalent to the Solution (47) given in[18]. 

1.4u

1.2u

Solutions 1. ( )( 1,3,4)i iu i 

( 1,3)

 are degenerated to soliton-

like solutions when the modulus , and solutions 1m 
1. ( )i iu i   are degenerated to trigonometric 

functions solutions when the modulus . 0m 
 
The typical structure of new Jacobi elliptic wave-like 

solution  is shown in Fig.1 and Fig.2 

with . Here  provides us a Jacobi cnoidal 

wave solution and the famous bell-shaped soliton solution 
when  which covers the large majority of physically 
interesting solitary waves. 

1.2 1.4,u u
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Fig. 1 Simulation of  1.2u

 when ( ) 1, 1, 0.64t k C m        and 0t  . 

 

Fig. 2 Simulation of  1.4u

 when ( ) 0.025, 1, 1, 0.2t k C m      
0

 

and t  . 
 

B. The Jacobi Elliptic Function Solutions to Eq. (6)  

By balancing the highest-order linear term  and the 

nonlinear  in (6), we obtain , thus we assume 
that (6) have the following solutions： 
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 where  are arbitary constants in Case 1-Case 

2. Therefore from (3), (10), (13) and Cases 1–2, we obtain 
the Jacobi elliptic wave-like solutions to Eq. (6): 
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Remark 2：If we let , contain the Solutions 

(8,9) in Ref.[25].  
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C. Soliton-Like and Trigonometric Function Solutions of 
Eq. (4)  1, ( ) 0n R t 
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where 1 20, , 0C C k   are arbitary constants in Case 1-

Case 3. Therefore from (3), (10), (14) and Cases 1–3, 

noticed 
1

nu v ,we obtain the following soliton-like and 
trigonometric function solutions for Eq. (6) are expressed by 
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3.1.1 3.1.2( , ), ( , )u x t u x t

t

 is just the solution (28) (29) in 

Ref.[20] 

Remark 3: If we let 
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the Solutions (32)(33) in Ref.[20].Noticed that 

3.2 ( , )u x t
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 ,  contains the Solution (3.18) 

in Ref.[22]. Our method contains all the results mentioned 
by the G’/G method 

3.3 ( , )u x t

[22], the improved sub-ODE method [20], 

[21] and auxiliary equation technique [18], etc. 

The properties of the new soliton-like wave solutions 

 and periodic-like solutions  are shown in Fig. 3 

and Fig. 4. 
3.1u 3.2u

 

Fig. 3 Solution  3.1u

when 1 22, ( ) ( ) 1, 1n k q t t C C         and 

0t  .  

 

Fig. 4 Solution  
3.2u

when 1 22, ( ) ( ) 1, 1n k q t t C C         and 

0t  .  

Remark 4: All the solutions obtained in this paper for 
Eq. (4) have been checked by Mathematica software. 

To our knowledge, the explicit solutions except 

(  ) we obtained here to Eq. (4) are not shown 

in the previous literature. They are new exact solutions of 
Eq. (4). 

1.2 1.4, ,u u 2.2u

IV. CONCLUSIONS 

In this paper, we have found abundant new types of 
exact solutions for the variable-coefficient generalized 
KdV–mKdV equation by using the generalized Jacobi 
elliptic functions expansion method and computerized 
symbolic computation. More importantly, our method is 
quite simple and powerful to find new solutions to various 
kinds of nonlinear evolution equations, such as Schrodinger 
equation, Boussinesq equation etc. We believe that this 
method should play an important role for finding exact 
solutions in the mathematical physics. 

,
  


    

1

1
, ( )C t 


  ,  0q 
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