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Abstract-In this paper, some new exact solutions for the vari
able-coefficient generalized KdV-mKdV equation (VGKdV-
mKdV) with nonlinear terms of any order are obtained by
using the generalized Jacobi elliptic functions expansion
method with computerized symbolic computation, some of
these solutions are degenerated to soliton-like solutions and
trigonometric function solutions in the limit cases, which shows
that the applied method is more powerful and will be used in
further works to establish more entirely new exact solutions
for other kinds of nonlinear partial differential equations with
nonlinear terms of any order arising in mathematical physics.
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I. INTRODUCTION

Looking for exact solutions to nonlinear evolution
equations (NEEs) has long been a major concern for both
mathematicians and physicists. These solutions may well
describe various phenomena in physics and other fields,
such as solitons and propagation with a finite speed, and
thus they may give more insight into the physical aspects of
the problems. Up to now, many effective methods have been
presented, such as inverse scattering transformation ',
Hirota bilinear method ', homogeneous balance method B
B~acklund transformation !, Darboux transformation ©*), the
extended tanh-function method ') the extended F-expansion
method "), projective Riccati equations method ™, the
Jacobi elliptic function expansion method ”’and so on ',

The main goal of this paper is to find the new and more
general exact solutions of the VGKdVmKdV equation by
using the generalized Jacobi elliptic functions expansion
method " ' proposed recently. The character feature of
our method is that, without much extra effort, we can get
series of exact solutions using a uniform way. Another
advantage of our method is that it also applies to general
nonlinear differential equations with nonlinear terms of any
order.

This paper is arranged as follows. In Section 2, we
briefly describe the generalized Jacobi elliptic function
expansion method. In Section 3, several families of
solutions to the VGKdV-mKdV equation are obtained. In
Section 4, some conclusions are given.

II. SUMMARY OF THE GENERALIZED JACOBI ELLIPTIC
FUNCTIONS EXPANSION METHOD

For a given partial differential equation, say, in two
variables X and t

73

P(u,u,,u,,U,,U,,U,---)=0 (1)

We seek the following formal solutions of the given system:

xt 2 XX 2

WE=Y AF©+ X [BFUOE)

+CFT(OG (O +DFT(OH O] @
Where A A. B~ C. D,,(i=1,2,---,n) are time-
dependent functions to be determined later. & = £(X, 1) are
arbitary functions with the variables x and t, The parameter
N can be determined by balancing the highest order

derivative terms with the nonlinear terms in Eq.(2).

And E(&), F(&), G(&), H(E) are an arbitrary array of
the four functions e=e€(£), f = (&), g=09(&) and

h =h(&), the selection obey the principle which makes the
calculation simpler. Here we ansatz

e= ! f= $o
prong+rong+Hdng progngrong +Hang

o e he o
pronS+rong+Hdg” popngrrong+Hdng

3)

where P,(,r,| are arbitrary constants, the four function

e, f,g,h satisfy the restricted relations(4) and (5a-5d)

mentioned in [11,12].
Substituting (2) along with (4) (5a-5d) into Eq.(1) separately

yields four families of polynomial equations for
E(&). F(&). G(&E) H(E) Setting the coefficients

of  FYHEE)G(E) H ()" (=0,1,2,---)
(j, 5=0,1; jJ,J,70) to zero yields a set of over-

determined differential equations (ODEs) in A, A, B,
C.,D,,(i=1,2,---,n) and &(X,t), solving the ODEs by
Mathematica and Wu elimination, we can obtain many exact

solutions of Eq.(1).according to (2) and (3) .

III. EXACT SOLUTIONS OF THE GENERALIZED KDV-MKDV
EQUATION

The variable-coefficient generalized KdV-mKdV
equation with nonlinear terms of any order
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U, + (DU, +e(u"u, + M (DU, + B, = R() (4)

where N is a positive constant, in particular, N can be an
arbitrary positive integer,

u=u(xt),y),a(),M(), S(t) and the forced term

R(t) are arbitrary functions of X,t. Eq. (6) includes a
class of physically important equations.

In fact, if one takes Y(1)=M({t)=0,n=1, Eq.

(4) represents VKAV equation !>

U +a(®uu, + FOu,, = R() )
If one takes ¥(t) = 0,M (1) # 0,n =1 Eq. (4) becomes
VCKdV equation !'*!"!

U, +a(uy, + MUy, + BHu,, =R ©)

If one takes (1) =M (1) = R(t) =0, B(t) =1, Eq.
(4) turns to GVKdV equation "%}
u +au'u +u, =0 @

If one takes R(t)=0,a(t),y(t),M{®), 1) as
g{)bzi;[]rary constants, Eq. (4) turns to GKdV-mKdV equation

U +(y+au”+Mu™u, +pu =0 8)

XXX

In the follows, we construct exact solutions of Eq. (4).

1
Using transformation U = V" yield

VAV, + VPV, + vy, + Myt + ﬁ[w v,)
n
3(1-n -t
+—( )WXVXX +Vvv, J=nv "R(t) )
n
Where

U=u(xt),v=v(x,t),y =yt),a=alt),
M =M(),s=p5®1.
Making the gauge transformation
E=k(t)x+o(t) (10)
We have

(@ +K V'V, +KAY, +kav'v, + kW,

+k3,6’[(1 - n)rS -2n) (V§)3 N 3(1; n) w,v,,

1
+VV,. ] = v "R(t) (11)

where
dw dk dv
k:kt, = t, :—,k :—’V =—,
(1), 0= o), o, TR Y

Nov. 2012, Vol. 1 Iss. 3, PP. 73-78

d (2)V d (3)V

Ve = W,VS% = d—éﬁ ,K(t), o(t) are functions of t

to be determined later.

A. The Jacobi Elliptic Function Solutions to Eq. (5)

By balancing the highest-order linear term U™ and the
nonlinear UU" in (5), we obtain N = 2, thus we assume
that (5) have the following solutions:

u=c,+ce+c,f+c,g+c,h+de’+d,f*+d,g’ 12
+d,h* +d, fg +d, fh+d,gh+d.ef +d,eg +d,,eh
Where

u=u(s).e=e(S), f = f(5),9=9(),h=h(S),

¢ =c(t)d, =d,(t) (i=0,-,4j=1,-,10)and

e, f,g,h satisfy (4) and (5a-5d) . Substituting (4) and (5a-
5d) separately along with (12) into (5) and setting the
coefficients of F' (&)EM (E)2G(E)H H(&)* (i=0, 1,
2,-4) (J_.=0,1, j,J,J5J,=0) to zero yield an ODEs
with respect to the unknowns C; (i =0,---,4), d;(j =1,
---,10), o,K, p,q,r,l,m. After solving the ODEs by

Mathematica and Wu elimination we could determine the
following solutions:
Case 1

r=1=1,q=+1, (1) = Ca(t),c, = [ R(tt,
_3Ck*(m*-2)*  3Ck’m’
m -1 ' 1-m*’
¢, =—6k’C(m* -2),c, =6Ck’m?,
w(t) = j [—ka(t) j R(t)dt —k*C(2m? + 5)a(t)]dt
Case 2
Bt =Ca(t).c, = [Rtyt,
2 ~2..~4
d, = _3"|2_ch P
(m” -1 J1-m?
w(t) = j[—ka(t)j R(t)dt —2Ck* (M’ — 2)ex(t)]dt
Case 3
p’=1,0° =1L,r =1, f(t) = Ca(t),
¢, =+12k°C,d, =—12k’C, ¢, = [ R(t)dt,

d, =

o(t) = [[ke(t)[ Rt + Ck* (4m’ - S)ar (1) dt

Case 4
q=r=0,5()=Ca(l),
d, =12Ck’m’p>,c, =jR(t)dt,

o(t) = [[~ka(®) [ ROt +4CK’ (1 - 2m°)ar(t)]clt
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where C # 0,K # O are arbitary constants in Case 1-Case
4. The other coefficients Ci,dj(i =1---,4 j=1,---,

10) don’t mention in all above cases are zero. Therefore

from (3), (10), (12) and Cases 1-4, we obtain the Jacobi
elliptic wave-like solutions to Eq. (5):

U, (e :.[ R(tdt+ = C(Lnsn;ji;élif;; e
3Ck (m? 2)2cn2§1+3Ck2m“dn2§1
(1-m*)(£sné&, +cné +dné))’

= kx+ j [—Ke(t) j R(t)dt —k*C(2m? + 5)(t)]dt

3k’m*Cen’é,

(m* ~D(1-m’ +dn, )’

&, =+ [[~ke(®) [ R(dt - 2Ck* (m” - 2)ex(t)Jdt

12k*Cené, 12k*Cen’é,
1£sné +ecné,  (1+sné, +ecné,)’

& = kc+ [[~ka ()] R(tydt +Ck* (4m? - S)ar(t)]dlt
u,(&) == [R(dt+12Ck’m’en’¢,

(&) = [R(tydt -

u5(&) = [R(tydt =

&, =+ [[~ka(®) [ R(dt +4CK° (1 - 2m° ) ()]t
Remark1: If we let
jR(t)dt =const,k > p,C >1L,m—K or 1,u,, is

equivalent to the Solutions (23, 25, 26) and the famous bell-
shape soliton Solution (48) given in [18]. If we

[ROt=0k > pm—>kC—>1 , u, is
equivalent to the Solution (47) given in[18].
Solutions U, ;(&)(1=1,3,4) are degenerated to soliton-
like solutions when the modulus m — 1
U (E)I=13) are

functions solutions when the modulusm — 0.

, and solutions

degenerated to trigonometric

The typical structure of new Jacobi elliptic wave-like

solution U ,,U , is shown in Fig.l and Fig2

with R(t) =0 . Here U, , provides us a Jacobi cnoidal

wave solution and the famous bell-shaped soliton solution
when M — 1 which covers the large majority of physically
interesting solitary waves.

-10 5 | & 10

Fig. 1 Simulation of U, ,
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when a(t)=k=C=1,6=-1,m=0.64 andt =0.
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Fig. 2 Simulation of U, 4

when () =0.025,k =C =1,e =—1,m=0.2
andt =0.

B. The Jacobi Elliptic Function Solutions to Eq. (6)

By balancing the highest-order linear term U" and the

nonlinear U*U" in (6), we obtain N =1, thus we assume
that (6) have the following solutions:

u=c,(t)+cte+c,(t)f +c,(t)g+c,(t)h (13)

with the similar process,we obtain the following solutions:
Case 1

P=0,9°+r>#0,8(t)=2CM (t),k(t) =k,
¢, (1) =Rt ¢ (1) =c,(t) =¢,(t) =0,

c;(t)=i%¢3<:«p2—r2>2<m2—1>—4p2r2>,

w(t) = j [m—(t)z— k’CM (t)]dt,

4M (1)

[Rtydt =20 K@+ )+ m’(p’ =1y
2M(t) »

\/ 3C

(m*(p* =r?)* = (p* +r?)*)

Case 2

p=1,q=0,r =0, ) =2CM (t),k(t) =k,

¢, (1) =Ry, c (1) =c,(t) =c, (1) =0,

Cy(t) = £ky/12C(r* —1)(m*(r* —1)—r?),
ka(t)?

= [—=—L _
(Gl loryre
KCM (O)(r>(1+2r%) +2m>(r> = 1)(1-3r> + 2m*(r> - 1)))
A=)’ +m*(1-r?))

a(t)
2M(t)

Jdt

j R(t)dt =—

3C
(A-r)r*+m’(-r?))

Fkr=2r> +2m?(r* - 1))\/
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where C # 0,K # O are arbitary constants in Case 1-Case

2. Therefore from (3), (10), (13) and Cases 1-2, we obtain
the Jacobi elliptic wave-like solutions to Eq. (6):

ky3C((p* — (07 —1)—4p’r)oné
P’ + p’sng + preng

_ Kt 5
& =kt | [4M(t) KCM(t)]dt

W,,(£)=[Rydt=

ky12C(r* —I)P(r* —1)—r*)ené,

1+rené,

0,,(&)=[Rydt=

B ke(ty B

%= kX+J [4M(t)

KCCM(E)(r2(1+2r2) + 202 (% —1)(1=3r% +2m2(r 1))
(A=r>r*+m'1-r%))

ot

Remark 2: If we let m — 1, U, , contain the Solutions
(8,9) in Ref.[25].

Solutions U,;(&)(1 =1,2) are degenerated to soliton-
like solutions when the modulus M — 1, and solutions
Uy (6)(1=1,2)

functions solutions when the modulusm — 0.

are degenerated to trigonometric

C. Soliton-Like and Trigonometric Function Solutions of
Eq. (4) n# LR(t) =0
By balancing the highest-order linear term Al - and the
nonlinear V2V§§§ in (11), we obtain N =1, thus we

assume that (11) have the following solutions:

v=c,(t)+c (t)e+c,(t)f +c,(t)g+c,(Hh (14

with the similar process,we obtain the following solutions:
Case 1

M®A®) =C,a’ (1), B(t) = Ca(b),
) :J_r\/1+q2 Lkc,a+ D2+ ny’
(1+2n)n
c,(H)=c/(t)=c,(t)=c,(t)=0,m =1,
k*C,(1+n)(2+n) l—or
n’ o

C; (t) = =1,

o) = ~J LD ket

Case 2

76
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M ®)A(1) =C,a’ (1), A(t) = Cax(t),

r:i\/l_ 2_k2C2(l+n)(22+n)2
(1+2n)n

¢,(t) = C,(1) = ¢y (1) = ¢, (t) = 0,m =0,

_Kea+me+n |

n’ o

b

C, (t) =

p=1

o) =~ 22 iy e

Case 3
m=1,p>#1,q=1r=1=0,c,(t)=c,(t)=c,(t) =0,
2
n (1+2n) ot
4k°C,(1+n)(2+n)
2k*C,(1£ p)(1+n)(2+n)
n’ ’
2k°C,(1+n)(2+n)(p* 1)

n2

A =Ca(®),M (1) =~

Co(t) =

Cl(t) =*

ot =~ D et

where C, # 0,C,,K # 0 are arbitary constants in Case 1-
Case 3. Therefore from (3), (10), (14) and Cases 1-3,
1

noticed U = V" ,we obtain the following soliton-like and
trigonometric function solutions for Eq. (6) are expressed by

B, .
u, (=40,
16D {!.1}

_kK*C,(1+n)(2+n) y

3.1 2
n

B

sec h[kx — I (% +ky(t))dt]

k*C,(1+n)(2+n)’ .
(1+2n)n?

A, = J_r\/l +9° +
qtanh{kx— [ (% +ky(t))dt]
+sechfkx— (%+ Ky (t))dt]

By .»
U, (X 1) = ",
(x1) {Ag,z}
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__kKca+m2+n) y

32 2
n

B

secfkx— (%+ Ky(t)dt]

[ Kc,a+m@+ny
A“_i\/l q (1+2n)n

cqantio [0

+seclke— (%+ Ky (t))dt]

U3_3(X,t)={2k Cl(li p)(21+n)(2+n) I &.3 }ﬁ
n As
B, —+ 2k*C,(1+ n)(z +n)(p* -1)
' n

3
A, = p+ tanh[kx — j (%+ ky(t))dt]
Ifwelet =0, =0 or

o i 1 KCOrn@rny
2T (1+2n)n?

q:
n— p5C2 _)%J(_) p\/Kay(t)_)aa

C, —>%,a(t) — fBin U, (X,1),

we have

Uy, () =y, (xD=
APV AC@ AL
Jﬁ +A7(“f§;p)2 + Bsec{pVAK—(cr+ ALHE)]
Uy, (60 U, =
A1+ PISCPVAX (@ ALEE]
\/—ﬂz—Ayme;p)z £ schpVAG— (e + AL+

Uy, (X, 0),U; ,(X,t) is just the solution (28) (29) in
Ref.[20]
Remark 3: If we let

n—p,C, —>§,k - pVv-Ay(t) > «a,

C, —>%,a(t)—>,8,q=0
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_KC,(1+m2+n)
(1+2n)n?
(32)(33) in

or = i\/l , Uy, (X,1) turns to

the  Solutions
sinh

tanh & = J
cosh¢&

in Ref.[22]. Our method contains all the results mentioned
by the G’/G method *? the improved sub-ODE method **
(2 and auxiliary equation technique '*, etc.

Ref.[20].Noticed  that

.Uy 5(X,t) contains the Solution (3.18)

The properties of the new soliton-like wave solutions
U, , and periodic-like solutions U,, are shown in Fig. 3
and Fig. 4.

75 -5 2.5 | 2.5 5 1.5

Fig. 3 Solution U, |

when N =2,k =q=a(t)=y(t)=1,C,

Fig. 4 Solution Uj ,

when N=2k=q=a(t)=y(t)=1LC, =C,=1 and
t=0.

Remark 4: All the solutions obtained in this paper for
Eq. (4) have been checked by Mathematica software.

To our knowledge, the explicit solutions except

(U,,,U,,, U,,) we obtained here to Eq. (4) are not shown

in the previous literature. They are new exact solutions of
Eq. (4).

IV.CONCLUSIONS

In this paper, we have found abundant new types of
exact solutions for the wvariable-coefficient generalized
KdV-mKdV equation by using the generalized Jacobi
elliptic functions expansion method and computerized
symbolic computation. More importantly, our method is
quite simple and powerful to find new solutions to various
kinds of nonlinear evolution equations, such as Schrodinger
equation, Boussinesq equation etc. We believe that this
method should play an important role for finding exact
solutions in the mathematical physics.
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