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Abstract- The present study deals with cosmological models of
FRW universe in presence of bulk viscous fluid source in the
scale-covariant theory of gravitation formulated by Canuto et al.
[Phys. Rev. Lett. 39:429, 1977]. A new class of solutions for the
modified Einstein’s field equations is obtained by considering time
dependent deceleration parameter. It is observed that the models
are accelerating at present epoch. Some physical aspects of the
models are also discussed in this paper.
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1. INTRODUCTION

Alternative theories of gravitation have been extensively
studied in connection with their cosmological entailment. One
such class of theories is the scalar-tensor theories (STT) of
gravity. This class of models had renewed interest in recent
times for two main reasons. First, the new inflationary scenario
as the extended inflation has a scalar field that solves several of
problems present in the old theories. Second, string theories
and other unified theories contain a scalar field, which plays a
similar role to scalar field of the STT. The scalar-tensor
theories started with the work Jordan in 1950 [1].

Note-worthy among them are scalar-tensor theories of
gravitation formulated by Brans and Dicke [2], Nordtvedt [3],
Sen [4], Sen and Dun [5], Wagoner [6] and Saez&Ballester [7].
Another interesting viable alternative to general relativity is the
theory proposed by Canuto et al. [8] which is the so-called
scale-covariant theory of gravitation. In recent years there has
been a considerable interest in this theory. These are theories in
which the field equations are invariant not only under groups of
transformations, as in general relativity, but also under scale
transformations. Dirac revived the more general geometry of
Weyl in an effort to extend the invariance of the fundamental
equation to changes in scale. The formalism of scale-covariant
theories was later developed by Canuto [8] [14]. A particular
feature of this theory is that no independent equation for the
gauge function ® exists, and therefore it cannot be determined
within the theory. One must go outside the theory in order to
specify the form of @ as well as its relationship with G.
External conditions must be provided based on physical
considerations, such as Dirac LNH or CMBR. The possibilities
that have been considered for gauge function ® are O(t) = t°, €
=+1,+1%[9,15].
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According to the above scale-covariant theory, Einstein’s
field equations are valid in gravitational units where as
physical quantities are measured in atomic units. The
components of metric tensor in the two systems of units are
related by a conformal transformation/factor

gij = ¢2 (xk)gijf (€9)
where in Latin indices take values 1, 2, 3, 4. The barred
quantities refer to gravitational units and un-barred quantities
denote to atomic units. In this theory we have a metric and the
scalar gauge function @, so Canuto attempted to write the field
equations in a form such that their form remains invariant
under both arbitrary coordinate and arbitrary-scale
transformations. The gauge function @, (0 < ® < o) in its most
general expression is function of all space-time coordinates.
Thus using the conformal transformation of the type given by
equation (1), Canuto et al. [8, 9] transformed the usual Einstein
equations into

1

R — E‘g”R + fij(¢) = —8nG(P)T;; + A(D)gyj, 2)

where
2 fyj = 20¢s; — 4did; — gij (bl — ¥ i) 3)
Here Rj is the Ricci tensor. R the Ricci scalar, A the
cosmological ‘constant’, G the gravitational ‘constant’ and Tj;
the energy momentum tensor. A semicolon denotes covariant
derivative and ®; denotes ordinary derivatives with respect to
x;. A particular feature of this theory is that no independent

equation for @ exists. The speculations that have been
considered for gauge function @ are (Canuto et al. [9])

() = (?> €= 145, (4)
where t; is constant. The form
1

p~t2 5)

is the one most favoured to fit observations (Canuto and
Goldman, [16, 17]).

In recent years there has been a lot of interest in the study
of scale covariant theory of gravitation with perfect fluid
matter distribution as source. Reddy and Venkateswarlu [18]
studied Einstein-Rosen universe in the scale-covariant theory
of gravitation. Venkateswarlu and Kumar [19] obtained higher
dimensional string cosmologies in scale-covariant theory of
gravitation. Reddy [20] also obtained a higher dimensional
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cosmological model in a scale-covariant theory of gravitation.
Recently, Adhav et al. [21], Ram et al. [22] and Belinchon [23]
studied the scale-covariant theory of gravitation indifferent
context.

Cosmological models with bulk viscosity are important
since it has a greater role in getting accelerated expansion of
the universe popularly known as inflationary phase. At early
stages of the universe when neutrinos decoupling occurred, the
matter behaved like viscous fluid. The coefficient of viscosity
decreases as the universe expands. Misner [24, 25] examined
the effect of viscosity on the evolution of the universe and
suggested that the strong dissipation, due to the neutrino
viscosity, may considerably reduce the anisotropy of the
blackbody radiation. Murphy [26] developed a uniform
cosmological model filled with fluid which possesses pressure
and bulk viscosity exhibiting the interesting feature that the
big-bang type singularity appears in the infinite past. The detail
review of bulk viscosity is given in references Singh et al. [27],
Pradhan [28, 29, 30]. Recently, Singh and Sorokhaibam [31]
and Singh et al. [32] and Singh and Devi [33] have studied
Friedmann cosmological models with bulk viscosity in a scale-
covariant theory of gravitation.

Motivated by the above discussions, in this paper, we study
FRW cosmological models by considering a time dependent
deceleration parameter in scale-covariant theory of gravitation
proposed by Canuto et al. [8, 9]. The paper has following
structure. In Section I, the introduction and the field equations
are given. In Section II, the metric and field equations are
described. The Section III deals with the exact solution of the
field equations and physical behavior of the model. At the end
we shall summarize the findings in Section IV. This study is
relevant in view of the recent scenario of the accelerating of
universe.

II. THE METRIC AND FIELD EQUATIONS

We consider the spatially homogeneous and isotropic FRW
space-time given by
ds? = dt? —a?(t)[(1 — kr?)~tdr? + r? (d6?

+ sin?0dy?)], (6)
where a(t) is the scale factor and the curvature constants k are -
1,0,+1 for open, flat and closed models of the universe
respectively.

The energy-momentum tensor Tji for bulk viscousfluid
distribution is taken as

T} = (p + p)u'y; — pgj, (7)

together with comoving co-ordinates u'= (0, 0, 0, 1)and
u'y; = 1,v'y; = 0, (8)
p=p-§u (€)]

where u'is the 4-velocity vector of the cosmic fluid, p, p and p
are the effective pressure, isotropic pressure and energy density
of matter respectively, & is the coefficient of bulk viscosity
which is a function of time t. Here p, p and ® are homogeneous
function of cosmic time t.
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The expansion scalar is given by

0=u= 39. (10)
5L a

Using Egs. (8), (9), (10) and comoving coordinates for the
line-element (6), the modified Einstein field equations (2) and
(3) lead to the following two independent equations

20 [a?+ k da o\* 24

e G (6) %
ol k da <i>2_

@)+ - o(5e)-2(5) =oe @

The overhead dots represent time derivative and double dots
represent double differentiation with respect to time t.

€80)

The usual energy momentum conservation relation T;J =
Oleads to

'+3< + 3fd)a—0 13)
p ptop 2)a=" (

In this paper, we consider a special form of the gauge function
as

¢ = kt€, (14)
where Kk is arbitrary constant. The equation of stateis taken as
P =P (15)

where -1<y < 1.

III. SOLUTIONS OF THE FIELD EQUATIONS

The function a(t) remains undetermined. One may have to
apply additional assumption to solve its explicit dependence on
‘t’. We solve the field equations (11)-(12) by considering the
deceleration parameter to be time-dependent. We define the
deceleration parameter q as

ad H+ H?
NUETATS

The motivation to choose such time dependent DP is behind
the fact that the universe is accelerated expansion at present
and decelerated expansion in the past. Also, the transition
redshift from deceleration expansion to accelerated expansion
is about 0.5.Now for a Universe which was decelerating in
pastand accelerating at the present time, the DP must show
signature flipping (see the Refs. Padmanabhan and
Roychowdhury [34], Amendola [35], Riess et al. [36]). So, in
general, the DP is not a constant but time variable.
The equation (16) may be rewritten as

a a?

-+ b —2 = 0

a a

(16)

@a7)
In order to solve the Eq. (17), we assume b = b(a).lt is
important to note here that one can assume b = b(t) = b(a(t)), as
a is also a time dependent function. It can be done only if there
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is a one to one correspondences between t and a. But this is
only possible when one avoid singularity like big bang or big
rip because both t and a are increasing function.

The general solution of Eq. (17) with assumption b = b(a), is
given by

b
fefada =t+m, (18)

where m is an integrating constant.
One cannot solve Eq. (18) in general as b is variable. So, in

order to solve the problem completely, we have to

choose [ gda in such a mannerthat Eq. (18) be integrable

without any loss of generality. Hence we consider

f%da = InL(a). (19)

which does not affect the nature of generality of solution.
Hence from Egs. (18) and (19), we obtain

fL(a)daL =t+m. (20)

Of course the choice of L(a), in Eq. (19), is quite arbitrary but,
since we are looking for physically viable models of the

universe consistent with observations, we consider
1

aV1+a? 1)
where a is an arbitrary constant. In this case, on integrating,
Eq. (19) gives the exact solution

a(t) = sinh(aT), (22)

L(a) =

-0.24

=-0.44

=0.64

0.8

Figure 1 The plot of deceleration parameter q versus T

where T =t + m. We also note that T = 0 and T = o
respectively correspond to the proper time t = -m and t = oo.
The relation (22) is recently used by Pradhan et al. [37] in
studying dark energy models with anisotropic fluid in Bianchi
type-V Ipspace-time. Recently, relation (22) is also used by
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Amirhashchi et al. [38] to study the evolution of dark energy
models in a spatially homogeneous and isotropic FRW space-
time filled with barotropic fluid and dark energy by considering
a time dependent deceleration parameter.

Figure 1 depicts the variation of DP q versus cosmic time T.
From the figure, it is observed that the q decreases very rapidly
and reaches to value -1, and lastly it remains constant -1 (like
de Sitter universe).
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Figure 2 The plot of energy density p versus T for closed universe (k =+1).
Here G=a=1

104",
0 /7-:/_———
/ 7
1/
P—m—"
[
-20
k=-1
-301
L] T T i I I T T i T
1 2 3 4 5 6 7 8 9 10
T
""" e=-1 e=-05——e=05—"¢=1

Figure 3 The plot of energy density p versus T for open universe (k = -1). Here
G=a=1
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Figure 4 The plot of energy density p versus T for flat universe (k = 0). Here G
=a=1

Using Eqgs. (14), (15) and (22) in (11) - (12), we obtain the
expressions of energy density (p), pressure (p), and coefficient
of bulk viscosity (&) as
3 a? k 2ae

[tanh2 (aT) * sinh?(aT) B ttanh(aT)

p:

G
2
-@) @
3y a? k 2ae
P=7 [tanh2 (al) sz (aT) ttanh(aT)
2
- (;) ] (24)
3 22 (1+3y)a? (1A+3y)k 22+ 3y)ae
¢= SGH[ a tanh?(aT) = sinh?(aT) B ttanh(aT)
P G St/ 20 (1; 3y>6}], (25)

The expressions for the Hubble parameter H, scalar of
expansion 0, the deceleration parameter and the spatial volume
for the derived model are given by

0 = 3H = 3a coth(aT), (26)
q = —tanh?(aT), 27
V = sinh3(aT). (28)

From Eq. (28), we observe that the spatial volume is zero at
T = 0 and it increases with the increase of time. This shows
that the universe starts evolving with zero volume at T = 0 and
expands with cosmic time T. From Eq. (27), it can be seen that
the kinematical parameters H and 0 diverge at the initial
singularity. There is a point type singularity (MacCallum [42])
at T = 0 in the models. We found that the shear scalar ¢ is zero.
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Hence we find limt_)()% = 0. This relation confirms the space-
time is isotropic.

We discuss the following three interesting physical
cosmological models:

Case I: Radiating Dominated Solution (y = 1/3)

For y = 1/3, the disordered radiation corresponds with
equation of state p = 3p. The physical parameters in terms of
cosmic time ‘T’ have the following expressions:
3 a? N k 2ae

tanh?(aT) = sinh?(aT) ttanh(aT)

p:

G
€ 2
-@) @
1 a? N k 2ae
P =G [tanhz(aT) T sinh2(aT) ~ ttanh(aT)
€ 2
_ (E) ] (30)
1 202 4 2a? N 2k 6ae
&= 3GH “ tanh?(aT) = sinh?(aT) ttanh(aT)
2¢(1—¢)
= (31)

Case II: False Vacuum Model (y =-1)

When y = -1, we have the degenerate vacuum or false
vacuum or p vacuum (Cho [39]). Mohanty and Pradhan [40],
Singh et al. [32] and Singh and Devi [33] have investigated
such type of problem for viscous isotropic scenarios. The
physical parameters in terms of cosmic time ‘T’ have the
following expressions:

3 a? N k 2ae
G |tanh?(aT) = sinh?(aT) ttanh(aT)
€ 2
-]
1 2a? 2k 2ae
= ——|2a* - —— +
3GH tanh?(aT) sinh?(aT) ttanh(aT)

2¢(1
+¥] (33)

p=-p=
(32)

§

Case III: Stiff Fluid Model (y=1)

For y = 1, the fluid distribution corresponds with the
equation of state p = p which is known as Zeldovich fluid or
stiff fluid model (Zeldovich [41]; Barrow [42]). The physical
parameters in terms of cosmic time ‘T’ have the following
expressions:

3 a? k 2ae
p :p =

G |tanh? (aT) * sinh?(aT) - ttanh(aT)

(34)
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1 N 4a? N 4k 10ae
§ 3GH |* tanh?(aT) = sinh?(aT) ttanh(aT)
2¢(1 — 2¢)
+t—2 . (35)

Figure 2 depicts the variation of energy density p verses
cosmic time T for closed universe (k = +1). From this figure,
we observe that for € = -1, £ 0.5, p is a positive decreasing
function of time and ultimately it approaches to zero at late
time. For € = 1, p is negative in at early time and also an
increasing function of time approaching to a small positive
constant near zero at late time.

Figure 3 depicts the variation of energy density p verses
cosmic time T for open universe (k = -1).From Fig. 3, we
observe that for ¢ = -1, 0.5, p is a positive decreasing function
of time and ultimately it approaches to zero at late time. For ¢
= 0.5, 1, p is negative in at early time and also an increasing

function of time approaching to a small positive constant near
zero at late time.

Figure 4 graphs the variation of energy density p verses
cosmic time T for flat universe (k = 0). The nature of energy
density for flat universe is found to be similar as for open
universe. Thus, in our study for negative values of e =-1, & -
0.5, we obtain physically viable models of the universe for all
three open, flat and closed universe.

Figures 5 graphs the variation of the coefficient of bulk
viscosity & versus cosmic time T for y = -1in all three open, flat
and closed universes. From this figure, we conclude that the
case is not physically feasible.
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Figure 5 The plot of bulk viscous coefficient & versus T for false vacuum (y= -
1). Here G=a=1,e=-1
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Figure 6 The plot of bulk viscous coefficient & versus T for radiating
dominated model (y= 1/3). Here G=0=1, ¢ =-1
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Figure 7 The plot of bulk viscous coefficient & versus T for stiff fluid model
(y=1/3). Here G=0=1, e =-1

Figures 6 and 7 depict the variation of the co-efficient of
bulk viscosity & versus cosmic time T in radiating dominated
and stiff fluid models of the universe respectively. From these
figures, we observe that & is a decreasing function of time for

all three open, flat and closed models of the universe as
expected.
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IV.CONCLUSIONS

In this paper we have studied a spatially homogeneous and
isotropic FRW space-time within the framework of the scalar-
tensor theory of gravitation proposed by Canuto et al. [8]. To
find the deterministic solution, we have considered a time
dependent deceleration parameter which yields a scale factor as
a(t) = sinh(aT). In this case, it is observed that as T—o0, q = -1.
This is the case of de Sitter universe. For T—0, q = 0. This
shows that in the early stage the universe was decelerating
whereas the universe is accelerating at present epoch which is
corroborated from the recent supernovae la observation (Riess
et al. [44]; Perlmutter et al. [45]; Tonry et al. [46]; Riess et al.
[47]; Clocchiatti et al.[48]). The parameter H;, H, 0, and o
diverge at the initial singularity. There is a Point Type
singularity (MacCallum [43]) at T = 0 in the model. The rate of
expansion slows down and finally tends to zero as T — 0. The
pressure, energy density and scalar field become negligible
whereas the scale factors and spatial volume become infinitely
large as T — oo, which would give essentially an empty
universe.

The model represents expanding, shearing and non-rotating
universe. In literature we can get the solutions of the field
equations in scalar-tensor theory of gravitation formulated by
Canuto et al. [8] by using a constant deceleration parameter. So
the solutions presented in this paper are new and different from
other author’s solutions. Our solutions maybe useful for better
understanding of the evolution ofthe universe in FRW universe
within the frameworkof Canuto et al.’s scalar-tensor theory of
gravitation.
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