
Journal of Basic and Applied Physics                                                                                           Feb. 2013, Vol. 2 Iss. 1, PP. 13-19 

- 13 - 

Accelerating Bulk Viscous FRW Universe in a Scale-
Covariant Theory of Gravitation 

Anirudh Pradhan1, Anand Shankar Dubey2, Rajeev Kumar Khare3 

1Department of Mathematics, Hindu Post-graduate College, Zamania-232 331, Ghazipur, India 
2, 3Department of Mathematics, Sam Higginbottom Institute of Agriculture, Technology & Sciences 

Allahabad-211 007, India 
1pradhan.anirudh@gmail.com; 2asdubey77@yahoo.com; 3drrajeevkhare@gmail.com 

 
Abstract- The present study deals with cosmological models of 
FRW universe in presence of bulk viscous fluid source in the 
scale-covariant theory of gravitation formulated by Canuto et al. 
[Phys. Rev. Lett. 39:429, 1977]. A new class of solutions for the 
modified Einstein’s field equations is obtained by considering time 
dependent deceleration parameter. It is observed that the models 
are accelerating at present epoch. Some physical aspects of the 
models are also discussed in this paper. 
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I. INTRODUCTION 

Alternative theories of gravitation have been extensively 
studied in connection with their cosmological entailment. One 
such class of theories is the scalar-tensor theories (STT) of 
gravity. This class of models had renewed interest in recent 
times for two main reasons. First, the new inflationary scenario 
as the extended inflation has a scalar field that solves several of 
problems present in the old theories. Second, string theories 
and other unified theories contain a scalar field, which plays a 
similar role to scalar field of the STT. The scalar-tensor 
theories started with the work Jordan in 1950 [1]. 

Note-worthy among them are scalar-tensor theories of 
gravitation formulated by Brans and Dicke [2], Nordtvedt [3], 
Sen [4], Sen and Dun [5], Wagoner [6] and Saez&Ballester [7]. 
Another interesting viable alternative to general relativity is the 
theory proposed by Canuto et al. [8] which is the so-called 
scale-covariant theory of gravitation. In recent years there has 
been a considerable interest in this theory. These are theories in 
which the field equations are invariant not only under groups of 
transformations, as in general relativity, but also under scale 
transformations. Dirac revived the more general geometry of 
Weyl in an effort to extend the invariance of the fundamental 
equation to changes in scale. The formalism of scale-covariant 
theories was later developed by Canuto [8] [14]. A particular 
feature of this theory is that no independent equation for the 
gauge function Φ exists, and therefore it cannot be determined 
within the theory. One must go outside the theory in order to 
specify the form of Φ as well as its relationship with G. 
External conditions must be provided based on physical 
considerations, such as Dirac LNH or CMBR. The possibilities 
that have been considered for gauge function Φ are Φ(t) = tε, ε 
= ±1, ± ½ [9,15]. 

According to the above scale-covariant theory, Einstein’s 
field equations are valid in gravitational units where as 
physical quantities are measured in atomic units. The 
components of metric tensor in the two systems of units are 
related by a conformal transformation/factor  ̅ = 	 	( ) ,																																																							(1) 
where in Latin indices take values 1, 2, 3, 4. The barred 
quantities refer to gravitational units and un-barred quantities 
denote to atomic units. In this theory we have a metric and the 
scalar gauge function Φ, so Canuto attempted to write the field 
equations in a form such that their form remains invariant 
under both arbitrary coordinate and arbitrary-scale 
transformations. The gauge function Φ, (0 < Φ < ∞) in its most 
general expression is function of all space-time coordinates. 
Thus using the conformal transformation of the type given by 
equation (1), Canuto et al. [8, 9] transformed the usual Einstein 
equations into  − 12 +	 ( ) = 	−8 ( ) + 	Λ(Φ) ,										(2) 
where = 2 ; − 	4 − ; − .																(3) 

Here Rij is the Ricci tensor. R the Ricci scalar, Λ the 
cosmological ‘constant’, G the gravitational ‘constant’ and Tij 
the energy momentum tensor. A semicolon denotes covariant 
derivative and Φi denotes ordinary derivatives with respect to 
xi. A particular feature of this theory is that no independent 
equation for Φ exists. The speculations that have been 
considered for gauge function Φ are (Canuto et al. [9]) ( ) = , = 	±1,± 12,																																	(4) 
where t0 is constant. The form ~ 																																																						(5) 
is the one most favoured to fit observations (Canuto and 
Goldman, [16, 17]). 

In recent years there has been a lot of interest in the study 
of scale covariant theory of gravitation with perfect fluid 
matter distribution as source. Reddy and Venkateswarlu [18] 
studied Einstein-Rosen universe in the scale-covariant theory 
of gravitation. Venkateswarlu and Kumar [19] obtained higher 
dimensional string cosmologies in scale-covariant theory of 
gravitation. Reddy [20] also obtained a higher dimensional 



cosmological model in a scale-covariant theory of gravitation. 
Recently, Adhav et al. [21], Ram et al. [22] and Belinchόn [23] 
studied the scale-covariant theory of gravitation indifferent 
context. 

Cosmological models with bulk viscosity are important 
since it has a greater role in getting accelerated expansion of 
the universe popularly known as inflationary phase. At early 
stages of the universe when neutrinos decoupling occurred, the 
matter behaved like viscous fluid. The coefficient of viscosity 
decreases as the universe expands. Misner [24, 25] examined 
the effect of viscosity on the evolution of the universe and 
suggested that the strong dissipation, due to the neutrino 
viscosity, may considerably reduce the anisotropy of the 
blackbody radiation. Murphy [26] developed a uniform 
cosmological model filled with fluid which possesses pressure 
and bulk viscosity exhibiting the interesting feature that the 
big-bang type singularity appears in the infinite past. The detail 
review of bulk viscosity is given in references Singh et al. [27], 
Pradhan [28, 29, 30]. Recently, Singh and Sorokhaibam [31] 
and Singh et al. [32] and Singh and Devi [33] have studied 
Friedmann cosmological models with bulk viscosity in a scale-
covariant theory of gravitation. 

Motivated by the above discussions, in this paper, we study 
FRW cosmological models by considering a time dependent 
deceleration parameter in scale-covariant theory of gravitation 
proposed by Canuto et al. [8, 9]. The paper has following 
structure. In Section I, the introduction and the field equations 
are given. In Section II, the metric and field equations are 
described. The Section III deals with the exact solution of the 
field equations and physical behavior of the model. At the end 
we shall summarize the findings in Section IV. This study is 
relevant in view of the recent scenario of the accelerating of 
universe. 

II. THE METRIC AND FIELD EQUATIONS 

We consider the spatially homogeneous and isotropic FRW 
space-time given by =	 − ( ) (1 − ) +	 	(+	 ) ,																																															(6) 
where a(t) is the scale factor and the curvature constants k are -
1,0,+1 for open, flat and closed models of the universe 
respectively. 

The energy-momentum tensor for bulk viscousfluid 
distribution is taken as = ( ̅ + 	 ) − ̅ ,																																	(7) 
together with comoving co-ordinates ui= (0, 0, 0, 1)and = 1, = 0,																																									(8) ̅ = − ; ,																																																				(9) 
where ui is the 4-velocity vector of the cosmic fluid, ̅, p and ρ 
are the effective pressure, isotropic pressure and energy density 
of matter respectively, ξ is the coefficient of bulk viscosity 
which is a function of time t. Here ρ, p and Φ are homogeneous 
function of cosmic time t.  

The expansion scalar is given by =	 ; = 3 .																																																	(10) 
Using Eqs. (8), (9), (10) and comoving coordinates for the 

line-element (6), the modified Einstein field equations (2) and 
(3) lead to the following two independent equations 2 + + 	 − 	4	 + − 2

=	− − 3 ,																																						(11) 
3 +	 − 	6 − 	3	 = .															(12) 

The overhead dots represent time derivative and double dots 
represent double differentiation with respect to time t.  

The usual energy momentum conservation relation ; =0leads to + 	3	 + 	 − 3 = 0.																					(13) 
In this paper, we consider a special form of the gauge function 
as = ,																																							(14) 
where  is arbitrary constant. The equation of stateis taken as = 	 ,																																							(15) 
where -1≤ γ ≤ 1. 
 

III.  SOLUTIONS OF THE FIELD EQUATIONS 

The function a(t) remains undetermined. One may have to 
apply additional assumption to solve its explicit dependence on 
‘t’. We solve the field equations (11)-(12) by considering the 
deceleration parameter to be time-dependent. We define the 
deceleration parameter q as =	− = 	− +	 = ( ),												(16) 
The motivation to choose such time dependent DP is behind 
the fact that the universe is accelerated expansion at present 
and decelerated expansion in the past. Also, the transition 
redshift from deceleration expansion to accelerated expansion 
is about 0.5.Now for a Universe which was decelerating in 
pastand accelerating at the present time, the DP must show 
signature flipping (see the Refs. Padmanabhan and 
Roychowdhury [34], Amendola [35], Riess et al. [36]). So, in 
general, the DP is not a constant but time variable.  
The equation (16) may be rewritten as + 	 = 0.																																				(17) 
In order to solve the Eq. (17), we assume b = b(a).It is 
important to note here that one can assume b = b(t) = b(a(t)), as 
a is also a time dependent function. It can be done only if there 
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IV. CONCLUSIONS 

In this paper we have studied a spatially homogeneous and 
isotropic FRW space-time within the framework of the scalar-
tensor theory of gravitation proposed by Canuto et al. [8]. To 
find the deterministic solution, we have considered a time 
dependent deceleration parameter which yields a scale factor as 
a(t) = sinh(αT). In this case, it is observed that as T→∞, q = -1. 
This is the case of de Sitter universe. For T→0, q = 0. This 
shows that in the early stage the universe was decelerating 
whereas the universe is accelerating at present epoch which is 
corroborated from the recent supernovae Ia observation (Riess 
et al. [44]; Perlmutter et al. [45]; Tonry et al. [46]; Riess et al. 
[47]; Clocchiatti et al.[48]). The parameter Hi, H, θ, and σ 
diverge at the initial singularity. There is a Point Type 
singularity (MacCallum [43]) at T = 0 in the model. The rate of 
expansion slows down and finally tends to zero as T → 0. The 
pressure, energy density and scalar field become negligible 
whereas the scale factors and spatial volume become infinitely 
large as T → ∞, which would give essentially an empty 
universe. 

The model represents expanding, shearing and non-rotating 
universe. In literature we can get the solutions of the field 
equations in scalar-tensor theory of gravitation formulated by 
Canuto et al. [8] by using a constant deceleration parameter. So 
the solutions presented in this paper are new and different from 
other author’s solutions. Our solutions maybe useful for better 
understanding of the evolution ofthe universe in FRW universe 
within the frameworkof Canuto et al.’s scalar-tensor theory of 
gravitation. 
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