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Abstract- A unifying and optimising model of decision making 

is presented in this paper. The model is based on two 

hypotheses: that there is one general strategy of decision 

making which can recreate many specific strategies depending 

on some environmental parameters, and that human decision 

making is rational if we take into account all cognitive 

limitations, features of the environment and the task that an 

agent actually attempts to solve. Testing of the model aimed to 

verify specific hypotheses about the match between the model’s 

predictions and the empirical data and the existence of some 

phenomena expected due to the workings of the model’s 

hypothetical mechanism, as well as the aforementioned general 

hypotheses about decision making. The model’s performance 

has been found to be consistent with subjects’ results. 

Particularly, the model has a better match to data than other 

related models. 

Keywords- Decision making; Rationality; Mathematical 

modelling 

I. INTRODUCTION 

Similarly as in many psychological areas, early theories 

developed in the domain of decision making were normative 

(e.g., [1]). Likewise, as in other psychological fields, these 

theories were soon abandoned in favour of concepts that 

tried to explain numerous observations which did not fit 

normative laws and which seemed to contradict the thesis 

about the rationality of human cognition. Thus, the history 

of decision making theorising is a history of the transition 

from a purely normative explanation (the expected value 

hypothesis), through theories that allow for the inclusion of 

parameters to explain those aspects of human behaviour 

which seem to be irrational and biased (the expected utility 

hypothesis [2]) and theories which accept yet more 

parameters (the subjective expected utility hypothesis [3], 

the Prospect Theory [4]), and so to the present theories 

which emphasise biases and mechanism-based phenomena. 

The direction in which theories of decision making have 

evolved has therefore been determined by the goal of 

achieving the best explanation for the data. There have, 

however, been many drawbacks with this evolution. The 

resulting loss of simplicity was but one cost of these 

theories’ capacity to explain more of the observed 

phenomena. According to Paulewicz [5] another 

disadvantage involved a sole reliance on empirical data to 

provide justification for such theories and the disappearance 

of a direct reference to more general psychological and 

cognitive theories. He suggests that the latter effect was not 

caused by the rise of the complexity itself, but rather by 

either neglecting or carelessly defining such basic terms as 

goal, rationality and behaviour. 

Currently, one of the most widely accepted theories of 

decision making is the Adaptive Toolbox theory [6]. This 

concept assumes that people use many middle-range tools 

that exploit regularities in the environment instead of using 

a ―single hammer‖ which needs a complete representation 

of the environment for all purposes. There are two main 

features of the Adaptive Toolbox theory. First, it is based on 

Simon’s [7] idea of bounded rationality. Second, it assumes 

a diversity of strategies. The strategies that belong to the 

Adaptive Toolbox are mostly fast and frugal heuristics [8]. 

They are called fast and frugal because they limit 

information searching and do not require much 

computation. They are heuristic because they are 

ecologically rational rather than logically consistent. 

The three advantages of simple heuristics (swiftness, 

frugality, and ecological rationality) are not 

incontrovertible. The swiftness of the heuristics supposedly 

lies in the fact that they use simple operations. For example, 

the ―Take the Best‖ (TTB) heuristic makes a decision by 

simply comparing the cue values, while the weighted 

additive algorithm (WADD), the strategy most often used as 

a counterexample for the Adaptive Toolbox strategies, uses 

more complex linear transformations. However, if people 

are equipped with mental mechanisms that are specialised in 

parallel processing of some types of information [9], or if 

the processes of computing cue values and weights can be 

automatised [10], WADD can be as fast as TTB (or even 

faster, since TTB is recursive and WADD is simple). The 

second feature, frugality, allegedly consists of the fact that 

simple heuristics use less information or information that is 

easier to collect. In fact, taking the two major strategies 

from both classes as an example again, WADD requires 

information about the validity of cues (the proportion of 

number of cases in which a cue indicates the correct 

alternative to the number of all cases in which it 

discriminates between alternatives), whereas TTB uses 

simpler information about the order of validities. The 

strength of this argument, however, is weakened by two 

facts. Firstly, the order of validities is very difficult to obtain 

from the environment [11]. Secondly, WADD can work 

efficiently with validities estimated on the basis of such 

order [12]. Finally, the ecological rationality of simple 

heuristics is more of a declared rather than an established 

feature. Several experiments [13, 14, 15, 16] have revealed 

that simple heuristics are used less frequently than following 

from their hypothetical accuracy. 

The two hypotheses that underlie the Adaptive Toolbox 

Theory (namely: bounded rationality of the decision making 

and diversity of decision making strategies) are to be 

questioned in the current paper. This will be attempted both 

by theoretical analysis and by proposing a decision making 

model which attempts to find the optimal solution of the 
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choice problem by means of one general mechanism which 

takes into account environmental conditions. 

A. Rationality of Decision Making 

An important feature of the strategies that belong to the 

Adaptive Toolbox is the fact that they are boundedly 

rational. The notion comes from Simon and is characterised 

as follows [17, p. 198]: 

For the first consequence of the principle of bounded rationality 
is that the intended rationality of an actor requires him to 

construct a simplified model of the real situation in order to deal 

with it. He behaves rationally with respect to this model, and 
such behavior is not even approximately optimal with respect to 

the real world. 

What does ―not even approximately optimal‖ mean? Is  

a boundedly rational agent’s behaviour even not close to 

optimality? If it is not, how can we know what the agent is 

actually doing? When are we justified in claiming that an 

observed agent, which exhibits behaviour ―A‖, is in fact 

aiming at behaviour ―B‖, but fails to do so optimally? 

Paulewicz [5] points out that the only situation in which we 

are allowed to do so is when we know that (a) the agent has 

a certain goal, and (b) approximetly optimal action that 

leads to achieving this goal is behaviour ―B‖. Note that the 

―optimal‖ mentioned in Point (b) means objectively optimal, 

not optimal with respect to some simplified, internal model. 

Therefore, behaviour can only be understood and analysed 

as far as it is known what goal it is meant to achieve and 

what the optimal solution of the problem is [5]. Besides, it is 

not assumed in the argument that the agent knows or can 

find the optimal solution (or rational solution, as in this 

paper the terms ―optimal‖ and ―rational‖ are used 

interchangeably, which is reasonable in the context and 

commonly practised in this field of research, see [18]). 

One can hardly disagree with Simon’s view that agents 

often cannot reach a solution which is optimal in the 

classical, normative way due to its computational and 

informational costs. But there are many cases in which 

agents seem to act non-optimally, whereas their behaviour 

in fact is optimal. It can be seen as non-optimal with regard 

to the task as it is defined by an observer because the task 

that an agent is actually trying to solve is a different one [5]. 

The rationality used in such situations, compared to the 

normative one, is not the rationality that requires 

a simplified model (as Simon suggests). The rationality used 

in such cases is the same as that in the normative case if it 

took into account all limitations, costs, and the way in which 

the agent represents the task. 

A good example of a phenomenon often considered to 

be a common non-optimal behaviour is the probability 

matching strategy. The simplest task in which this strategy 

can be observed is the multiple-alternative iterated-choice 

task (the multi-armed bandit problem). The task entails the 

series of choices of actions from a finite set. Every action 

generates a reward, with the goal of the task being to 

maximise the cumulated reward. The probability matching 

strategy involves choosing the action with a probability 

proportional to its relative reward value. It is clear that the 

probability matching strategy is not an optimal solution for 

a well specified, static multi-armed bandit problem. The 

optimal agent is the one which always chooses the most 

promising action. Of course, if the agent does not know the 

reward distribution, it must explore the environment in order 

to find the best action. Otherwise it may end up repeatedly 

choosing an alternative that is not the best, but which 

seemed to be the best on the basis of the first few noise-

laden feedbacks. 

However, even though in an uncertain situation the 

frequency of choosing the best action should tend towards 

one while the agent’s uncertainty about the expected values 

of actions declines [19]. Despite this fact many research 

results (e.g., [20, 21]) have shown that people tend to use 

the probability matching strategy in most cases. Therefore, 

if people and other animals attempt to solve a multiple-

handed bandit problem, more specifically: if they attempt to 

solve a stationary, fully defined, isolated multi-armed 

problem, they usually do not behave rationally using 

a probability matching strategy. But can we be sure that the 

strategy observed is really chosen as a solution to this 

specific problem? 

The probability matching strategy seems to be 

suboptimal, but it can be shown that it is actually optimal in 

an environment characterised by at least one of two features 

typical of the environment in which human evolution 

occurs. The first feature involves competition for resources; 

the second is environmental dynamism. It has been 

demonstrated that the probability matching policy is an 

evolutionarily stable strategy for an individual agent facing 

its competitors [22, 23]. It seems obvious that its alternative, 

the greedy strategy, would lead to an irrational situation in 

which all agents share rewards from the most abundant 

source, while the less promising one remains unexploited. 

The second feature that makes the strategy evolutionarily 

stable is environmental dynamism [24]. As is stated above, 

the optimal strategy in an uncertain environment is not 

a greedy one [25]. An unstable environment is always, by 

rule, uncertain, so it requires a more sophisticated policy. 

What is more, Daw, O’Doherty, Dayan, Seymour, and 

Dolan [26] have shown that a strategy that is similar to 

probability matching has the best match to human behaviour 

among all the tested strategies in a dynamic environment. 

Other modelling research has also shown that the 

probability matching strategy may be an emergent feature of 

an evolving, foraging system [27]. The probability matching 

rule deserves wider review not only because it is a good 

example of an ostensibly suboptimal strategy which, after 

closer investigation, turns out to be, in fact, optimal, but also 

because it is used as a part of the proposed model which will 

be further described below. 

The question of seeking an optimal solution can only be 

discussed on the grounds that people have the ability to 

explore strategies. Moreover, if people did not try different 

strategies in order to maximise results, or if they did so 

without any regard to optimality (e.g., relying on common 

belief, maladaptive routine, or random choice), the model 

proposed in the current paper could not be accurate. But 

several studies show that people are able to adapt their 

strategies to the environment. Bröder and Shifter [28] have 
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shown that people choose decisional strategies 

appropriately. Over 65% of their choices fit an optimal 

strategy in a static environment, although they mostly fail to 

detect a change in the environment that occurs while the 

task is being performed. On the other hand, Newell and Lee 

[29] have demonstrated that throughout the whole task 

people can vary the amount of information taken from the 

environment according to changes. Furthermore, the results 

provided by Payne, Bettman and Johnson [30] show that 

people are highly adaptive when responding to changes in 

the environment which occurred during the experiment. 

B. Generality of Decision Making 

The Adaptive Toolbox theory states that there are many 

qualitatively different strategies of decision making. The 

alternative hypothesis presented herein claims that there is 

one general strategy which is used in all classes of 

decisional situations. This hypothesis may seem improbable 

because it is evident that people behave differently in 

different environments (e.g., [31, 32]). However, this fact 

does not falsify the hypothesis about general decision 

strategy. The strategy might be flexible; it could recreate 

different specific strategies by adjusting some parameter. 

Newell [33] has noticed that all major decision strategies 

from the Adaptive Toolbox can be ordered with respect to 

the amount of information required for making a decision. 

This has led him to the hypothesis that there is a mechanism 

which makes a decision on the basis of the amount of 

information available in the environment and that it works 

like a corresponding Adaptive Toolbox strategy which 

requires the same amount of information. 

However, this interesting proposition is purely 

theoretical. Newell has not proposed any particular 

mechanism which fits the criteria that he himself had 

stipulated. Nevertheless, a few suggestions for a mechanism 

that unifies compensatory and noncompensatory strategies 

have been described by others. A significant example is the 

study conducted by Lee and Cummins [34], who tested the 

Evidence Accumulation Model (EAM) of decision making. 

The model works by accumulating the cue-based evidence 

indicating that a given alternative is the best one. When the 

difference between the accumulated evidence strength of the 

stronger and the weaker alternative surpasses a specified 

value, the respective alternative is chosen. The idea of the 

evidence accumulation is not quite new; it originally 

appeared in the Random Walk Model [35, 36], and was later 

applied in many decision making models (especially in 

Diffusion Model [37]), but an interesting feature of Lee and 

Cummins’ model is that it can reproduce the performance of 

both compensatory and noncompensatory strategies 

depending on the value of the requested evidence strength. 

Also within the Adaptive Toolbox Theory, a mechanism 

that adapts agents’ behaviour to environmental constraints 

has been proposed. A model based on Strategy Selection 

Learning theory (SSL [38]) learns to use different strategies 

from a hypothetical repertoire. The model uses the 

reinforcement learning paradigm [25] to learn which 

strategy leads to the highest dividend in different 

environments or classes of decision situation. The basic 

action which is evaluated after getting feedback is the 

choice of a strategy. Also the basic state of the environment 

is defined with general terms—it is the whole decisional 

situation. At every step the model picks a predefined 

strategy from its repertoire and applies it. After receiving 

feedback it updates the metastrategy (the strategy for 

choosing the elementary strategy) according to the 

reinforcement learning rules. Although the SSL model does 

not apply one general strategy but rather uses a metastrategy 

to manage many simple strategies, it is nevertheless possible 

that in some conditions it will emergently exhibit 

a continuous adaptation of the informational intake. 

Although the two previously mentioned strategies 

accommodate information intake, they differ considerably. 

While the EAM does indeed recreate different classes of 

strategy, SSL just uses different predefined strategies 

according to a policy determined by a metastrategy. On the 

other hand, SSL tends to have optimal performance as it is 

based on a general optimising paradigm of reinforcement 

learning, while EAM does not aim to achieve optimality 

directly. 

Taking into consideration these objections to the 

widespread notions of decision making, it seems reasonable 

to propound a thesis according to which the assumptions 

behind the contemporary view on this field (involving, 

namely the bounded rationality and variety of strategies), 

are a little too far-reaching. Verification of the model 

proposed will also be a verification of its two fundamental 

claims: (a) human decision making is close to optimal, and 

(b) there is one general and flexible strategy which recreates 

many specific strategies. Phenomena which seem to deny 

the optimality of decision making have usually been caused 

by having a task or an environment poorly defined or by not 

having properly understood the actual goal that an agent 

attempted to achieve. These phenomena have also emerged 

due to neglecting the fact that agent’s performance 

depended on the environment in which the agents operated 

or on agents’ features and preferences. The model described 

below aims to take into consideration the previously 

mentioned premises. 

Moreover, the verification of the model is the 

verification of an entire class of models because the 

Optimising Model integrates many models, as it performs 

differently depending on the features of the environment. It 

includes both models belonging to adaptive toolbox as well 

as models from outside of it, as long as they can be located 

on Newell’s continuum of information requirement. 

II. THE MODEL 

The optimising model relies on the assumption that 

a decision maker’s main goal is to maximise a reward. The 

reward is equal to the difference between received payment 

and incurred costs, so the decision maker must achieve two 

subgoals: maximising the probability of a correct choice and 

minimising the costs. These two subgoals conflict because 

the more information from the environment one receives, 

the higher the probability of choosing the right alternative 

becomes, but always at the expense of a rise in costs 

incurred by an agent. 
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There have been many studies trying to find the relation 

between the costs and expected reward value. The earliest 

ones based the optimal criterion for terminating an 

information search on the difference between odds that 

a given alternative is correct. The results of research are 

ambiguous. Edwards and Slovic [39] have showed that 

people get as much information from an environment as is 

optimal, taking into account its cost and expected gain. On 

the other hand Fried [40] have found out that although 

people use an optimal amount of information when they 

have to decide in advance how much information they are 

going to use, they get less than an optimal amount of 

information when they can stop collecting information at 

any time. Other studies [41, 42] have shown that people do 

not use an optimal amount of information. A criterion of 

optimality which was derived from Bayesian theory was 

tested by Rapoport [43]. The subjects’ performance was 

only partially consistent with model predictions. 

A. The model’s Subgoals  

1)  Maximising the probability of correct decision 

As stated by Edwards [44, p. 188] ―information should 

be sought only if the expected cost of obtaining it is less 

than the expected gain from it‖. This thesis can hardly be 

considered to be false (at least as a normative statement), 

but how can ―expected gain‖ be assessed? The solution is 

quite simple if the reward value is known, as the expected 

gain is then proportional to the probability of receiving the 

reward. The more information is received from the 

environment, the more likely it is that the decision made on 

the basis of this information will be correct. Thus in the 

model the relation between the probability (P) of correct 

decision and the amount of the analysed information (n) is 

supposed to increase with negative acceleration (fig. 1), and 

is determined by the formula 1, 

                              P(n) = 1-(1-U(n))
n
                         (1)                                                                                  

 

Fig. 1  The expected reward value as a product of the probability of the 

correct choice and the payoff value 

Function P uses Function U, which returns the probability 

(in a discrete case) or the density of the probability (in 

a continuous case) of choosing the better alternative on the 

basis of the information in Point n. Note that the Function U 

can  either be fitted to observed data or set on the basis of 

the properties of the environment. The latter case is justified 

when it can be supposed that subjects know the properties of 

the environment (e.g., when they are provided to them 

explicitly or when they can be learned during training). If 

the Function U is determined by the properties of the 

environment, the model has no free parameters. 

2)  Minimising the costs: 

An environment in which information is free is both 

unchallenging and unreal. It is unchallenging because the 

optimal strategy in such an environment is simply to gather 

all possible information as such a policy maximises the 

probability of making correct decisions. It is unreal because 

in the natural environment information is hardly ever free. 

Gathering information usually consumes material resources 

and energy or carries risk, but even if it does not, it still 

requires time and cognitive resources to process the data. 

There are many possible functions that describe how costs 

increase as the amount of gathered information rises (e.g., 

linear, proportional to cue value or random). Since the costs 

are cumulative, all of them are ascending and the expected 

value of the reward (which is equal to the difference 

between the starting value of the payoff and the value of the 

cost) declines over n, regardless of an interpretation of n 

(e.g. time, information portion, or processing progress). 

As both subgoals described above depend inversely on 

the amount of information obtained from the environment, 

this amount must be optimised with regard to an overall 

reward. Function r (see formula 2) returns the expected 

reward on the basis of the probability of the correct choice 

(P), gain of the correct decision (g), the function of the 

information cost (k) and the cost of a decision (K): 

r(n) = P(n)g – k(n) – K                      (2) 

The optimal amount of received information is 

argmaxnr(n) (where argmaxxf(x) is the value of x for which 

function f returns the highest value). 

As long as both functions P and k are continuous and 

integrable, function r is also continuous and integrable. The 

feature of continuity is helpful as k is not necessarily 

a discrete cue charge, but it can reflect any costs (e.g., time 

costs). Integrability is important due to the possibility of 

applying the probability matching strategy. 

Since optimal strategy depends on the environment in 

which the decision is taken, people could be expected to 

take the optimal amount of information in every trial only if 

they explicitly computed the expected reward on the basis of 

the amount of information taken. It is far more probable that 

people learn the profitability of actions on the basis of 

feedback. Thus, because the greedy strategy has previously 

been said to be non-optimal when learning about an 

uncertain environment, it seems plausible that the 

probability matching rule will be applied to seeking 

information. 
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To reflect the probability matching rule in the optimising 

model, Function R has been built into it. The function 

returns the probability that a decision will be made after 

obtaining the amount of information that is in the range [l, 

h] and it is described by the formula 3: 

 

 

 

(3) 

where I is the maximum amount of information available. 

The function reflects the hypotheses that the probability of 

getting an amount of information in given interval is 

proportional to the expected reward for the action taken on 

the basis of the information. Point estimation for the 

expected reward is given by the function r, so the relative 

value is a proportion of the integral of r over the given 

interval to the integral of r over all the function domain. 

B. The model performance 

Due to its abstract formulation, equation 1 can reflect 

various probability functions by using various U functions. 

Let us consider the two most interesting instances of 

function U. 

1)  The multiple cue choice task: 

Symbol n refers to a cue revealed in the n-th step. Then 

Function U specifies the probability of choosing the better 

alternative on the basis of cue n, which takes into 

consideration its validity and its discrimination rate 

(frequency of cases in which the cue value is different for 

different alternatives). Property that meets this criterion is 

―success‖ [45]. In that case, the Function U and (as 

a consequence) the Function P are discrete and not 

differentiable. 

2)  The item recognition task: 

In the task (as described by Ratcliff [37]) n refers to 

time, and the probability of choosing the better alternative 

on the basis of information perceived in a given time 

interval rises linearly with the length of the interval. Then 

Function U is equal (d/dn)cn, where c is Ratcliff’s drift 

parameter, and it takes the following form: U(n) = c. 

Depending on the Function U, the Function P can be 

more or less concave. The more concave it is, the earlier 

Function r achieves its maximum, and therefore (as -k(n) 

decreases) the bigger the maximum value is. Accordingly it 

is optimal to use the order of cues that maximises the 

concavity of P, which is, in the case of the multiple cue 

choice task, the order based on success. Therefore the 

success determines the order of cues which allows the most 

efficient information search, but the model itself does not 

include a mechanism for finding proper cue search order. 

Empirical findings [45, 46] confirm  the expectation that cue 

search order is based on success. 

One of the main features of the model is its generality, 
which is defined here as a capacity for recreating many 
decisional strategies which are considered to be elements of 

the Adaptive Toolbox [6] and some strategies outside of it. 
Taking Newell’s [33] assumption about the continuous 
quantitative difference between strategies, it is expected that 
the model will be able to recreate strategies which use 
different amounts of information. As the difference is 
continuous, the model’s performance should not recreate 
a set of particular strategies but rather any point on the 
continuum from the most to the least informationally 
demanding (e.g., from WADD to ―take one‖ [14], or even 
the extreme case of random choice). Since the model has no 
free parameters, all variation within performance must 
derive from environmental features. 

The environmental feature which has been widely 
proved to influence the amount of information taken for 
a decisional process is the information cost. Available 
results concern both the direct costs expressed in reward 
units [13, 46] and time costs [30, 47] as well as memory 
retrieval or computational costs [48, 31]. The model can 
reflect the impact of costs of any type on the amount of 
information collected from the environment as long as the 
relation between the costs and the information can be 
expressed as a function. In particular, the model can account 
for well-specified cognitive costs of information processing. 
It is probable that people treat the costs of processing 
similarly to the objective external costs: Newell and Lee 
[29] have shown that people tend to minimise the amount of 
information processed during decision making. Indeed, the 
optimising model uses various amount of information 
depending on the information costs. The higher the costs 
are, the lower both the optimal amount of information and 
the expected amount of information taken by an agent who 
uses the probability matching strategy are (see table I). 

TABLE I INFLUENCE OF THE COSTS ON THE NUMBER OF CUES REVEALED BY 

THE MODEL 

Cue 

cost 

Number of cues revealed 

1st  quartile 
Optimal 

number 
3rd quartile 

.1 1.13 2.25 2.39 

.2 1.02 1.54 2.26 

.3 .84 1.14 1.92 

.4 .49 .87 1.01 

Note: The quartiles refer to informational intakes according to the 

probability matching rule. 

Another feature of the environment which is supposed to 

affect the amount of information processed by an agent is 

the relation between the validities of cues. The decisional 

environments can be divided into two classes: compensatory 

and noncompensatory. A noncompensatory environment is 

defined as one in which, in every subset of cues, the most 

valid cue has a higher validity than the sum of validities of 

the remaining cues [49]. In compensatory environments the 

validities of cues do not fit the above description. The 

feature of being compensatory or noncompensatory can be 

generalised as being continuous. Let us assume that the 

more the most valid cue surpasses the validities of the 

remaining cues in every subset, the more noncompensatory 

the environment is. 

According to rational analyses, compensatory strategies 

like WADD will perform better in compensatory 
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environments, whereas noncompensatory strategies, like 

TTB, will similarly perform better in noncompensatory 

environments [50]. The actual performance of the examined 

subjects confirmed these predictions. It has been shown [13, 

51] that in noncompensatory environments people use 

compensatory strategies less frequently than in 

compensatory environments. The model recreates this 

phenomenon as well; the more noncompensatory the 

environment is, the less cues it reveals (see table II). 

TABLE II INFLUENCE OF THE TYPE OF ENVIRONMENT ON THE NUMBER OF 

CUES REVEALED BY THE MODEL 

Validity 

imparit

y 

Number of cues revealed 

1st  quartile 
Optimal 

number 
3rd quartile 

-1 1.02 1.75 2.33 

-.7 1.07 2.04 2.35 

-.4 1.11 2.18 2.37 

Note: The quartiles refer to information takes according to the probability 

matching rule. The bigger the validity imparity, the more compensatory the 
environment (imparity is an exponent of validity regression line). 

C. The model’s Predictions 

There are three rules by which every decisional strategy 

can be characterised. The searching rule determines which 

algorithm is being used to get information from the 

environment, particularly in what order the cues are 

revealed. The stopping rule determines how much 

information the strategy takes from the environment. 

Finally, the decision rule determines which decision is made 

on the basis of the information taken. Most studies, due to 

practical reasons, examine just one of the strategy’s 

features. In the present paper the searching rule is the 

feature which is at the centre of attention. There are two 

reasons for this. Firstly, the model’s predictions concerning 

the amount of information taken are quite different from 

other model’s predictions (as was stated previously, the cue 

order used by the Optimising Model is consistent with cues’ 

success). Secondly, according to both the searching rule and 

the decision rule, the model gives deterministic predictions, 

which are more difficult to test quantitatively than 

indeterministic predictions. 

The process of optimising the amount of information 

taken from the environment in the model described herein 

involves a trade-off between two opposite goals (namely 

maximising the probability of making the correct decision 

and minimising the costs). One of the ways to determine 

whether there actually are two subprocesses which aim to 

fulfil these two goals is to try to affect the subprocesses 

selectively. The hypotheses assuming the separation of the 

subprocesses are based on the Prospect Theory [4], which 

predicts what conditions can influence the perceived scale 

of gain and loss. The Prospect Theory can therefore be used 

to manipulate the representation of the values of costs and 

rewards. 

The Prospect Theory states that subjective perception of 

loss or gain is not a linear function of objective changes. 

The actual function has four features. (a) It is defined in the 

domain of gains and losses instead of absolute values. (b) In 

the case of two identical objective changes the perception of 

loss is bigger than the perception of gain. (c) The function is 

convex for losses and concave for gains. (d) The function 

increases with positive acceleration for losses and negative 

for gains. 

The complex progress of the function of the subjective 

value change gives rise to the expectation that in different 

conditions the motivation to avoid loss and the motivation to 

gain will have different strengths. One possible influence on 

the disproportion between these motivational strengths 

relies on the fact that in the case of two identical objective 

changes the subjective perception of loss is bigger than the 

subjective perception of gain. The expected value of the 

subjective change (which is an effect of an objective change 

of a given size) is negative when the direction of the change 

is unknown (e.g., when no feedback on rewards is given). 

Therefore, the expected strategy chosen by people whose 

goal is to maximise the accumulated reward would be 

a conservative one (i.e., by using more information). Such 

a strategy would allow for assurance from expected loss. By 

contrast, when people can monitor their progress and react 

to the negative effect of excessively risky behaviour, there is 

no need for assurance in the form of a conservative strategy. 

Another way to affect the trade-off between the two 

subgoals of the presented model is related to the fact that the 

function of the subjective value of the changes is convex for 

losses and concave for gains, thus explaining the reflection 

effect, which in turn implies that risk aversion in the 

positive domain is accompanied by risk seeking in the 

negative domain [4]. The consequence of this variation in 

the curvature of the function is the following. The expected 

value of the change (when the direction of the change is 

unknown) is positive for a person who perceives their 

position as negative in comparison to some reference point 

and, similarly, the expected value is negative for a person 

whose position is perceived as relatively positive. So, if 

there is a predecisional trade-off described above that works 

by adjusting the amount of information to be processed, the 

output of the trade-off should be affected by (a) the 

possibility of monitoring the rewards and by (b) the 

subjective relative position of the decision maker in the 

dimension of losses and gains. 

The best criterion for choosing one of the models 

described above is the one that includes their match to the 

observed data and their complexity. The latter can be 

evaluated only in comparison to other models. The models 

that were chosen to be compared against the Optimising 

Model were TTB and the Evidence Accumulation Model. 

Firstly, because they are the most widely discussed simple 

models of decision making, and secondly, because they 

predict among other phenomena the amount of information 

taken from the environment, which is the main feature of the 

model’s strategy examined in this research. 

―Take The Best‖ is a lexicographic, recursive and 

deterministic model of decision making. It works by 

comparing cue values for two alternatives in order of the 

cue’s validity. If the most valid cue discriminates, the 

alternative which is indicated by the cue is chosen. If the 
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cue does not discriminate, the TTB runs through the set of 

remaining cues. When the set is empty, random alternative 

is chosen. Thus, the frequency of revealing n cues by TTB is 

equal to d1 for the first cue, (k=1
n-1 

1-dk)dn for the middle 

cues k=1
n-1

 1-dk for the last cue, where dk is the 

discrimination rate of the k-th cue. 

The Evidence Accumulation Model is generally similar 

to TTB in the way that it reveals cues in order of their 

validity and makes a decision if cue-based information 

indicates one of the alternatives with sufficient credibility. 

However, computing the number of cues revealed is a bit 

more complicated in this case as more information must be 

taken into consideration. Apart from the cues’ 

discrimination rate, their validities and threshold parameter 

must also be included in the analysis. However, the 

frequency with which a cue is revealed is constant in some 

intervals of threshold parameter values. The interval limits 

depend on cue validities. For example, if the threshold 

parameter is low enough, the EAM behaves exactly like 

TTB because any discriminating cue makes the evidence 

strength pass the threshold, thereby causing a decision to be 

made that is consistent with the cue’s indication. On the 

other hand, if the threshold parameter is higher than some 

critical value, EAM applies a compensatory strategy which 

makes a decision on the basis of all cues. 

These two models can, however, be a little awkward, as 

they are both deterministic. It means they cannot be 

evaluated by the use of the measures that take into account 

information about the probability of the model given the 

observed data (e.g., BIC, MDL, or K – bayes factor [52]). 

The models also make predictions that render them too 

easily falsifiable on the basis of some observations: both 

TTB and EAM predict that people would reveal at least one 

cue. Since the likelihood of at least one success given the 

model that predicts zero successes is zero, these models 

would be falsified if a decision was made after revealing no 

cues. Rejecting these models on the basis of the 

aforementioned fact, were it ever observed, would be 

nonetheless a little premature. Such observations, providing 

their number is small, can stem from an error rather than 

a systematic trend. Besides, both models can be easily 

extended with some error parameters to eliminate the 

problems discussed. After adding the parameter s that 

describes the probability of stopping the information search, 

which was typically continued in the original versions, both 

models become probabilistic and capable of predicting 

a non-zero likelihood for all numbers of cues revealed. The 

basic models are then specific cases of the extended models 

with s = 0. 

Three hypotheses based on inference presented above in 

this section were tested. (a) In the loss condition, subjects 

will collect less information that in the gain condition 

because of asymmetry of the subjective perception of loss 

and gain (1st experiment). (b) In the feedback condition, 

subjects will collect less information that in the no-feedback 

condition because of the non-linearity of the subjective 

perception of loss and gain (2nd experiment). (c) There will 

be a match between the amount of information collected by 

the subjects and the amount predicted by the model in both 

experiments. Particularly: the match will be better than for 

other models considered. 

III. METHOD 

A. Participants 

Two experiments were performed. All 48 subjects (26 

women) participated in both. The mean age of the subjects 

was 20.52 (range: 19-24). The subjects were college 

students from Krakow, Poland. All were randomly drawn 

from a pool of students who had agreed to participate in 

experiments for course credits. Participants were paid for 

taking part in the experiment. The amount of payment 

depended on the level of task performance, and on average 

it was 25.21 PLN (≈ €6). In each experiment the 

participants were randomly divided into two groups: control 

or experimental and, independently, they were assigned to 

one of the two conditions: involving low or high cue costs. 

B. Apparatus 

The subjects were tested with a computer application 

consisting of a forced-choice multiple-cue task. The task 

consisted of a series of decisional situations. In each of 

them, subjects had to choose one of two given alternatives. 

The choices could be based on the values of cues. In every 

decisional situation three binary cues were available. All 

were covered, and revealing any of them involved some 

specified costs. Revealing a cue would result in displaying 

the values of the cue for both alternatives. Choosing the 

correct alternative was rewarded with a specified number of 

points. Every decision, irrespective of its correctness, cost 

another number of points. The costs of revealing a cue could 

be either high (.1 of reward value) or low (.05 of reward 

value) depending on the condition. After each decision 

subjects were given feedback about its correctness, they also 

had their points balance displayed. Cues validities were: .9, 

.8, and .7, whereas discrimination rates were: .33, .4, and 

.47. The cue display order was randomised. 

C. Models implementation 

The Optimising Model was implemented in R whereas 

TTB and EAM were implemented in Lisp. Although in the 

multiple-cue forced-choice task subjects used discrete 

pieces of information, applying the probability matching 

strategy requires the use of a continuous version of function 

r. So instead of discrete values of cues’ success (.632, .620, 

and .594), which provide values of r only in three points 

(U(1), U(2), and U(3)) the linear function of the success was 

used (U(n) = -.019n + .6533). The line was regression line 

of the three above-mentioned points. The model’s prediction 

was generated using Function R (formula 3) with 

environment based values of costs and payoffs. The 

probability of revealing n cues was defined as R(n-.5, n+.5). 

The threshold parameter in EAM was optimised 

analytically, whereas the s parameter in extended versions 

of TTB and EAM was optimised using the Nelder-Mead 

method. Both parameters were optimised in order to 

minimise root mean square deviation (RMSD). 
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D. Procedure 

First, the subjects were asked to imagine that they were 

engineers looking for a deposit of some mineral. They were 

told that they should choose from two possible searching 

locations ―A‖ and ―B‖. They were also told that searching 

itself costs a given number of points and that they gain 

a specified number of points for making the correct choice. 

The subjects were informed that they could use a few tests 

to examine the locations and that these tests had a described 

price, validity and discrimination proportion. The costs of 

all the cues were equal and visible for subjects, but the 

validity and discrimination rate were hidden and different 

for all the cues. As the cues’ properties were not provided to 

subjects explicitly, they had to try to discover all features of 

the cues that they needed during the training phase (either 

directly or as some features of the strategy that they found 

optimal). All the cues’ features remained unchanged 

between training and test. 

The task consisted of two parts: training and actual task. 

Performance in the training phase was not rewarded because 

it could prevent subject from exploring different strategies. 

Subjects began the training phase with 0 points and their 

goal was to collect as many points as possible within 75 

trials. Points gained during the training phase were not 

included in the overall sum. After the training phase 

subjects went on to the actual task, which consisted of 55 

trials, their goal was again to collect as many points as 

possible starting with 0 points. The reward depended on the 

number of points collected in the latter phase. 

In the loss condition (experimental condition of the first 

experiment) subjects began with negative number of points 

(-450 in the training phase and -375 in the actual task) and 

their goal was to reach zero points (in no more than 150 

trials). In the no feedback condition (experimental condition 

of the second experiment) the subjects received no feedback 

and they did not have the point balance displayed. 

All subjects participated in both experiments described. 

In each of the experiments they were randomly divided into 

two equinumerous groups: control and experimental, and 

independently assigned to high or low cost condition. Thus, 

each subject performed one condition on one cost level in 

each of the two experiments (assignment to the 

manipulation and the cost were independent for each 

experiment). The cue order was randomised and did not 

reduplicate between experiments for any subject. 

IV.  RESULTS 

All the analyses described below were performed with R 

language [53]. Since the model predicts a particular 

distribution of the number of cues revealed and because 

distribution carries more information than a mean number of 

revealed cues, a proportion test was used in all analyses. 

The analyses do not include the training phase results. In 

both experiments a statistically significant influence was 

found concerning the cost of revealing a cue on the number 

of cues revealed. In the first experiment the proportion for 0, 

1, 2, and 3 cues was respectively: .02, .27, .32, and .39 for 

the .05 cost condition and .03, .31, .38, and .28 for the .1 

cost condition (χ
2
 = 110.19, p < .0001, df = 3, N = 1262). In 

the second experiment the proportion was .06, .25, .38, and 

.32 for the low-cost condition and .03, .32, .33, and .32 for 

the high-cost condition (χ
2
 = 44.19, p < .0001, df = 3, 

N = 1310). In the first experiment the proportion of guessing 

(choosing an alternative with no cues revealed) was almost 

the same in both cost conditions (proportion test based 95% 

confidence intervals for .024: [.016, .034], and for .029: 

[.019, .038]). The difference between conditions was 

supported by the fact that in the high-cost condition 

participants revealed all cues less frequently (.28 in 

comparison to .39, 95% CI for .39: [.363, .417], and for 

.279: [.255, .304], they more often made decisions after 

revealing one or two cues. In the second experiment there 

was no difference between the proportions of revealing 

three cues, and a very small difference (although statistically 

significant) between proportions of guessing (95% CI for 

.056: [.044, .07], and for .027: [.019, .037]). Most of the loss 

of the revealed cues number in the high cost condition was 

caused by making a decision on the basis of one instead of 

two cues in that group. 

There were significant differences between the 
proportions of cues revealed in the control and the 
experimental conditions in both experiments. During the 
first experiment, in the loss condition subjects more often 
ended exploration after revealing less cues than the optimal 
value, and in the gain condition they more often revealed 
more cues than the optimal value (χ

2
 = 57.96, p < .0001, 

df = 1, N = 1242). Similarly, in the second experiment, in 
the feedback condition subjects more often ended 
exploration after revealing less cues than the optimal value, 
and in the no-feedback condition they more often revealed 
more cues than the optimal value (χ

2
 = 50.2, p < .0001, 

df = 1, N = 1312, see Table III). The optimal number of cues 
revealed was 1.75 for the low cue cost condition, and 1.1 for 
the high cue cost condition. 

The task was performed in three conditions (one control 
identical for both experiments and one experimental for 
each experiment). Since there are no theoretical reasons for 
considering any of the conditions to be basic or to be the 
primary version of the task, and the manipulation was 
supposed to change the number of revealed cues, the 
model’s general predictions were compared with mean 
performance in all conditions. The model performance 
proves to match subjects’ performance well (RMSD = .02, 
r

2
 = .98), see the figure 2. In particular the model recreates 

the change in frequency of revealing one and three cues 
between two cost conditions as well as the relative 
constancy of frequency of revealing zero and two cues. In 
both model’s predictions and subjects’ behaviour, one cue 
was revealed more often in the high cost condition than in 
the low cost one. By contrast three cues were revealed more 
often in the high cost condition than in the low cost one. 

TABLE III PROPORTION OF NUMBERS OF CUES REVEALED IN DIFFERENT 

CONDITIONS 

Exper

iment 
Condition 

Proportion of the number 

of cues revealed 

0 or 1 2 or 3 

I Gain, cost = .05 .25 .75 

 Gain, cost = .1 .29 .7 
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 Gain, indiscriminately .27 .73 

 Loss, cost = .05 .34 .66 

 Loss, cost = .1 .4 .61 

 Loss, indiscriminately .37 .63 

II Feedback, cost = .05 .39 .61 

 Feedback, cost = .1 .36 .64 

 Feedback, indiscriminately .37 .63 

 No feedback, cost = .05 .22 .78 

 No feedback, cost = .1 .34 .66 

 No feedback, indiscriminately .28 .72 

Note: All differences are statistically significant (p < .001, with Benjamini 
and Yekutieli’s correction). 

The Optimising Model’s match was compared to the 

match of two other models: TTB and EAM in both their 

basic and extended versions. For EAM, the threshold 

parameter was optimised for each cost condition. The EAM 

achieved the best match for the threshold in the range (0, 

1.386], for both cost conditions, and its predictions of the 

proportions are the same as TTB’s: 0, .33, .268, and .402 for 

0, 1, 2, and 3 cues revealed. EAM’s match is equal within 

the whole interval because as long as the threshold is not 

larger than ln v
2
/(1-v

2
) (where v

2
 is validity of second most 

valid cue), any discriminating cue exceeds the threshold or 

is the last available one–in both cases the choice is made 

after picking the cue. TTB’s and EAM’s RMSD and r
2
 

(RMSD = .07, r
2
 = .81) turned out to be worse than the 

Optimising Model’s one. 

The extended versions of TTB and EAM achieved the 

best match for s = .048 (and for the EAM’s threshold 

parameter remaining in the same range as for its basic 

version). Their match to data was slightly better than for 

their basic versions (RMSD = .05, r
2
 = .83). Since the 

simplest model (The Optimising Model) clearly achieved 

a better match than the more complex ones, there is no 

further need to compare the measures which take into 

account their complexity, as it would not provide any 

additional information. 

The figure 2 shows the TTB’s and EAM’s match to data 

(in the base versions of both models). Although both models 

predict the frequency of guessing (and frequency of 

revealing one cue in high cost condition), they fail to match 

the frequencies of revealing two or three cues. The models 

predict that three cues will be revealed more often than two, 

while subjects make a decision on the basis of two cues as 

often as on the basis of three ones (in low cost condition), or 

even more often (high cost condition). 

V. CONCLUSION 

There were two groups of questions that the experiments 

had to answer. The first group considered the issues of 

rationality and the generality of human problem solving. Do 

people behave optimally while making a decision? Do they 

use one general strategy? Most importantly, can they use 

a strategy that is both general and optimal? The second 

group of questions considered the proposed model itself. 

Does the model describe human decision making behaviour 

accurately? Can the two opposing subprocesses which make 

up the suggested strategy be noticed in people’s behaviour? 

Fig. 2  Match between the models’ predictions and subjects’ performance 

Contrary to the specific hypotheses concerning the 
mathematical model, it is difficult to confirm any strong 
hypotheses about the generality and optimality of human 
decision making by one series of experiments alone. 
However, the results show that people behave in the same 
way as a model that is designed to achieve an optimal 
solution to a decisional problem and is so general that it can 
recreate many strategies which are believed to be 
qualitatively different. Therefore, it can at least be said that 
the general hypotheses have been partially corroborated, and 
that the results are a good starting point to follow up studies 
which further explore these questions. 

The rationality that underlies the proposed model has 
a specific meaning. It is neither the classical economic 
rationality which does not allow for cognitive biases and 
limitations, nor Simon’s [7] bounded rationality which 
assumes that people are not able to efficiently progress 
towards an optimal solution. The rationality assumed in the 
present paper is defined in relation to an optimal solution of 
a given task and reflects the biases which are known (e.g., 
the probability matching rule) or expected (e.g., subgoals 
asymmetry depending on the gain-loss condition). These 
biases are neither random nor derived from limitations of 
human cognitive abilities. Although they may appear non-
adaptive in certain environments, they are, in fact, adaptive 
in more general and common conditions. 

The generality which is defined here as the capability of 

the model to recreate behaviour of many qualitatively 

different strategies by manipulation in some continuous 

parameter is not complete. The model is supposed to imitate 

most decisional strategies from the Adaptive Toolbox [6] 

and some strategies from outside of it (e.g., WADD), but it 

still remains within Newell’s [33] continuum of strategies 

ordered with regard to information requirements. Therefore, 

if the presented results reveal anything valid about 

rationality and generality, they do not tell us that human 

decision making is absolutely rational and general, rather 

they show how general it is and what kind of rationality it 

involves. The assumptions about optimality and generality 

are not applied in the model independently. The model 

emulates many strategies with the use of one mechanism 

because it tries to behave optimally in different 

environments, and as long as the environments are 

substantially different, the strategies which are optimal in 

them are also different. 
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Next to the importance of the general findings, the 
presented results might be interesting in the context of this 
particular model. As stated earlier ―this particular model‖ is 
actually an entire class of models which can be recreated by 
the Optimising Models depending on the environmental 
features. 

The match between experimental data and the model’s 
prediction is good, especially considering the fact that the 
model has no free parameters, so its output values spring 
from a simple application of the postulated mechanisms to 
the features of the environment, not from a manipulation of 
parameters aimed at obtaining the expected results. The 
model also performs well in comparison to other models of 
decision making. The two models that it was compared 
with, TTB and EAM, are based on different theories. ―Take 
The Best‖, most commonly examined strategy from the 
Adaptive Toolbox, is being opposed to the ―rational‖, highly 
demanding strategies like WADD. The Evidence 
Accumulation Model is supposed to integrate two kinds of 
models: the ―fast and frugal‖ as well as the ―rational‖. Both 
models perform worse than the Optimising Model despite 
their higher complexity (in their extended versions). 

Moreover, since the Evidence Accumulation Model 
achieves the best match for a low threshold parameter, it 
performs identically to TTB. Therefore, the threshold 
parameter does not improve the fitness of the model and as 
a consequence the TTB, being simpler, should be 
considered the better of the two models in the domain of 
predicting the amount of information obtained in the tested 
environments. 

The mere fact that the suggested model’s predictions 
match empirical data does not give reason to find this 
particular model true, as there could be other models that 
make the same predictions. Therefore, further hypotheses 
were presented that focused on the postulated mechanisms 
of the model. It was assumed that if there are two opposing 
goals of the decision process (maximising the probability of 
making the correct choice and minimising the costs), they 
can be influenced separately under some conditions. The 
results confirm these hypotheses: along with some 
controlled changes in the features of a decisional 
environment (namely: providing or withholding feedback 
and affecting the subjects’ sense of loss or gain) people 
focused accordingly on one of the goals mentioned above, 
which in turn had an influence on the number of cues 
revealed. 

It requires further research to uncover the specific 

impact that different factors have on the disproportion 

between validity of the subgoals and to provide a detailed 

description of the mechanism in question. But, before 

addressing the problem of the exact mechanism used in 

decision generating, it is necessary to answer two 

preliminary questions about what, on the one hand, decision 

making itself is, and, on the other hand, how on a general 

level more specific questions can be raised. The results 

presented allow the supposition that, firstly, the decision 

making consists of optimising behaviour in order to 

maximise the reward value, and secondly, that hypotheses 

concerning decision making can be formed on the most 

general level, and for various decisional behaviours seem to 

emerge from one process of maximising the difference 

between gains and costs. 

Although the Optimising Model has been confirmed by 

empirical results, both by achieving a good match to data 

and by recreating qualitative phenomena, more research 

must be done to fully confirm the general hypotheses 

concerning the optimality and rationality of decision 

making. To unmistakably show its generality, the model 

must be tested in many different environments, which differ 

not only with regard to costs but also to cost increment 

function or to the relation between validity and 

discrimination rate. Also the hypothesis concerning the 

optimality of human behaviour awaits broader verification 

as well as theoretical analysis. Finally, further research 

could reveal the particular structure of the decisional 

mechanism, for both of the discovered subprocesses are 

likely to consist of multiple components which affect their 

working in the same way as the subprocesses themselves 

affect the general decision making process. 

REFERENCES 

[1] B. Pascal. Pensees. Forgotten Books, Charleston, 2008. 

[2] J. von Neumann and O. Morgenstern. Theory of games and 

economic behavior. Princeton University Press, Princeton, 

1953. 

[3] L. J. Savage. The foundations of statistics. Dover 

Publications, New York, 1972. 

[4] D. Kahneman and A. Tversky. ―Prospect theory: An analysis 

of decision under risk‖. Econometrica, vol. 47, pp. 263-292, 

1979. 

[5] B. Paulewicz. Interaction and adaptation - a proposition in 

behavioural science [Interakcja i adaptacja - propozycja 

metateoretyczna w badaniach nad zachowaniem]. PhD thesis, 

Krakow: Jagiellonian University, unpublished. 

[6] G. Gigerenzer and R. Selten. Bounded Rationality. The 

Adaptive Toolbox. MIT Press, Cambridge, MA, 2001. 

[7] H. A. Simon. Models of Bounded Rationality. Vol. 3. MIT 

Press, Cambridge, MA, 1997. 

[8] G. Gigerenzer, P. M. Todd, and the ABC Research Group. 

Simple heuristics that make us smart. Oxford University 

Press, New York, 1999. 

[9] A. Glöckner and T. Betsch. ―Modeling option and strategy 

choices with connectionist networks: Towards an integrative 

model of automatic and deliberate decision making‖. 

Judgment and Decision Making, vol. 3, pp. 215-228, 2008. 

[10] W. Schneider and R. M. Shiffrin. ―Controlled and automatic 

human information processing: I. detection, search, and 

attention‖. Psychological Review, vol. 84, pp. 1-66, 1977. 

[11] P. M. Todd and A. Dieckmann. ―Heuristics for ordering cue 

search in decision making‖. In L. K. Saul, Y. Weiss, and L. 

Bottou, editors, Advances in neural information processing 

systems 17, pp. 1393-1400. MIT Press, Cambridge, MA, 

2005. 

[12] T. Smolen and S. Wichary. ―Bottom-up model of strategy 

selection‖. In B. C. Love, K. McRae, and V. M. Sloutsky, 

editors, Proceedings of the 30th Annual Conference of the 

Cognitive Science Society, pp. 1517-1521. Cognitive Science 

Society, Austin, TX, 2008. 

[13] A. Bröder. ―Assessing the empirical validity of the «take-the-
best» heuristic as a model of human probabilistic inference‖. 



Review of Psychology Frontier Oct. 2012, Vol. 1 Iss. 3, PP. 37-48 

 

- 47 - 

Journal of Experimental Psychology: Learning, Memory, and 
Cognition, vol. 26, pp. 1332-1346, 2000. 

[14] B. R. Newell, N. J. Weston, and D. R. Shanks. ―Empirical 
tests of a fast-and-frugal heuristic: Not everyone «takes-the-
best»‖. Organizational Behavior and Human Decision 
Processes, vol. 91, pp. 82-96, 2003. 

[15] B. R. Newell and D. Fernandez. ―On the binary quality of 
recognition and the inconsequentiality of further knowledge: 
Two critical tests of the recognition heuristic‖. Journal of 
Behavioral Decision Making, vol. 19, pp. 333-346, 2006. 

[16] D. Hausmann and D. Läge. ―Sequential evidence 
accumulation in decision making: The individual desired level 
of confidence can explain the extent of information 
acquisition‖. Judgment and Decision Making, vol. 3, pp. 229-
243, 2008. 

[17] H. A. Simon. Models of man. Wiley, New York, 1957. 

[18] C. Cherniak. Rational ―Agency‖. In Robert A. Wilson and 
Frank C. Keil, editors, The MIT Encyclopedia of the Cognitive 
Sciences, pp. 698- 699. MIT Press, Cambridge, MA, 1999. 

[19] N. Vulkan. ―An economist’s perspective on probability 
matching‖. Journal of economic surveys, vol. 14, pp. 101-118, 
2000. 

[20] L. G. Humphreys. ―Acquisition and extinction of verbal 
expectations in a situation analogous to conditioning‖. 
Journal of Experimental Psychology, vol. 25, pp. 294-301, 
1939. 

[21] M. E. Bitterman. ―Phyletic differences in learning‖. American 
Psychologist, 20, pp. 396-410, 1965. 

[22] D. G. C. Harper. ―Competitive foraging in mallards: `ideal 
free’ ducks‖. Animal Behaviour, vol. 30, pp. 575-584, 1982. 

[23] F. Thuijsman, B. Peleg, M. Amitai, and A. Shmida. 
―Automata, matching and foraging behavior of bees‖. Journal 
of Theoretical Biology, vol. 175, pp. 305- 316, 1995. 

[24] W. Gaissmaier, L. J. Schooler, and J. Rieskamp. ―Simple 
predictions fueled by capacity limitations: When are they 
successful?‖ Journal of Experimental Psychology: Learning, 
Memory, and Cognition, vol. 32, pp. 966-982, 2006. 

[25] R. S. Sutton and A. G. Barto. Reinforcement Learning: An 
Introduction. MIT Press, Cambridge, MA, 1998. 

[26] N. D. Daw, J. P. O’Doherty, P. Dayan, B. Seymour, and R. J. 
Dolan. ―Cortical substrates for exploratory decisions in 
humans‖. Nature, vol. 441(15), pp. 876-879, 2006. 

[27] Y. Niv, D. Joel, I. Meilijson, and E. Ruppin. ―Evolution of 
reinforcement learning in uncertain environments: A simple 
explanation for complex foraging behaviors‖. Adaptive 
Behavior, vol. 10, pp. 5-24, 2002. 

[28] A. Bröder and S. Schiffer. ―Adaptive flexibility and 
maladaptive routines in selecting fast and frugal decision 
strategies‖. Journal of Experimental Psychology: Learning, 
Memory, and Cognition, vol. 32, pp. 904- 918, 2006. 

[29] B. R. Newell and M. D. Lee. ―Learning to adapt evidence 
thresholds in decision making‖. In N. A. Taatgen & H. van 
Rijn, editor, Proceedings of the 31th Annual Conference of 
the Cognitive Science Society, pp. 473- 478. Cognitive 
Science Society, Austin, TX, 2009. 

[30] J. W. Payne, J. R. Bettman, and E. J. Johnson. ―Adaptive 
strategy selection in decision making‖. Journal of 
Experimental Psychology: Learning, Memory, and Cognition, 
vol. 14, pp. 534-552, 1988. 

[31] A. Bröder and W. Gaissmaier. ―Sequential processing of cues 

in memory-based multiattribute decisions‖. Psychonomic 

Bulletin & Review, vol. 14, pp. 895-900, 2007. 

[32] B. R. Newell, P. Collins, and M. D. Lee. ―Adjusting the 

spanner: testing an evidence accumulation model of decision 

making‖. In D. McNamara and G. Trafton, editors, 

Proceedings of the 29th Annual Conference of the Cognitive 

Science Society, pp. 533-538. Erlbaum, Mahwah, NJ, 2007. 

[33] B. R. Newell. ―Re-visions of rationality?‖ Trends in Cognitive 

Sciences, vol. 9, pp. 11-15, 2005. 

[34] M. D. Lee and T. D. R. Cummins. ―Evidence accumulation in 

decision making: Unifying the «take the best» and the 

«rational» models‖. Psychonomic Bulletin and Review, vol. 

11, pp. 343-352, 2004. 

[35] S. Link and R. Heath. ―A sequential theory of psychological 

discrimination‖. Psychometrika, 40, pp. 77-105, 1975. 

[36] M. Stone. ―Models for choice-reaction time‖. Psychometrika, 

vol. 25, pp. 251- 260, 1960. 

[37] R. Ratcliff. ―A theory of memory retrieval‖. Psychological 

Review, vol. 85, pp. 59-108, 1978. 

[38] J. Rieskamp and P. E. Otto. ―SSL: A theory of how people 

learn to select strategies‖. Journal of Experimental 

Psychology: General, vol. 135, pp. 207-236, 2006. 

[39] W. Edwards and P. Slovic. ―Seeking information to reduce 

the risk of decisions‖. American Journal of Psychology, vol. 

78, pp. 188-197, 1965. 

[40] L. S. Fried and C. R. Peterson. ―Information seeking: optional 

versus fixed stopping‖. Journal of Experimental Psychology, 

vol. 80, pp. 525-529, 1969. 

[41] G. F. Pitz. ―The influence of prior probabilities on 

information seeking and decision making‖. Organizational 

Behavior and Human Performance, vol. 4, pp. 213-226, 1969. 

[42] G. F. Pitz, Helen Reinhold, and E. Scott Geller. ―Strategies of 

information seeking in deferred decision making‖. 

Organizational Behavior and Human Performance, vol. 4, pp. 

1-19, 1969. 

[43] A. Rapoport. ―Sequential decision-making in a computer-

controlled task‖. Journal of Mathematical Psychology, vol. 1, 

pp. 351-374, 1964. 

[44] W. Edwards. ―Optimal strategies for seeking information‖. 

Journal of Mathematical Psychology, vol. 2, pp. 312-329, 

1965. 

[45] B. R. Newell, Tim Rakow, Nicola J. Weston, and David R. 

Shanks. ―Search strategies in decision making: The success of 

«success»‖. Journal of Behavioral Decision Making, vol. 17, 

pp. 117-137, 2004. 

[46] T. Rakow, B. R. Newell, K. Fayers, and M. Hersby. 

―Evaluating three criteria for establishing cue-search 

hierarchies in inferential judgment‖. Journal of Experimental 

Psychology: Learning, Memory, and Cognition, vol. 31, pp. 

1088-1104, 2005. 

[47] A. Glöckner and T. Betsch. ―Multiple-reason decision making 

based on automatic processing‖. Journal of Experimental 

Psychology: Learning, Memory, and Cognition, vol. 34, pp. 

1055-1075, 2008. 

[48] A. Bröder and S. Schiffer. ―Stimulus format and working 

memory in fast and frugal strategy selection‖. Journal of 

Behavioral Decision Making, vol. 19, pp. 361-380, 2006. 

[49] L. Martignon and U. Hoffrage. ―Fast, frugal, and fit: simple 

heuristics for paired comparison‖. Theory and Decision, vol. 

52, pp. 29-71, 2002. 

[50] B. R. Newell and D. R. Shanks. ―Take the best or look at the 

rest? Factors influencing «one-Reason» decision making‖. 

Journal of Experimental Psychology: Learning, Memory, and 

Cognition, vol. 29, pp. 53-65, 2003. 

[51] A. Bröder. ―Decision making with the «adaptive toolbox»: 

Influence of environmental structure, intelligence, and 



Review of Psychology Frontier Oct. 2012, Vol. 1 Iss. 3, PP. 37-48 

 

- 48 - 

working memory load‖. Journal of Experimental Psychology: 

Learning, Memory, and Cognition, vol. 29, pp. 611- 625, 

2003. 

[52] R. E. Kass and A. E. Raftery. ―Bayes factors‖. Journal of the 

American Statistical Association, 90(430), pp. 773-795, 1995. 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

[53] R Development Core Team. R: A language and environment 

for statistical computing. R Foundation for Statistical 

Computing, Vienna, Austria, 2009. 


