
International Journal of Computer Science and Artificial Intelligence Dec. 2012, Vol. 2 Iss. 4, PP. 40-44

- 40 -
DOI: 10.5963/IJCSAI0204005

Performance Analysis of Victim Selection
Algorithms in Distributed Systems and Proposal of

Weight Based Resolution Strategy
 geetha venkat*1, N.Sreenath2

1

Department of Information Technology, Pondicherry Engineering College, India

2

vgeetha@pec.edu
Department of Computer Science & Engineering., Pondicherry Engineering College, India

Abstract- Deadlocks affect the performance of all systems that
support concurrent execution of transactions. Presence of
deadlocks is usually detected by checking for cycles in Wait-
For graph. Once deadlocks are detected, the cycle can be
broken by aborting one of the transactions (Victim). Main
objective of victim selection is avoiding starvation. This paper
analyses the performance of various victim selection
algorithms given in the literature to find out how optimal they
are with respect to other desirable parameters of a system like
throughput, fairness, resource utilization and resolution
latency apart from starvation. This paper also proposes weight
based resolution algorithm to dynamically select least cost
victim.

Keywords- Distributed System; Resolution; Transaction
Attributes; Resource Characteristics, Victim Selection

I. INTRODUCTION

Deadlock detection is a reactive strategy for handling
deadlocks. It is the best mechanism for systems with lower
and moderate number of deadlocks. Deadlock can be
usually detected by checking for presence of cycle in Wait-
For Graph (WFG). Once a cycle is identified, one of the
transactions should be chosen as victim. Aborting it will
break the cycle and thus eliminate deadlocks. The victim
thus selected needs to rollback and restart later. Hence the
negative outcome of the deadlock resolution is the
possibility of penalization of same transaction again and
again i.e., starvation.

In distributed systems, detection of deadlock is more
difficult than in centralized systems. This is because the
resources are distributed in different sites and transactions
access them from any of these sites. They communicate
through messages only. Hence in order to know the wait-for
status of the transactions, a Global WFG has to be
constructed. Selection of a victim using this GWFG is
complex. Zobel [1], Newton [2] and Singhal [3] have done
survey on various deadlock handling techniques, but they
have not focused on victim selection algorithms for
deadlock resolution. A. Moon and H. Cho [4]

Hence it is proposed to analyze the performance of the
existing victim selection algorithms. The paper is organized
as follows. The existing victim selection algorithms are
described in Chapter II and their characteristics are analysed
in Chapter III. Chapter IV proposes the cost based victim

selection algorithm and Chapter V concludes the paper.

have compared
the performance of deadlock handling techniques against the
attribute of throughput alone.

II. RELATED WORKS

An Several algorithms have been proposed in the
literature for the selection of victims under different criteria
as given below:

A. Selection Criteria: Youngest

Transaction Attribute: Arrival time or Age

 [5]

Transaction that has arrived latest or whose time stamp
is greater than all the participating transactions is chosen as
the victim. This assumes that the later transaction would not
have done much progress and hence aborts the latest
transaction. It is highly fair and provides linear response
time as it serves in first come FIFO basis.

B. Selection Criteria: Minimum History

Transaction Attribute: History

[5]

The transaction that has been aborted least number of
times so far (also called as history) will be chosen as the
victim. This ensures elimination of starvation.

C. Selection Criteria: Least Priority

Transaction Attribute: Static Priority

[6]

The transaction having the least static priority will be
aborted. This helps to decide the order of execution, given a
collection of transactions. The priority of the transactions
can be statically fixed by the users or the domain.

D. Selection Criteria: Maximum Size

Transaction Attribute: Size

[7]

The transaction, whose code size is the largest among all
the transactions currently running, will be aborted. As the
transaction size increases, it is assumed to consume more
resources and finish execution much later. Hence
transaction with largest size is chosen as victim. This
improves the throughput of the system as more number of
smaller transactions is finished in the given time.

E. Selection Criteria: Minimum number of Locks

Transaction Attribute: In-degree in Wait for Graph

[5]

Transaction that has acquired the least number of

International Journal of Computer Science and Artificial Intelligence Dec. 2012, Vol. 2 Iss. 4, PP. 40-44

- 41 -
DOI: 10.5963/IJCSAI0204005

resources so far (inferred by the least number of grant
messages represented by in-degree in WFG) is chosen as
victim. The transaction is chosen only based on its current
resource holding status and hence may improve the
throughput of the system. The resource utilization improves,
because of the selection of a victim which has locked
minimum number of resources in the system so far, and
does not penalize a transaction on any other criteria.

F. Selection Criteria: Maximum Number of Cycles

Transaction Attribute: Cycle participation

[8]

Transaction involved in maximum number of deadlock
cycles will be aborted. Normally, it is expected to choose
one victim per cycle. By using this algorithm, the number of
victims may be reduced. Gary and Johnson [9]

G. Selection Criteria: Maximum Edge Cycle

have stated
that identification of minimum number of victims at run
time is NP complete. Hence number of transactions rolled
back is lesser and hence throughput increases.

Transaction Attribute: in-degree+ out -degree

[8]

This resolution is based on maximum participation of a
transaction in more number of cycles. The possibility could
be that the transaction already holding high priority
resources and further requires more number of resources
held by other transactions. Hence there is more number of
edges. It is not only based on transaction attribute, but also
based on resource attribute. It is the sum of request edges
and grant edges.

H. Selection Criteria: Blocker

Transaction Attribute: Random blocker, current blocker

[5]

The transaction that has caused the deadlock is aborted
in this algorithm. The overhead of selecting a victim is nil in
this case. It also reduces deadlock resolution latency. But
other attributes are suboptimal.

Selection Criteria: Minimum work done [5]

I. Transaction Attribute: Resource Consumed

Transaction that has consumed least amount of resources
is chosen as the victim.

Selection Criteria: Initiator

Transaction Attribute: transaction that has initiated the
deadlock detection

The transaction, which had initiated the deadlock
detection phase on time out, is chosen as victim. This
minimizes the deadlock resolution latency in a distributed
system, as initiator ID is always communicated to all sites.

J. Selection Criteria: Maximum Release Set

 Transaction Attribute: holding maximum number of
resources

[10]

Transaction holding more number of resources which,
when aborted will benefit maximum number of transactions,
is chosen as victim.

K. Selection Criteria: Minimum Number of Submitted
Operations

Transaction Attribute: Number of submitted operations

[12]

The transaction which has done minimum work so far is
chosen as the victim.

L. Selection Criteria: Low Priority + Least Resource
Priority + Min. Work Done

Transaction Attribute: low priority + minimum work
done

[14]

This algorithm works in three phases. In the first phase a
set of low priority victims are selected. In Second Phase,
victims holding higher priority resources from the first
phase list are chosen. In phase three, victim which has done
least work done is aborted from second phase list.

M. Selection Criteria: Minimum Abortion Cost

Transaction Attribute: Age and work done

[15]

Abortion cost is a function of number of currently
submitted operations and transaction age and given as,
Abortion cost = ∝ N (T) +βt (T), where ∝+β = 1 and N (t) –
no of currently submitted operations, t (T) – age of
transaction. ∝ and β are weights to choose between age and
work done. Age improves fairness and work done improves
throughput.

III. PERFORMANCE OF EXISTING ALGORITHMS

All Based on the definition of the above victim selection
algorithms, their characteristics along with their time
complexity can be summarized as in Table 1.The time
complexity helps to determine the deadlock resolution
latency and defined in terms of ‘n’- the number of
transactions. From the table, it is worth noting certain points.

TABLE I COMPARISON OF VARIOUS VICTIM SELECTION POLICIES

Victim Selection Policy Optimal in Time Complexity

Youngest Fairness [5] O(n)

Min. History Fairness [5] O(n)

Least Static Priority Response time [2] O(n)

Maximum Size Throughput [8] O(n)

Min. no. of locks Resource Utilization [5] O(n)

Max. no of cycles Throughput [3] O(n2

Minimum abortion cost

x k + 2) k–
max. cycle size

Resource Utilization [11] O (n3

Max. Edges

)

Resource Utilization [3] O (n4

Blocker

)

Resolution latency [5] O(1)

Initiator Resolution latency O(1)

Max. release set Resource utilization,
throughput

 [4] O (n3

Min. work done so far

m) m- no of
resources

Resource Utilization [12] O (n3

Priority + resource priority
+ min. work done

)

Resource utilization,
throughput [9]

O(n4.m) m- no of
resources

International Journal of Computer Science and Artificial Intelligence Dec. 2012, Vol. 2 Iss. 4, PP. 40-44

- 42 -
DOI: 10.5963/IJCSAI0204005

Youngest is fair in giving priority to the transactions
based on their arrival time. So this will eliminate starvation
in poverty [12]. But this might introduce starvation in wealth

[13]

Resolution based on transaction size will increase the
number of transactions completed per unit time i.e.
throughput.

. Static priority lets the user to configure the priorities of
the transactions participating in the system. This eliminates
starvation in wealth. This policy is ideal for real time
systems. The transactions can be prioritized based on the
need of immediate or delayed response time. But resolution
using history eliminates both starvation in wealth and
starvation in poverty. History based resolution is also fair in
the sense that it does not penalize any transaction again and
again.

Resolution policies like minimum number of locks,
minimum work done and minimum abortion cost focus on
lower rollback cost of a transaction, while algorithms like
initiator, blocker, maximum edges and maximum release
set choose a victim based on overall better performance of
the system than on concerned individual transactions. The
victims chosen using these algorithms might have already
acquired all the required resources, completed maximum
amount of execution or had been aborted again and again in
the past. So they are not fair on individual transactions.

Blocker and initiator can be lower priority transactions
and their only benefit is better deadlock resolution latency,
especially in distributed systems.

While all the above mentioned algorithms abort one
transaction per cycle, resolution based on maximum number
of cycles tries to reduce this. So number of transactions
executed per unit time i.e. throughput increases in this case.

A simulation experiment has been made to study their
characteristics with respect to other attributes. To study
these desirable characteristics, attributes of 500 transactions
are randomly generated and tested. From the given victim
selection algorithms, blocker and initiator algorithms are not
considered because, they are optimal only in deadlock
resolution latency and poor in other aspects. Victim
selection algorithm by A.K. Srivastava and W. W. Shun

[9]

In Fig. 1, it can be noticed that algorithm choosing
victim based on maximum number of cycles provide
maximum throughput i.e. more than 96%. This is because it
aborts at most ‘n’ transactions, when there are ‘n’ cycles,
whereas other algorithms abort atleast ‘n’ transactions. Then
selection on maximum size provides better throughput i.e.
94%.This is because smaller transactions finish in time
when the transactions are relatively smaller in size. In max
edge algorithm, by aborting one transaction many
transactions can proceed. Therefore the throughput is more
in this case also. The performance of other resolution
algorithms also depends on attributes of participating
transactions and is bound to vary.

takes maximum deadlock resolution latency, hence it is
also not considered.

Fig. 1 Number of transactions versus throughput

In Fig. 2, resource utilization is compared by varying
number of transactions. While throughput is measured in
terms of number of transactions, resource utilization is
measured in terms of resources. Maximum resource
utilization happens when there is minimal rollback.
Resource utilization is maximized in resolution algorithms
of minimum number of locks and maximum size. It is also
noticeable that minimum abortion cost based on arrival time
and minimum number of operations has made the algorithm
suboptimal in both aspects. But it is better than algorithms
considering single transactional attribute.

Fig. 2 Number of Transactions versus Resource Utilization

International Journal of Computer Science and Artificial Intelligence Dec. 2012, Vol. 2 Iss. 4, PP. 40-44

- 43 -
DOI: 10.5963/IJCSAI0204005

Fig. 3 Number of Transactions versus Fairness

In fig 3, fairness is compared with number of transactions.
Fairness can be viewed in two aspects: based on age and
starvation. The fairness considered in fig 3 is based on
arrival time. While throughput, deadlock resolution latency
and resource utilization are desirable attributes of the system,
non- starvation and fairness are desirable attributes of
individual transactions.

IV. PROPOSED ALGORITHM

The victim selection algorithms are based on transaction
attributes and resource attributes. The common transaction
attributes or characteristics are age, history, code size,
priority, resource utilized so far and its attributes in WFG
like in-degree, number of edges, out-degree and cycle
participation. Apart from static priority, transactions are
usually dynamically prioritized based on the attributes given
above. Victim selection algorithm based on resource
attributes could be based on resource priority, number of
units of a particular resource, costly resource, resource most
sought after etc.

The desirable attributes that could improve the system
are higher throughput, better resource utilization and lesser
deadlock latency. The desirable attributes in individual
transaction execution is lower response time, fairness, no
starvation and minimum roll back cost. It can be noticed that
while each victim selection algorithm is optimal in one
aspect, it is suboptimal in other aspects.

Hence the proposed algorithm is based on assigning
weights which can be configured based on user requirement.
For example in real time systems, response time is more
important than other attributes. Similarly throughput is
important in batch processing systems.

In the proposed algorithm, each transaction is expected
to possess an attribute list to maintain its rank in various
aspects. The attribute list of a transaction is as table IIA. The
attribute list is created for every transaction arriving at the
system. Attribute lists of all transactions whose execution

are completed are deleted. Attribute lists of all live
transactions whose execution are not completed, are also
updated whenever a new transaction arrives or an old
transaction leaves the system.

 The rank of a transaction with respect to a particular
attribute is based on its value relative to other transactions
with respect to that factor. For example, if a transaction has
arrived third among the active transactions in the system,
then its rank with respect to age is fixed as 3. In general, the
ranks are determined based on the seniority of the
transaction.

TABLE II A TRANSACTION ATTRIBUTE LIST

Transaction ID Rank
Age

History
No of resources requested
No of resources granted

Size
Static priority

TABLE II B DESIRABLE PERFORMANCE ATTRIBUTES OF THE SYSTEM

Desirable System
Attribute Wt as % Rank of Transaction

Attribute to Be Favored

Throughput G Size
Fairness F Age, history

Resolution latency L Initiator, random blocker
Response time T Static priority

Resource utilization R No of resources requested

The weights of desirable attributes in the system can be
configured so that Σ (G, F, L, T, R) =100%(as in Table IIB).
This is done based on the nature of the distributed system.
The weights can be in the range 0 to 100%. The ranking of
transactions in a centralized system is easy. However the
deadlock detection and selection of a victim for resolution in
distributed system is very tedious. The candidate victims are
distributed in various sites. Selecting a victim transaction for
abortion at each local site is suboptimal and affects the
performance of the system. Hence global selection of victim
needs propagation of transaction attributes to all sites. The
sites in a distributed system communicate through messages.
Hence probe based deadlock detection by K.M. Chandy and
J.Misra [16] is one of the best distributed deadlock detection
algorithms. In this algorithm, the transactions waiting for
grant message will start sending probe message after time
out. The probe is sent along the wait for edges of a Global
Wait for Graph (GWFG). The probe message has the fields
such as initiator (transaction initiating the probe), sender
(transaction forwarding the probe), and receiver (transaction
receiving the probe). This algorithm is used to detect cycle
which indicates the presence of deadlock. Two new fields’
namely current victim’s transaction ID and its attribute list
can be added to the probe for propagation for global victim
selection. At each site, the rank of the current victim is
compared with the locally selected victim. If the rank of
local victim is higher than the current victim, the current
victim can be replaced before forwarding the probe. When

International Journal of Computer Science and Artificial Intelligence Dec. 2012, Vol. 2 Iss. 4, PP. 40-44

- 44 -
DOI: 10.5963/IJCSAI0204005

the probe reaches the initiator, the Transaction ID which is
to be aborted will be known. Then command can be sent to
abort the victim to break the cycle and restart the system.

V. CONCLUSION

Resolution is an important phase in handling deadlocks.
Selection of a victim influences the performance of the
system strongly. The desirable performance parameters of
the system like throughput, resource utilization are
influenced by the victim selection. The desirable parameters
of the transaction like fairness, resolution latency and
response time are to be considered while selecting a victim.
The weight based victim selection scheme balances the
desirable parameters of transactions and system.

REFERENCES

[1] D.Zobel, C.Koch, Resolution Techniques and complexity
results with deadlocks: A classifying and annotated
bibliography, OS Review 22 (1), pp. 52-72, 1988.

[2] G.Newton, Deadlock prevention, detection and resolution: An
annotated bibliography, ACM-SIGOPS OS Review, vol. 13,
no. 4, pp. 33-44, 1979.

[3] Mukesh Singhal, Deadlock Detection in Distributed Systems,
IEEE survey and tutorial series, Vol. 22, pp.37-48, 1989.

[4] A.Moon, H.Cho, Performance Analysis of Global
Concurrency Control Algorithms and Deadlock Resolution
Strategies in Multi database Systems, IEEE, 1997.

[5] R.Agarwal, M.Carey and L.Mcvoy, The performance of
Alternative Strategies for dealing with Deadlocks in database
Management Systems, IEEE Transactions on Software
Engineering, SE-13 (12), pp. 1348-1363, 1987.

[6] M.Sinha and M.Natarajan, A Priority based Distributed
Deadlock Detection Algorithm, IEEE transactions on
Software Engineering, vol. SE-11, pp.67-80, 1985.

[7] G. Weikum and G.Vossen, Transactional Information
Systems, ACM, 2005.

[8] Y.Chow, W.F. Klostermeyer and K.Luo, Efficient techniques
for Deadlock Resolution in Distributed Systems, IEEE, 1991.

[9] M.Garey and D.Johnson, Computers and Intractability: A
Guide to the Theory of NP Completeness, W.H. Freeman and
Company, New York, 1979.

[10] I.Terekov and T.Camp, Time efficient deadlock resolution
algorithms, Information Processing Letters, Elsevier Science,
pp.149 -154, 1999.

[11] Alok Kumar Srivastava and Wilson Wai Shun, Victim
selection for deadlock detection, United States Patent,
US7185339B2, 2007.

[12] Richard Holt, Some deadlock properties of Computer Systems,
ACM Computing Surveys, Vol. 4, No. 3, pp. 179-196, 1972.

[13] D.L. Parnas and A.N. Habermann, Comment on deadlock
prevention method, Communications ACM, vol. 15, no. 9, pp.
840-841, 1972.

[14] Xuemin Lin and Jian Chen, An Optimal Deadlock Resolution
Algorithm in Multidatabase Systems, Proceedings of ICPADS,
1996.

[15] X.Lin, M.E. Orlowska & Y.Zhang, An Optimal Victim
Selection Algorithm for removing Global Deadlocks in
Multidatabase Systems, 9th International Conference on
Frontiers of Computer Technology, FCT'94, IEEE CS Press,
pp. 501-505, 1994.

[16] K.Mani Chandy and Jayadev Mishra, Distributed Deadlock
Detection, ACM Transactions on Computer Systems, Vol.1,
No.2, pp. 144-156, 1983.

