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Abstract- Accurate estimation of the peel force of the hot-air 
soldering ribbon interconnects has been recognized as an 
important issue for the combined tabber/ stringer (CTS) 
soldering process. Although there are empirical formulas 
available for quality of adhesive interconnects estimation, but 
their performances are not all satisfactory due to the 
complicated nature of the soldering process and the data 
availability. For this purpose, artificial neural networks (ANN) 
and adaptive neuro-fuzzy inference system (ANFIS) models were 
developed to estimate force of solder ribbon interconnects on 
silicon solar cells is implemented. The solderability and quality 
of the solar cell interconnection zone is an important criterion 
which has to be ensured. Pulling of ribbons from pre-damaged 
cells leads to large silicon disruptions. Therefore, instead of 
testing the solder interconnection, the ribbon peel force test of 
the solar cells is estimated. The paper focuses on a development 
of an innovative ANFIS estimator, evaluation of the test method 
and results for the interconnection quality. The result also 
indicated that the ANFIS estimator could evaluate the output 
response in high prediction accuracy even using limited training 
data.  

Keywords- Solar cells; Soldering; Artificial Neural networks; 
Fuzzy Logic; Interconnection 

I. INTRODUCTION 
Solar modules are becoming thinner, while at the same 

time the surface area increases. Thin solar cells are d ifficult  to 
interconnect with standard soldering techniques. High 
temperature during soldering, between 250-400°C, introduces 
a combination of thermal and mechanical loads on the cells. 
This can cause warping and possible breakage of cells and 
decreases yield. The soldering process (cell interconnect) is 
considered the most critical process in module manufacturing. 
There are two soldering p rocess steps used to assemble the 
solar cells; the first step is solar cell interconnection, called 
stringing or tabbing, and the second step, solar cells assembly, 
is called bussing (see Fig. 1). Bussing ribbon delivers current 
to the module’s junction box for final electrical output. 

    
(a)Soldering solar cell              (b) complete interconnected solar cells 

Fig. 1 Two types interconnection onto the solar cells 

Cell interconnect is accomplished using an automated 
combined tabber/stringer (CTS) utilizing one of several 
soldering methods [1]. The important issues in the 
manufacturing of solar modules are how to solder ribbons 
onto a thinner wafer becomes a challenge. After the soldering 
process or the encapsulation of solar cells, cracks may occur, 
so how to prevent damages caused by bow or residual stress 
in the soldering process is currently a major challenge. 
Ribbons within polysilicon and thin film solar cells can be 
tested using a ribbon peel test protocol where the force 
required to peel, or break the bond is measured and the 
observed failure mode can be used to characterize the quality 
of the soldering process. Therefore, the quality of either 
process’s output can be measured by the peel force of the 
ribbon that has been soldered to the cell metallizat ion. In  
order to assess the soldering process quality of adhesive 
interconnects and identify possible weaknesses in the 
manufacturing, a combination of physical tests and numerical 
computations is commonly carried out. For performing 
accurate numerical computations, constitutive mathemat ical 
models describing the response of the output to the individual 
inputs are required. Obtaining a mathematical model for this 
soldering process can be rather complex and time consuming 
as it often requires some assumptions such as defining an 
operating point and doing linearizat ion about that point and 
ignoring some soldering process parameters, etc. This fact has 
recently led the researchers to exploit the neural and fuzzy  
techniques in modelling soldering process utilizing solely the 
input-output data sets. Although fuzzy logic allows one to 
model a system using human knowledge and experience with 
IF-THEN rules, it is not always adequate on its own. This is 
also true for Artificial Neural Networks (ANNs), which only  
deal with numbers rather than linguistic expressions. This 
deficiency can be overcome by combining the superior 
features of the two methods. This paper uses an Adaptive-
Network based Fuzzy Inference System (ANFIS) architecture, 
which was used to model the soldering process, so that a 
fuzzy in ference system is built fo r achieving a desired 
input/output mapping i.e. described by its observed responses 
to the introduced inputs. The learning method used allows the 
tuning of parameters both of the membership functions and 
the consequents in a Sugeno-type inference system. 

Using this new ANFIS model, ribbon bonds within  
polysilicon and thin film solar cells can be tested and the force 
required peeling, or break the bond can be measured and the 
observed failure mode can be used to characterize the quality 
of the ribbons. The effect ive test of peel force allows bond 
strength modelling to successfully predict the failure mode 
which can  be used as an accurate prediction  model of real life  
loading conditions. A significant advantage is that this ANFIS 
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model for new ribbon peel test can be performed with a 
standard bond testing system equipped with a solar cell test 
module. The ANFIS model has been used in evaluation the 
output response in many applicat ions. The rules of the model 
are developed based on training data pairs and suggestion 
from the expert. The ANFIS has been proven to be well-suited 
for modelling nonlinear industrial p rocesses such as end 
milling [2], wire-EDM [3], welding [4] and water jet cleaning 
[5]. In view of the nonlinear conditions of a soldering process, 
the ANFIS is employed for estimat ion the peel force of solder 
ribbon interconnects on silicon solar cells. So far, there is no 
study has been carried out on application of ANFIS estimator 
for testing the peel force of solder ribbon interconnects. The 
main purpose of this study is to investigate the application of 
ANFIS model for testing the peel force of solder ribbon 
interconnects with limited experimental data, which are 
difficult to interpret and lack optimisation. This research 
examines performance across a broad range of soldering 
condition variables. Results are reported comparing relat ive 
performance and indicating soldering condition variables for 
optimising solder performance. 

II. BACKGROUND  OF THE RESEARCH 

A. Soldering Methods 
Electrical interconnection of solar cells is a crit ical step in 

manufacturing silicon based photovoltaic solar panels as it 
impacts yield, throughput and final module efficiency. 
Stringing cells together allow the cells to form a larger power 
generation system. Strings of cells are laid side by side and 
connected together to make a photovoltaic solar panel. 
Stringer equipment is used to connect the solar cells. Stringer 
solders interconnectors (ribbons) to a number of photovoltaic 
cells to make photovoltaic cell strings in series. Solar cell 
breakage can occur during the solder process due to thermal 
stress. Solar cell thermal stress is min imized by carefully  
preheating the cells before the soldering process which 
followed by a controlled cooling phase afterwards. The 
technology used for the soldering process is often one of the 
main d ifferentiators between stringer equipment 
manufacturers. Various soldering technologies are used 
including infrared lamp, induction heating, laser and hot air.  
The solder cycle starts with heating the cell as it moves along 
through a number of temperature zones toward the soldering 
probe. Once the cell reaches the soldering probe, the probe is 
lowered  into position just above the cell. To  keep the ribbon 
taut and in the proper position, the ribbon is held down with 
pins as the soldering process occurs. When the solder process 
is complete, the soldering probe is withdrawn and the pins are 
released. The soldering step is the most important processing 
step for p roducing a high quality, visually  appealing solar 
panel that is also electrically  sound. The interconnection of Si 
solar cells can be made utilizing the solder coating supplied 
on tabbing ribbon. The ribbon is used to carry current between 
cells, but it also forms a mechanical connection.  

Most cell foundries have some form of a cell interconnect 
test, but there appears to be no industry standard as can be 
found in the more mature electronic sectors such as SMT and 
thick film hybrid. This is likely due to the explosive growth of 
c-Si in recent years. With the absence of an industry standard 
method for soldering interconnect testing, and the goal to 
have a repeatable and relevant method of test, reported 
methods were tested and, when possible, improved. 

B. Adaptive Neuro-Fuzzy Inference System(ANFIS) 
Jang first introduced the Adaptive neuro-fuzzy inference 

system (ANFIS) method by embedding the Fuzzy Inference 
System (FIS) into the framework of adaptive networks [6]. 
ANFIS is a modeling technique based on fuzzy sets, which 
assumes that input and output data are ill-defined with 
uncertainty that cannot be exactly assess with probability 
theory based on a two-valued logic. A fuzzy set is a set of 
elements with an imprecise (vague) boundary. A fuzzy set 
does not have a crisp boundary. That is, the transition from 
“belonging to the set” to “not belonging to the set” is gradual 
and is characterized by membership functions (MF). A fuzzy  
set A(x) is then represented by a pair of two things - the first 
one is the constituent elements x and their associated 
membership values μA (x)  (that is their degree of 
belongingness): 

A(x) = {(x, μA(x)) , x ∈ X}                            (1) 

where X is the universal set consisting of all possible 
elements. The membership function μA ranges from 0 to 1. If 
the value of the membership function is restricted to either 0 
or 1, the fuzzy set is then reduced to classical crisp set with a 
known boundary. The fuzziness does not come from the 
randomness of the constituent members of the sets, but from 
the uncertain and imprecise nature of the abstract thoughts 
and concepts. In ANFIS the relat ionship between input and 
output are expressed in the form of If- Then rules. ANFIS 
used for the p resent work is based on Sugeno fuzzy model [7] 
which fo rmalizes a systematic approach to generating fuzzy  
rules from an input-output dataset. 

A typical fuzzy rule in a Sugeno fuzzy model has the 
format: 

 If  x ∈  A and y ∈ B  then  z = f(x, y),                   (2) 

where A and B are fuzzy sets in the antecedent.  An adaptive 
network is a network structure consisting of a number of 
nodes connected through directional links. The outputs of 
these adaptive nodes depend on modifiable parameters 
pertaining to these nodes. The basic idea behind the design of 
neuro-adaptive learning techniques is very simple. These 
techniques provide a method for the fuzzy modeling 
procedure to learn informat ion about data set, in order to 
compute the membership function parameters that best allow 
the associated fuzzy inference system to track the given input-
output data. ANFIS constructs an input-output mapping based 
on both human knowledge (in the form of fuzzy if-then rules) 
and simulated input-output data pairs. It serves as a basis for 
building the set of fuzzy if-then rules with appropriate 
membership functions to generate the input output pairs. The 
parameters associated with the membership functions are 
open to change through the learning process. The computation 
of these parameters (or their adjustment) is facilitated by a 
gradient vector, which provides a measure of how well the 
ANFIS is modeling the input-output data for a given 
parameter set. Once the gradient vector is obtained, 
backpropagation or hybrid learning  algorithm can be applied 
in order to adjust the parameters. ANFIS can be used in 
modeling, estimat ing and controlling studies in manufacturing 
processes similar to other artificial intelligence methods such 
as ANNs and Fuzzy Logic (FL). In this paper, the designed 
ANFIS is utilized as an estimator. In estimator design process, 
different ANFIS structure are constructed and trained to find 
the architecture that gives the best performance as an 
estimator. ANFIS estimator design consists of two parts: 
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constructing and training. In constructing part, structure 
parameters are determined. These are type and number of 
input Membership Functions (MFs), and type of output MF. 
Any of several MFs such as Triangular, Trapezoidal and 
Gaussian can be used as an input MF. Frequently used MFs in 
literature are the Triangular. For this reason, they are chosen 
as input MF type in this study. As a second step to design an 
estimator, the training data sets should be generated to train 
the estimator networks. These data sets consist of estimator 
inputs and desired output values. They are produced from the 
process input output data. Since, ANFIS is a data processing 
method, it is important that the input-output data must be 
within the sufficient operational range including the 
maximum and minimum values for both input and output 
variables of the soldering p rocess. The limited data set should 
include data for each soldering process variable. 

C. Experiment Setting 
This experiment uses the hot air soldering machine 

commonly  used by solar cell module  manufacturers to 
conduct soldering parameter experiments. Since there are 
many soldering condition variables (i.e. input variables) that 
affect the soldering process quality (peel force as the 
soldering process output )of solar cells, the ANFIS model is 
used for the soldering experiment to analyse the importance of 
each process variables. The effect of soldering condition 
variables and output of soldering quality is described below. 

Soldering condition variables are the following: 

1. Hot air temperature: temperature is a very important factor 
affecting soldering quality of solar cells. Since the 
coefficient of thermal expansion varies for all cell 
components, the higher the soldering temperature, the 
higher the corresponding stresses. Lower soldering  
temperature is preferred. 

2. Soldering time: soldering time is related to the soldering 
temperature. Usually, the lower the soldering temperature 
is, the longer the soldering time is. 

3. Pre-heating temperature of solder: if the solar cell is pre-
heated before soldering, it reduces the deformation caused 
by instantaneous temperature increases and increases the 
process yield. 

4. Air flow: the air temperature is constant, so air flow will 
affect the uniformity of temperature and the heat borne by 
the solar cell in a short period of t ime. 

5. Probe numbers: the number of solder spots on the solder 
has a direct impact on the size of cell series resistance. If 
there are insufficient solder spots on a solder, it will 
increase the resistance of the solder.  

6. Probe pressure: though hot air soldering is a non-contact 
soldering method, it  still needs probes to fasten ribbons so 
the soldering process will not shift the ribbons. Since the 
trend nowadays is thinner wafers, good pressure control 
can reduce the damage ratio. 

After soldering, place the solar cell that has a ribbon 
soldered onto it in the tensile testing machine to test for peel 
force. This experiment measures the peel force between solar 
cell and ribbon at a 90 degree angle. The solar cell fo r testing 
is fixed on the tensile testing machine while the ribbon is 
fixed by the pull gauge chuck and shifted by the movement of 
the testing platform (pull gauge fixed) to measure the peel 
force. Each collocation parameter is soldered to two solar 
cells, and the average peel force is used as the experimental 
data. The control factors are as listed in Table1. 

TABLE I EXPERIMENTAL SOLDERING CONDITION VARIABLES AND DATA 

 

III.  ANTIS ESTIMATOR METHODOLOGY 
The ANFIS estimator learns the rules and membership 

functions from experiment data. ANFIS estimator is an 
adaptive network. An adaptive network is network of nodes 
and directional links. Associated with the network is a 
learning rule-for example back propagation. It’s called 
adaptive because some, or all, of the nodes have parameters 
which affect the output of the node. These networks are 
learning  a relat ionship between inputs and outputs. Adaptive 
networks cover a number of d ifferent approaches but for our 
purposes we will investigate in some detail the method 
proposed by Jang known as ANFIS. The ANFIS estimator 
architecture is shown below. The circular nodes represent 
nodes that are fixed whereas the square nodes are nodes that 
have parameters to be learnt. Assume that the FIS has two 
inputs, x and y, and one output, F. In addit ion, the rule base of 
the FIS contains two fuzzy if-then rules, similar to the rule 
types described by Takagi and Sugeno: 

111111 ryqxpfTHENBisyandAisxIf ++=
222222 ryqxpfTHENBisyandAisxIf ++=          

(3) 
When f(x, y) is a first-order polynomial as shown above, 

then the model is called a first-order Sugeno fuzzy model. 
ANFIS arch itecture is shown in Fig. 2 where each node within  
the same layer performs functions of the same type. 

Layer 1 Layer 2 Layer 3 Layer 4 Layer 5

   1w      1w   11fw
  X

   ∑    F

  Y  2w    2w    22fw

  A1

  A2

  B1

  B2

 
Fig. 2 An ANFIS architecture for a two rule Sugeno system 
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For the training of the network, there is a forward pass and 
a backward pass.  We now look at each layer in turn  for the 
forward pass. The forward pass propagates the input vector 
through the network layer by layer. In the backward pass, the 
error is sent back through the network in a similar manner to 
backpropagation.  

Layer 1: 

In this layer where the fuzzificat ion process takes place, 
every node is adaptive. Outputs of this layer form the 
membership values of the premise part.The output of each 
node is: 

1, ( ) 1,2
ii AO x for iµ= =                 (4) 

21, ( ) 3, 4
ii BO y for iµ
−

= =  

So, the )(,1 xO i  
is essentially the membership grade for x

and y . The membership functions could be anything but for 
illustration purposes we will use the triangular shaped 
function given by: 

μ
A i,B i(x)=max ⁡[min �

x−ai
b i−ai

 ,
c i −x

c i−b i
�,0]

             (5) 

where , ,i i ia b c are parameters triangular membership 
function to be learnt. These are the premise parameters. 

Layer 2: 

Every node in this layer is fixed. Th is is where the t-norm 
is used to ‘AND’ the membership grades-for example the 
product: 

2, ( ) ( ), 1, 2
i ii i A BO w x y iµ µ= = =         (6) 

Each node output represents a firing strength of a rule. 
Layer 3: 

In this layer where the normalizat ion process is performed, 
the nodes are fixed as they are in Layer 2. 

3,
1 2

i
ii

wO w
w w

= =
+

                               (7) 

Layer 4: 

Since the nodes in this layer operate as a function block 
whose variables are the input values, they are adaptive. 
Consequently the output of this layer forms TSK outputs and 
this layer is referred to as the consequent part. The nodes in 
this layer are adaptive and perform the consequent of the rules: 

4, ( )i i i i i i iO w f w p x q y r= = + +                         (8)   

The parameters in this layer ( iii rqp ,, ) are to be 
determined and are referred to as the consequent parameters. 

Layer 5: 

This is the summation layer. which consists of a single 
fixed node. It sums up all the incoming signals and produces 
the output. 

5,
i ii

i i i
i ii

w f
O w f

w
= = ∑∑ ∑

                               (9) 

This then is how, typically, the input vector is fed through 
the network layer by layer. ANFIS has a hybrid learn ing rule 
algorithm which integrates the gradient descent method and 
the least square methods to train parameters. In the forward  
pass of the algorithm, functional signals go forward until 
Layer 4 and the consequent parameters are identified by the 
least squares method to minimize the measured error. In the 
backward pass, the premise parameters are updated by the 
gradient descent method. We now consider how the ANFIS 
learns the premise and consequent parameters for the 
membership functions and the rules. 

A. Training of ANFIS Estimators 
ANFIS estimator structure design and training are realized  

using MATLAB software. There are many types of 
parameters need to be set in  ANFIS estimator structure design. 
The parameters give a minor and major influence to the 
estimation output performance: 

1. the type of membership function (MFs) (triangular, 
Gaussian, bell shape, trapezoidal etc), 

2. the type of consequent part (linear or constant), 

3. the number of MFs (>1), 

4. the number of training epoch, 

5. the number of training data, 

6. the inputs selection method (the more details presented in 
the next section), 

7. the optimizat ion method (backpropagation, or hybrid of 
the least-squares and the back propagation gradient 
descent). 

In this sub-section, three variables, for example, were 
selected for inputs of the ANFIS estimator to estimat ing an 
output response. The estimator was developed using different 
shape of input membership function (MFs) type which was 
triangular with number of the MFs was three. In purpose of 
training the estimator, a  hybrid o f the least-squares method 
and the backpropagation gradient descent method was used to 
emulate a given experiment data as train ing data set. The 
linear and constant output MFs type was employed to produce 
the peel force value. Fig. 3 shows the flowchart for estimat ing 
ribbon peel force using ANFIS estimator. The estimator 
setting is shown in Table 2. 

TABLE II PARATERMETERS SETTING FOR ANTIS ESTIMATOR 

ANFIS Estimator Setting Details 

Input soldering condition variables 
 
 

Output Response 
 

Type of Input MFs 
 

No. of MFs 
 

Type of Output MFs 
 

Optimization Method 
 
 
 

Epochs 

hot air temperature、pre-heating 
temperature of solder and air flow. 

 
Peel force 

 
Triangular 

 
Three 

 
Linear and constant 

 
Hybrid of the least-squares and the 

backprogation gradient descent 
method 

 
100 
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Program Start

Epoch Number Optimization

Experiment Data Training

Performance Output 
Comparative  Inputs Selection  

Analysis

Testing

ANFIS Setting

Over-fitting Test

SETTING PHASE

Get  Results after Training

 
Fig. 3 Flowchart of ribbon peel force estimation of ANFIS estimator 

As mentioned earlier, three triangular fuzzy membership 
functions were selected to describe the input and output 
variables. Th is is t ranslated in 3 × 32  =27 rules (regard ing the 
three inputs with three fuzzy sets each) as shown in Fig. 4. In  
the structure of Fig. 4, each neuron in the first layer is three 
inputs (hot air temperature, pre-heating temperature of solder 
and air flow) and the second layer is an adaptive with a 
parametric activation function. Its output (peel force 
estimation) is the grade of membership to which the given 
input satisfies the triangular type membership function (as 
selected). The membership function is stated through a 
parametric expression, based whose change affects the shape 
of the membership function. The third  layer output is the 
firing strength of the i-th rule which all of its nodes are fixed. 
the process which happens in the third layer is that they 
calculate the rat io of the i-th rule’s firing strength relative to 
the sum of all ru le’s firing strength resulting in a normalized 
firing strength. In the Layer 4, each of the 27 nodes contains 
the adaptive node (Eq. (8)). The single node in Layer 5 
synthesizes informat ion transmitted by Layer 3 and returns 
the overall output using the Eq. (9).  

 
Fig. 4 Adaptive Neuro-Fuzzy structure for peel force estimation 

Rule viewer presents a sort of micro view of the fuzzy  
inference system, where the rule viewer d isplays a roadmap of 
the whole fuzzy inference process. It is bases the fuzzy  
inference d iagram with a single window with plotted curve 
nested in it as shown in Fig. 5. The p lotted red lines across the 
27 ru les top of the figure represent the antecedent and 

consequent of the fired  rule. The ru le numbers are displayed 
on the left o f each row. The previous three columns of p lots 
show the membership functions referenced by the antecedent, 
or the if-part of each rule. The last column of p lots represents 
the aggregate weighted decision for the given inference 
system. 



GPEM Volume 1, Issue 2 August 2012, PP. 51-58 
- 56 - 

 
Fig. 5 The rule viewer for the ANFIS estimator 

IV. TESTING AND PERFORMANCE EVALUATION 
The last block in Fig. 3 illustrates the ANFIS estimator 

performance for the input soldering condition variables 
selection. In this Section, we implement the heuristic way  to 
do input variables selection for ANFIS estimator to identify  
the significant variables in the estimat ing the ribbon peel force 
of solar cells. In  this heuristic way, all input candidates are 
treated equally and the best input arguments are selected 
sequentially. In order to evaluate the selects of our heuristic 
selection method, the procedure was applied to one, two, three,  
and four inputs trained ANFIS estimator, corresponding to 
four types configurations (in the following labeled with I1, I2, 
I3, I4). This is the first stage of the heuristic way and starting 
one input selected which includes: hot air temperature (1), 
soldering time (2), pre-heating temperature of solder (3), air 
flow (4), probe numbers (5), o r probe p ressure (6). The 
number in the brackets indicated input variables code. The 
training performance of the ANFIS estimator can be checked 
by the RMSE and the accuracy of percentage (A%). Table 3 
shows the results of train ing and test success of ANFIS 
estimator for different one input (input code: 1-6) with three 
triangle MFs.  
TABLE III THE PERFORMANCE OF SELECTED ONE INPUT ANFIS PERFORMANCE 

EVALUATION 

 

 
Fig. 6 The performance of selected one input for ANFIS estimator 

As an illustrative example, Fig. 6 shows the RMSE of one 
input (I1) of the six ANFIS estimators during the input node 
selection process. The pre-heating temperature of solder of the 
third variable is the most influential input that contains the 
lowest RMSE and test error close to train RMSE in the list of 
all input variables. 

To calculate two inputs combination (I2), we build C2
6=15 

for ANFIS estimator. The available inputs to select the fifteen 
set of input combinations that most influence the output. The 
pre-heating temperature of solder (3) and air flow (4) inputs 
combination is the most influential input shown in Tab le 4 
and Fig. 7.   

TABLE IV THE PERFORMANCE OF SELECTED TWO INPUTS ANFIS ESTIMATOR 
PERFORMANCE EVALUATION 

No Performance 
Measures 

Train Test Inputs 
Code RMSE A(%) RMSE A(%) 

1 
Hot air 

temperature (1), 
Soldering time 

(2) 
5.35 98 6.75 97.44 1, 2 
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2 

Hot air 
temperature (1), 

Pre-heating 
temperature of 

solder (3) 

3.16 98.78 3.04 98.96 1, 3 

3 
Hot air 

temperature (1), 
Air flow (4) 

5.15 98.04 5.42 97.86 1, 4 

4 
Hot air 

temperature (1), 
Probe numbers 

(5) 

4.59 98.37 7.03 97.18 1, 5 

5 

Hot air 
temperature (1), 
Probe pressure 

(6) 
4.7 98.04 6.1 97.39 1, 6 

6 

Soldering time 
(2), Pre-heating 
temperature of 

solder (3) 
2.73 99.07 3.59 98.57 2, 3 

7 Soldering time 
(2), Air flow (4) 5.56 97.82 5.73 97.69 2, 4 

8 
Soldering time 

(2), Probe 
numbers (5) 

4.58 98.47 7.24 96.86 2, 5 

9 
Soldering time 

(2), Probe 
pressure (6) 

5.22 97.91 5.49 97.88 2, 6 

10 
Pre-heating 

temperature of 
solder (3), Air 

flow (4) 

2.53 99.05 2.65 98.94 3, 4 

11 

Pre-heating 
temperature of 

solder (3), 
Probe numbers 

(5) 

3 98.8 5.14 98.12 3, 5 

12 

Pre-heating 
temperature of 

solder (3), 
Probe pressure 

(6) 

2.9 98.91 3.11 98.76 3, 6 

13 
Air flow (4), 

Probe numbers 
(5) 

4.52 98.54 6.69 97.04 4, 5 

14 
Air flow (4), 

Probe pressure 
(6) 

4.47 98.4 5.72 97.8 4, 6 

15 
Probe numbers 

(5), Probe 
pressure (6) 

3.85 98.57 6.21 97.43 5, 6 

 

 
Fig. 7 The performance of selected two inputs for ANFIS estimator 

Next, a combination of three inputs and four inputs was 
tried. The results identify soldering time (2), pre-heating 
temperature of solder (3), and air flow (4) inputs combination 
is the most influential three inputs shown in Fig. 8. In the 
same process, pre-heating temperature of solder (3), air flow 
(4), probe numbers (5), and probe pressure (6) inputs 
combination is the most influential four inputs shown in Fig. 9.  

 
Fig. 8 The performance of selected three inputs for ANFIS estimator 

 
Fig. 9 The performance of selected four inputs for ANFIS estimator 

Then testing data and training data are used to test the 
ANFIS estimator performance fo r mentioned above different 
inputs selected. Table 5 p resents the comparison of actual 
values and corresponding output values proposed by the 
ANFIS estimator. 

TABLE V THE PERFORMANCE OF DIFFERENT SELECTED INPUTS ANTIS 
ESTIMATOR PERFORMANCE EVALUATION 
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The heuristic way was employed to select appropriate 
inputs. According Table 5, we plot the scatter diagram (Fig. 
10) of the actual measured and estimated peel fo rce for the 
experimental tests. It shows that the estimated values of 
ANFIS estimator response between 200 and 210 (gf) in a 
good fashion. In particularly, one of the best performance of 
ANFIS estimator with soldering time (2), pre-heating 
temperature of solder (3), and air flow (4) inputs.  It was 
observed the three-input ANFIS estimator provided 
reasonably low RMSE where beyond this different number of 
input combinations. As such, the optimum three-input ANFIS 
estimator was selected. In  summary, the ANFIS estimator can 
be a good option in estimat ing peel forces value of solar cells 
soldering ribbon interconnects. 

 
Fig. 10 Scatter diagram of the actual and estimated peel force for the testing 

data using ANFIS estimator 

V.   CONCLUSIONS 
In this study, the ANFIS estimator was used in estimating  

the peel force of the hot-air soldering ribbon interconnects. 
The 30 limited experimental data were used for the estimator 
training purpose and 10 testing dataset were used for 
validation. The result showed that the three inputs (soldering 
time, pre-heating temperature of solder, and air flow) 
structures of ANFIS estimator gave good estimation accuracy. 
We see significant differences in soldered performances. 
Better understanding performance of soldering condition 
variables will enable optimizat ion of the tabbing/ stringing 
process and lead to improved solar cells module quality. This 
work examines performance across a broad range of soldering 
condition variables. Some technical insights are provided on 
the reasons for the performance differences that would 
provide valuable information to the industry.  
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