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Abstract- The Einstein’s field equations with variable cosmological “constant” are considered in presence of perfect fluid for a 
homogeneous and anisotropic Bianchi type-I space-time. Einstein’s field equations are exactly solved by considering scale factor ( ) 	= 	  (Pradhan et al. in Rom. J. Phys. 57: 2012) which yields a time-dependent deceleration parameter (DP), representing 
models which generate accelerating phase at the present epoch. The cosmological constant Λ is found to be a decreasing function of 
time and it approaches a small positive value at the present epoch which is corroborated by consequences from recent supernovae Ia 
observations. From recently developed Statefinder pair, the behaviour of different stages of the evolution of the universe has been 
studied. The physical and geometric implications of the cosmological models have also been discussed. 
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I. INTRODUCTION 

The Einstein field equation has two parameters, the gravitational constant G and the cosmological constant Λ. The 
Newtonian constant of gravitation G plays the role of a coupling constant between geometry and matter in the Einstein field 
equation. In theories with a variable Λ-term, one either introduces new terms (involving scalar fields, for instance) in to the left 
hand side of the Einstein’s field equations to cancel the non-zero divergence of Λgij [1, 2] or interprets Λ as a matter source 
and moves it to the right hand side of the field equations [3], in which case energy momentum conservation is understood to 

mean ;∗  = 0, where ∗  = Tij - (Λ/8πG)gij . It is here that the first assumption that leads to the cosmological constant problem 

is made. It is that the vacuum has a non-zero energy density. If such a vacuum energy density exists, Lorentz invariance 

requires that it has the form  = - .This allows defining an effective cosmological constant and a total effective vacuum 

energy density Λeff = Λ + 8  or vac =  + Λ/8πG. Note at this point that only the effective cosmological constant, Λeff , is 
observable, not Λ, so the latter quantity may be referred to as a ‘bare’. The two approaches are of course equivalent for a given 
theory (Vishwakarma [4]). A dynamic cosmological term Λ(t) remains a focal point of interest in modern cosmological 
theories as it solves the cosmological constant problem in a natural way. For detail discussions, the readers are advised to see 
the references (Weinberg [5]; Carroll et al. [6]; Croswell [7]; Abdussattar and Vishwakarma [8]; Peebles and Ratra [9]; Lima 

[10]; Sahni and Starobinsky [11]; Padmanabhan [12, 13]; Singh et al. [14]). There are significant observational evidences that 
the expansion of the Universe is undergoing late time acceleration [15-22]. This, in other words, amounts to saying that in the 
context of Einstein’s general theory of relativity some sort of dark energy, constant or that varies only slowly with time and 
space dominates the current composition of cosmos. The origin and nature of such an accelerating field poses a completely 
open question. Observations (Riess et al. [23]; Knop et al. [24]) of Type Ia Supernovae (SNe) allow us to probe the expansion 
history of the universe leading to the conclusion that the expansion of the universe is accelerating. Observations strongly favor 
a small and positive value of the effective cosmological constant at the present epoch. Among many possible alternatives, the 
simplest and most theoretically appealing possibility for dark energy is the energy density stored on the vacuum state of all 

existing fields in the universe, i.e., = Λ
, where Λ is the cosmological constant. However, a constant Λ cannot explain the 

huge difference between the cosmological constant inferred from observation and the vacuum energy density resulting from 
quantum field theories. In an attempt to solve this problem, variable Λ was introduced such that Λ was large in the early 
universe and then decayed with evolution [25]. Cosmological scenarios with a time-varying Λ were proposed by several 
researchers [26-46]. Since experimental data favour an anisotropic universe and hence it motivates to study models of the 
universe with anisotropic background space-time structure. The simplest anisotropic models are Bianchi type-I homogeneous 
models whose spatial sections are flat but the expansion or contraction rate are direction dependent. Motivated by the above 
discussions, in this paper, we have investigated Bianchi Type-I cosmological models with time dependent deceleration 
parameter and cosmological Λ-term in presence of perfect fluid. The outline of the paper is as follows. In Sect. II, the metric 
and basic equations are described. Sect. III deals with the solutions of the field equations. In Sect. IV, the physical and 

DOI: 10.5963/JBAP0202003



Journal of Basic and Applied Physics    May 2013, Vol. 2 Iss. 2, PP. 50-59 

- 51 - 

geometric aspects of the models have been discussed. In Sect. V, Statefinder diagnostic pair is briefly discussed. Finally, 
conclusions are summarized in the last Sect. VI. 

II. THE METRIC AND BASIC EQUATIONS 

We consider the space time admitting Bianchi Type-I group of motion in the form: 

 = − + ( ) + ( ) + ( ) . (1) 

In general relativity, the Bianchi identities for the Einstein tensor Gij and the vanishing covariant divergence of the energy 
momentum tensor Tij together with imply that the cosmological term Λ is constant. In theories with a variable Λ-term, one 
either introduces new terms (involving scalar fields, for instance) into the left-hand- side of the Einstein’s field equations to 
cancel the non-zero divergence of Λgij (Bergmann [1]; Wagoner [2]) or interprets Λ as a matter source and moves it to the 
right-hand-side of the field equation (Zeldovich [3]), in which case energy momentum conservation is understood to mean: 

 − Λ = 0 (2) 

Of course, the two approaches are equivalent for a given theory (Overduin [48]). Here we follow the later approach and 
assume that the cosmic matter is represented by the energy momentum tensor of perfect fluid augmented with the Λ-term as: 

 = ( + ) + − Λ , (3) 

Together with a perfect gas equation of state: 

 = ,				0 ≤ ≤ 1, (4) 

where ρ, p are the energy density, thermo dynamical pressure and ui is the four-velocity vector of the fluid comporting the 
relation. 

 = −1 (5) 

The Einstein’s field equations 		 	
 − = 8 	. (6) 

For the Metric (1) and Energy-Momentum Tensor (3) in comoving coordinate system, the Field Equation (6) proceeds a set 
of four independent equations:  

 + + = −8 + Λ, (7) 

 + + = −8 + Λ, (8) 

 + + = −8 + Λ, (9) 

 + + = 8 + Λ. (10) 

Here, and also in what fallows, a dot designates ordinary differentiation with respect to ‘t’. 

The energy conservation equation  = 0,  leads to the fallowing expression: 

 +	( + ) + + +	 Λ = 0, (11) 

which is a consequence of the Field Equations (7)–(10). 

We define the fallowing parameters to be used in solving Einstein’s field equations for the Metric (1). 

The average scale factor of Bianchi Type-I Model (1) is defined as: 

 =	 ( ) . (12) 

A volume scale factor V is given by 

 = = 	. (13) 

.

.
:
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In analogy with FRW universe, we also define the generalized Hubble parameter H as:   

 =	 = 	 	( +	 +	 ),		 (14) 

where =	 	 , 	 = 	  and		 = 	  are directional Hubble factors in the directions of x-, y- and z-axes respectively. Here, 

and also in what follows, a dot indicates ordinary differentiation with respect to ‘ t’. 

Further, the deceleration parameter ‘q’ is given by 

 =	− 		. (15) 

We introduce the kinematical quantities such as expansion scalar ( ), shear scalar ( ) and anisotropy parameter ( ),  
defined as follows: 

 =	 ; 	,  (16) 

 =	 	, (17) 

 =	 ∑ 	 	,		 (18) 

where = (0, 0, 0, 1) is the matter four-velocity vector and 

 =	 	;	 + 	 	;	 − 	 	. (19) 

Here the projection tensor   has the form 

 =	 −	 	.		 (20) 

These dynamical scalars, in Bianchi Type-I, have the forms 

 = 3 = 	 + + 	,				 (21) 

 2 = 	 +	 +	 −	 		. (22) 

III. SOLUTIONS OF THE FIELD EQUATIONS 

Subtracting (7) from (8) and integrating, we obtain 

 −	 = 	 = 	 	, (23) 

where 	is constant of integration. Again integrating (23), we get 

 =	 exp 	 		, (24) 

where  is an integrating constant. 

Similarly subtracting (7) and (8) from (9), and continuing as above  we get two more relations; 

 = 	exp 	 	, (25) 

 =	 exp 	 		,		 (26) 

where , 	,   and  are constants of integration. 

From Eqs. (24)-(26), the metric functions can be obtained explicitly as 

 ( ) = 	 	 	 exp 	 		,		 (27) 
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 ( ) = 	 	 		 exp 	 	, (28) 

 ( ) = 	 	 		 exp 	 	, (29) 

where  = 		, = 		, = ( 	)  3 = 	 +	 	, 3 = 	 −	 	, 3 = 	−( +	 )	,		 
where the constants 	 , 	, 	, and , 	, ,	 satisfying the relations 

 +	 +	 = 0,								 = 1. (30) 

It is clear from Eqs. (27)-(29) that once we get  the value of average scale factor ‘a’, we can easily calculate the metric 
functions  A,  B,  C. 

The understanding of the global evolution of the observationally amenable universe, mathematically encoded in the 
dynamics of its scale factor a, is of utmost importance in explaining practically all cosmological phenomena. One of the most 
intriguing aspects of this evolution is the recently established late-time transition from a decelerated to an accelerating regime 
of the expansion of the Universe. Therefore, following Pradhan et al. [49], we take following ansatz for the scale factor, where 
increase in term of time evolution is 

 ( ) =  (31)  (31) 

The motivation to choose such time dependent DP is behind the fact that the universe is accelerated expansion at present as 
observed in recent observations of Type Ia supernova (Riess et al. [18]; Perlmutter et al. [16]; Tonry et al. [50]; Riess et al. 
[23]; Clocchiatti et al. [51] and CMB anisotropies (Bennett et al. [52]; de Bernardis et al. [53]; Hanany et al. [54]) and 
decelerated expansion in the past. Also, the transition redshift from deceleration expansion to accelerated expansion is about 
0.5. Now for a Universe which was decelerating in past and accelerating at the present time, the DP must show signature 
flipping (see the Refs. Padmanabhan and Roychowdhury [55], Amendola [56]). So, in general, the DP is not a constant but 
time variable. The motivation to choose such scale factor (31) yields a time dependent DP. 

Using Eq. (31) into (27)-(29), we get the fallowing expression for scale factors: 

 ( ) = 	 	( )	exp ( ) 		, (32) 

 ( ) = 	 	( )	exp ( ) 	, (33) 

 ( ) = 	 	( )	exp ( ) 	.   (34) 

Hence the geometry of the universe (1) is reduced to  =	− +	 		( ) exp 2 ( ) 	 +	 
		( ) exp 2 ( ) 	 + 

		( ) exp 2 ( ) 	 .         (35) 

From Eqs. (32)- (34), we obtain =	 + 1 +	 	( ) 	,	 
=	 + 1 +	 	( ) 	,	 =	 +	 	( ) 	,	                    (36) 

and 

	.
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 = 1 + 3	 +	 	 		 		 = 	 	 	.		 (47) 

 = 1 −	( ) 		,				 = 	 ( )( )( 	 )	. (48)

 
For our model, the parameters ,   can be explicitly written in terms of t as 

From Eq. (48), we observe that ‘s’ is negative when 	 ≥ 1		. We also observe that the universe starts from an asymptotic 
Einstein static era ( 	 → ∞	, → −	∞) and goes to the Λ  model ( = 1, = 0). 

VI.  CONCLUSIONS 

In this paper, a class of cosmological models is presented with variable cosmological term Λ in spatially homogeneous and 
anisotropic Bianchi Type-I space-time in the presence of a perfect fluid. To find the deterministic solution, we have considered 
a scale factor a(t) =  which yields a time dependent deceleration parameter so that the universe is accelerating at present 
epoch which is corroborated from the recent supernovae Ia observation (Riess et al. [18, 19]; Perlmutter et al. [16]; Tonry et al. 
[50]; Riess et al. [23]; Clocchiatti et al. [51]). The parameters H, , and  diverge at the initial singularity. There is a Point 
Type singularity (MacCallum [58]) at t = 0 in the model. The rate of expansion slows down and finally tends to zero as t → 0. 
The pressure, energy density and cosmological term Λ become negligible whereas the scale factors and spatial volume become 
infinitely large as t → ∞, which would give essentially an empty universe. 

The main features of the models are as follows: 

 The models are based on exact solutions of the Einstein’s field equations for the anisotropic Bianchi-I space-time filled 
with perfect fluid with variable Λ-term. 

 The model represents expanding, shearing and non-rotating universe. 

 The nature of decaying vacuum energy density Λ(t) in our derived models is supported by recent cosmological 
observations. These observations on magnitude and red-shift of Type Ia supernova suggest that our universe may be an 
accelerating one with induced cosmological density through the cosmological Λ-term. 

 In literature it is a plebeian practice to consider constant deceleration parameter. Now for a Universe which was 
decelerating in past and accelerating at present epoch, the DP must show signature flipping as already discussed in Section II. 
Therefore, our consideration of scale factor which provides a time dependent DP to be variable is physically justified. Our 
derived model is accelerating at present epoch (Fig. 4) 

 We observe that the evolution of the universe starts from asymptotic Einstein static era (r → ∞; s→ -∞) and approaches 
to ΛCDM model (r = 1; s = 0). So, from the Statefinder parameter ,  the behaviour of different stages of the evolution of 
the universe has been generated. 
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