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Abstract- The Einstein’s field equations with variable cosmological “constant” are considered in presence of perfect fluid for a
homogeneous and anisotropic Bianchi type-I space-time. Einstein’s field equations are exactly solved by considering scale factor
a(t) = te' (Pradhan et al. in Rom. J. Phys. 57: 2012) which yields a time-dependent deceleration parameter (DP), representing
models which generate accelerating phase at the present epoch. The cosmological constant A is found to be a decreasing function of
time and it approaches a small positive value at the present epoch which is corroborated by consequences from recent supernovae Ia
observations. From recently developed Statefinder pair, the behaviour of different stages of the evolution of the universe has been
studied. The physical and geometric implications of the cosmological models have also been discussed.
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[. INTRODUCTION

The Einstein field equation has two parameters, the gravitational constant G and the cosmological constant A. The
Newtonian constant of gravitation G plays the role of a coupling constant between geometry and matter in the Einstein field
equation. In theories with a variable A-term, one either introduces new terms (involving scalar fields, for instance) in to the left
hand side of the Einstein’s field equations to cancel the non-zero divergence of Ag; [1, 2] or interprets A as a matter source
and moves it to the right hand side of the field equations [3], in which case energy momentum conservation is understood to

mean Tj” =0, where Tj; = Tj; - (A/87G)gy . It is here that the first assumption that leads to the cosmological constant problem

is made. It is that the vacuum has a non-zero energy density. If such a vacuum energy density exists, Lorentz invariance
requires that it has the form Ty, = - pg,,.This allows defining an effective cosmological constant and a total effective vacuum
energy density A= A + 8mGp or p,,. = p + A/8rG. Note at this point that only the effective cosmological constant, Ay, is
observable, not A, so the latter quantity may be referred to as a ‘bare’. The two approaches are of course equivalent for a given
theory (Vishwakarma [4]). A dynamic cosmological term A(f) remains a focal point of interest in modern cosmological
theories as it solves the cosmological constant problem in a natural way. For detail discussions, the readers are advised to see
the references (Weinberg [5]; Carroll et al. [6]; Croswell [7]; Abdussattar and Vishwakarma [8]; Peebles and Ratra [9]; Lima
[10]; Sahni and Starobinsky [11]; Padmanabhan [12, 13]; Singh et al. [14]). There are significant observational evidences that
the expansion of the Universe is undergoing late time acceleration [15-22]. This, in other words, amounts to saying that in the
context of Einstein’s general theory of relativity some sort of dark energy, constant or that varies only slowly with time and
space dominates the current composition of cosmos. The origin and nature of such an accelerating field poses a completely
open question. Observations (Riess et al. [23]; Knop et al. [24]) of Type Ia Supernovae (SNe) allow us to probe the expansion
history of the universe leading to the conclusion that the expansion of the universe is accelerating. Observations strongly favor
a small and positive value of the effective cosmological constant at the present epoch. Among many possible alternatives, the
simplest and most theoretically appealing possibility for dark energy is the energy density stored on the vacuum state of all

existing fields in the universe, i.e., p, = Pt where A is the cosmological constant. However, a constant A cannot explain the

huge difference between the cosmological constant inferred from observation and the vacuum energy density resulting from
quantum field theories. In an attempt to solve this problem, variable A was introduced such that A was large in the early
universe and then decayed with evolution [25]. Cosmological scenarios with a time-varying A were proposed by several
researchers [26-46]. Since experimental data favour an anisotropic universe and hence it motivates to study models of the
universe with anisotropic background space-time structure. The simplest anisotropic models are Bianchi type-1 homogeneous
models whose spatial sections are flat but the expansion or contraction rate are direction dependent. Motivated by the above
discussions, in this paper, we have investigated Bianchi Type-I cosmological models with time dependent deceleration
parameter and cosmological A-term in presence of perfect fluid. The outline of the paper is as follows. In Sect. II, the metric
and basic equations are described. Sect. III deals with the solutions of the field equations. In Sect. IV, the physical and
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geometric aspects of the models have been discussed. In Sect. V, Statefinder diagnostic pair is briefly discussed. Finally,
conclusions are summarized in the last Sect. VI.

II. THE METRIC AND BASIC EQUATIONS
We consider the space time admitting Bianchi Type-I group of motion in the form:
ds? = —dt? + A%(t)dx? + B%(t)dy? + C?(t)dz>. )

In general relativity, the Bianchi identities for the Einstein tensor G; and the vanishing covariant divergence of the energy
momentum tensor T}; together with imply that the cosmological term A is constant. In theories with a variable A-term, one
either introduces new terms (involving scalar fields, for instance) into the left-hand- side of the Einstein’s field equations to
cancel the non-zero divergence of Ag; (Bergmann [1]; Wagoner [2]) or interprets A as a matter source and moves it to the
right-hand-side of the field equation (Zeldovich [3]), in which case energy momentum conservation is understood to mean:

Tij = (525) 95 = 0. @

Of course, the two approaches are equivalent for a given theory (Overduin [48]). Here we follow the later approach and
assume that the cosmic matter is represented by the energy momentum tensor of perfect fluid augmented with the A-term as:

A
Tij = (p + pugy; + (P - Q) 9ijy 3)
Together with a perfect gas equation of state:

p=vp, 0sy<=<1, (4)

where p, p are the energy density, thermo dynamical pressure and u; is the four-velocity vector of the fluid comporting the
relation.

wut = —1. (5)
The Einstein’s field equations read as:
1
RU_ERgU =8T[GTU (6)

For the Metric (1) and Energy-Momentum Tensor (3) in comoving coordinate system, the Field Equation (6) proceeds a set
of four independent equations:

B ¢

E+C+———87TGp+A, (M
¢ A CA

E+Z+a——8n6p+A, ®)
A B

A+B+ " = —8mGp + A, ©)
A 5 A 8nGp + A (10)
AB BC CA

bl

Here, and also in what fallows, a dot designates ordinary differentiation with respect to ‘t’.

The energy conservation equation 7}” = 0, leads to the fallowing expression:

. A B ¢
p+ p+p)(5+2+5)+ ==0, (11
which is a consequence of the Field Equations (7)—(10).
We define the fallowing parameters to be used in solving Einstein’s field equations for the Metric (1).

The average scale factor of Bianchi Type-I Model (1) is defined as:

1
a = (ABC)s. (12)
A volume scale factor V is given by

V =a3=ABC. (13)
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In analogy with FRW universe, we also define the generalized Hubble parameter H as:

] 1
H= == (H + Hy+ H), (14)

a

where H; = % , H, = gand H; = %are directional Hubble factors in the directions of x-, y- and z-axes respectively. Here,
and also in what follows, a dot indicates ordinary differentiation with respect to “ t’.

Further, the deceleration parameter ‘q’ is given by
= ——=. (15)

We introduce the kinematical quantities such as expansion scalar (8), shear scalar (62) and anisotropy parameter (4,,),
defined as follows:

0= ul, (16)
g2 = Lg..gl (17
2 UT
1wz (Hi- H\?
Am = 333, (F2E), (18)

where ul = (0,0,0,1) is the matter four-velocity vector and
oij = %(ui;apja + u;, o Pf) — §9Pij. (19)
Here the projection tensor P;; has the form
P = gij — wuy;. (20)
These dynamical scalars, in Bianchi Type-I, have the forms

g=3H="44E8,¢ @n
A B

2ot = [0+ @)+ (€] @

III. SOLUTIONS OF THE FIELD EQUATIONS

Subtracting (7) from (8) and integrating, we obtain

A_B_ ki _ 4 -3

A B ABC kna™, (23)
where k; is constant of integration. Again integrating (23), we get

A dt

—= dyexp (k1 f;) , (24)

where d; is an integrating constant.

Similarly subtracting (7) and (8) from (9), and continuing as above we get two more relations;

% =d, exp (kz f%), (25)
2= dyexp(ks [5), (26)

where d,, d3 k, and k3 are constants of integration.

From Egs. (24)-(26), the metric functions can be obtained explicitly as

A(t) = l; a exp (ml f%) , (27)
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B(t) = l,a exp (mz f%), (28)
C(t) = lya exp (m3 i %) (29)

where

L =3fdyd; 1 = |did, 1y = Y/(dyd;) !
3my = ky+ ky,3my, = k3 — kq, 3mg = —(k, + k3),
where the constants m,, m, ms, and l;,1,, 3, satisfying the relations
my+ my+ my =0, Ll =1. (30)

It is clear from Egs. (27)-(29) that once we get the value of average scale factor ‘a’, we can easily calculate the metric
functions A, B, C.

The understanding of the global evolution of the observationally amenable universe, mathematically encoded in the
dynamics of its scale factor «, is of utmost importance in explaining practically all cosmological phenomena. One of the most
intriguing aspects of this evolution is the recently established late-time transition from a decelerated to an accelerating regime
of the expansion of the Universe. Therefore, following Pradhan et al. [49], we take following ansatz for the scale factor, where
increase in term of time evolution is

a(t) = tet. (€2))

The motivation to choose such time dependent DP is behind the fact that the universe is accelerated expansion at present as
observed in recent observations of Type Ia supernova (Riess et al. [18]; Perlmutter et al. [16]; Tonry et al. [50]; Riess et al.
[23]; Clocchiatti et al. [S1] and CMB anisotropies (Bennett et al. [52]; de Bernardis et al. [53]; Hanany et al. [54]) and
decelerated expansion in the past. Also, the transition redshift from deceleration expansion to accelerated expansion is about
0.5. Now for a Universe which was decelerating in past and accelerating at the present time, the DP must show signature
flipping (see the Refs. Padmanabhan and Roychowdhury [55], Amendola [56]). So, in general, the DP is not a constant but
time variable. The motivation to choose such scale factor (31) yields a time dependent DP.

Using Eq. (31) into (27)-(29), we get the fallowing expression for scale factors:

A(t) = 1y (tet) exp[m, [(tet)~3dt] , (32)
B(t) = L, (te") exp[m, [(tet)3dt], (33)
C(t) = I3 (tet) exp[ms [(tet)~3dt]. (34)

Hence the geometry of the universe (1) is reduced to

ds? = —dt? + 12 (te")? exp [2m1 f(tet)‘3dt] dx? +

12 (tet)? exp [Zmz f(tet)‘3dt] dy? +

12 (te)? exp[2m, [(tet) 3dt] dz2. (35)
From Egs. (32)- (34), we obtain

(ﬂ) + m, (tet)™3,

~

(E) + m, (tet)3,

~

OlY m| W >

(55) + ms ze)2, (36)

and

-53-
DOI: 10.5963/IBAP0202003



Journal of Basic and Applied Physics May 2013, Vol. 2 Iss. 2, PP. 50-59

A t+ 1\2 t+1 1
7= () miten - m (o) e -,
B t+1\? _ t+1 1
B~ ( t ) +ma(£ef)™ - mz( t >(tet) gt
o t+1)2 _ t+1 _ 1
o= () + myte)™® = mg () (e — 5. (37)

IV.SOME PHYSICAL AND GEOMETRIC PROPERTIES

Substituting (36)- (37) into Eqgs. (9) and (10), and solving with (4), we get the expressions for pressure (p), energy density
(p) and cosmological term A for the model (35) as

Y 2 —
p= m[t—z— B (te®) 6], (38)
1 2 —
p = m[t—z— Ba(te") 6], 39)
_ oo () _ 2 Bs t\—6
A= 3( t ) (1+y)t2 + 1+7) (te)™, (40)

where
B = mi+ mi+ m3,
B2 = mi+ mj — my (my + my),
fs = m? + mi+ mym, + y(mym, + mymz + mymy). (41)
From above relations (38)-(40), we can obtain four types physically relevant models:
e When y = 0, we obtain empty model.

e Wheny = g, we obtain radiating dominated model.

e When y = —1, we have the degenerate vacuum or false vacuum or p vacuum model (Cho [57]).

e When y = 1, the fluid distribution correspond with the equation of state p = p which is known as Zeldovich fluid or
stiff fluid model (Zeldovich [3]).

From Eq. (39), it is observed that the energy density p is a decreasing function of time and p > 0 always. The energy
density has been graphed versus time in Fig. 1 for y = 0; % ; 1. It is evident that the energy density remains positive in all three

types of model. However, it decreases more sharply with the cosmic time in Zeldovich universe, comparing to radiating
dominated and empty fluid universes.

Figure 1 The plot of energy density p versus t
Here 8nG=1,f, =1
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Figure 2 is the plots of cosmological term A versus time for y=0; % ; 1. In all three types of models, we observe that A

is decreasing function of time ¢ and it approaches a small positive value at late time (i.e. at present epoch). However, it
decreases more sharply with the cosmic time in empty universe, compare to radiating dominated and stiff fluid universes.
Recent cosmological observations (Garnavich et al. [20, 21]; Perlmutter et al. [15-17]; Riess et al. [18, 19]; Schmidt et al. [22])

suggest the existence of a positive cosmological constant A with the magnitude A(Gh/c3) = 10723, These observations on

magnitude and red-shift of Type Ia supernova suggest that our universe may be an accelerating one with induced cosmological
density through the cosmological A-term. Thus, the nature of A in our derived model is supported by recent observations.

24

u
2"‘?‘1
\

TS Spem—
Y_O Y"3 Y_l

Figure 2 The plot of cosmological constant A versus t
Here ;=1

The physical parameters such as spatial volume (V), Hubble parameter (H), expansion scalar (8), shear scalar (o) and
anisotropy parameter (A,,) for the Model (41) are given by

V= (te")s, (42)

t+1
9=3H=3(T), (43)

1
q= -1+ (1+t)2”’ (“44)
o2 = ~p(tet)™S, (45)

1 pt? _

Ay = 3 (1B+t)2 (tet)™s (46)

From Egs. (42) and (43), we observe that the spatial volume is zero at # = 0 and the expansion scalar is infinite, which show
that the universe starts evolving with zero volume at # = 0 which is big bang scenario. From Egs. (32)- (34), we observe that the
spatial scale factors are zero at the initial epoch # = 0 and hence the model has a point type singularity (MacCallum [58]). We
observe that proper volume increases with time.

The dynamics of the mean anisotropic parameter depends on the Constant . From Eq. (46), we observe that at late time
when ¢t — o, 4,, — 0. Thus, our model has transition from initial anisotropy to isotropy at present epoch which is in good
harmony with current observations. Figure 3 depicts the variation of anisotropic parameter (4,,) versus cosmic time 7. From the
figure, we observe that 4,, decreases with time and tends to zero as ¢ — oo. Thus, the observed isotropy of the universe can be
achieved in our model at present epoch.
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Figure 3 The plot of anisotropy parameter A, versus t
Here p =1
From Eq. (44), we observe that ¢ > 0 for  <+/2 —1 and ¢ < 0 for t > v/2 — 1. Figure 4 graphs the deceleration parameter
(g) versus time which gives the behavior of g. We observe that ¢ decreases very rapidly approaching to -1 and then after it
remains Constant -1 (like de Sitter universe).

t

Figure 4 The variation of DP q vs t

It is important to note here that lim;_, (;;2) spreads out to be constant. Therefore, the model of the universe goes up

homogeneity and matter is dynamically negligible near the origin. This is in good agreement with the result already given by
Collins [59].

V. STATEFINDER DIAGNOSTIC

Over the past few decades, a simple cosmological model called the lambda cold dark matter (ACDM) model has emerged
as the best fit to the current observation data. ACDM model has emerged as the best fit to the current observational data.
ACDM stands for cosmological constant current expansion of space against the attractive (collapsing) effects of gravity. In
order to explain the cosmic acceleration a form of negative pressure matter called dark energy was suggested. For a current
review, see Magana et al. [60].

Sahni et al. [61] and Alam et al. [62] have introduced a pair of parameters {r, s}, called state finder parameters. In fact,
trajectories in the {r, s} plane corresponding to different cosmological models demonstrate qualitatively different behavior.
The state finder parameters can effectively differentiate between different forms of dark energy and provide simple diagnosis
regarding whether a particular model fits into the basic observational data. The above state finder diagnostic pair has the
fallowing form:
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r—1

H H
T=1+3ﬁ+§and5=_1_ (47)
3(a-3)
For our model, the parameters {r, s} can be explicitly written in terms of t as
_ 3t+1 _ 2(3t+1)
r=1 @Bt+1)3 7 7 7 3(t+1)(3t2+ 6t+1) (43)

From Eq. (48), we observe that ‘s’ is negative whenr > 1 . We also observe that the universe starts from an asymptotic
Einstein static era (r — o, s - — o) and goes to the ACDM model (r =1, s = 0).

VI. CONCLUSIONS

In this paper, a class of cosmological models is presented with variable cosmological term A in spatially homogeneous and
anisotropic Bianchi Type-I space-time in the presence of a perfect fluid. To find the deterministic solution, we have considered
a scale factor a(f) =te® which yields a time dependent deceleration parameter so that the universe is accelerating at present
epoch which is corroborated from the recent supernovae Ia observation (Riess et al. [18, 19]; Perlmutter et al. [16]; Tonry et al.
[50]; Riess et al. [23]; Clocchiatti et al. [S1]). The parameters H, 8, and ¢ diverge at the initial singularity. There is a Point
Type singularity (MacCallum [58]) at # = 0 in the model. The rate of expansion slows down and finally tends to zero as ¢ — 0.
The pressure, energy density and cosmological term A become negligible whereas the scale factors and spatial volume become
infinitely large as ¢t — oo, which would give essentially an empty universe.

The main features of the models are as follows:

e The models are based on exact solutions of the Einstein’s field equations for the anisotropic Bianchi-I space-time filled
with perfect fluid with variable A-term.

e The model represents expanding, shearing and non-rotating universe.

e The nature of decaying vacuum energy density A(f) in our derived models is supported by recent cosmological
observations. These observations on magnitude and red-shift of Type la supernova suggest that our universe may be an
accelerating one with induced cosmological density through the cosmological A-term.

e In literature it is a plebeian practice to consider constant deceleration parameter. Now for a Universe which was
decelerating in past and accelerating at present epoch, the DP must show signature flipping as already discussed in Section II.
Therefore, our consideration of scale factor which provides a time dependent DP to be variable is physically justified. Our
derived model is accelerating at present epoch (Fig. 4)

e We observe that the evolution of the universe starts from asymptotic Einstein static era (r — o, s— -0) and approaches
to ACDM model (r = 1, s = 0). So, from the Statefinder parameter {r, s} the behaviour of different stages of the evolution of
the universe has been generated.
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