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Abstract- Micro flow-focusing devices (mFFDs) have been used 
extensively to produce emulsions and for the on-line 
encapsulation of biologic objects, such as bacteria and cells. 
More recently, new designs of this type of instrument have 
been imagined, for example to produce multi-layered capsules. 
In this work, we present a novel design of mFFD that 
comprises “moustaches”, i.e. escape microchannels, just 
upstream of the orifice. In the context of encapsulation, such a 
design authorizes the control of the number of biologic objects 
imprisoned in a single capsule, and avoids the emission of 
empty capsules. We have denoted this new type of FFD by the 
abbreviation EFFD, for “Escape FFD”. We first present the 
concept of the system, then we derive the pressure conditions 
for the proper functioning of the device, and finally we present 
an experimental realization. 

Keywords- Flow-Focusing Device; Encapsulation; Meniscus 
Stability; Interface Breakup; Escape Channels 

I. INTRODUCTION 

In the modern approach of microfluidics, the use of 
individual droplets has been constantly increasing. Droplet 
and digital microfluidics are now essential tools in many 
domains such as biotechnology and material sciences [1, 2]. 
Manipulation of single droplets has seen recently many 
developments 

Micro flow-focusing devices (mFFDs) have been used 
extensively to produce emulsions, to perform in-drop 
chemical reactions, or for the on-line encapsulation of 
biologic objects, such as bacteria and cells [5-7]. The topic 
has been abundantly reported in the Literature [8], and some 
applications are now commercialized [9]. In such devices, a 
microflow is dispersed into droplets at the contact of an 
immiscible secondary flow. This microflow is called the 
dispersed phase because it is later dispersed in droplets, and 
the secondary flow, the continuous phase that will transport 
the droplets. The principle is to use “controlled instabilities”. 
This term might seem to be an oxymoron, but the paradox 
can be easily be explained: on one hand, the instabilities are 
pertaining to the Plateau-Rayleigh type of instabilities that 
break a microfluidic jet into droplets; on the other hand, 
geometrical constraints are used to control the jet breakup.  
Figure 1 shows the controlled breakup of an aqueous 
alginate microflow in a mFFD. 

[3, 4]. In this work we present a new concept 
of micro flow-focusing device for a better control of 
encapsulation process. 
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Fig. 1  Controlled droplet formation in a mFFD. The incoming phase (at the 
middle) is cut in droplets by the action of a second immiscible liquid called 

the continuous phase (photo P. Dalle, CEA-Leti) 
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Fig. 2  (a) Conventional FFD; (b) 5-branch FFD; (c) double-FFD 

For encapsulation applications, the particles, or cells, 
etc., are transported by the dispersed phase. When droplets 
form, they are engulfed or encapsulated in the droplets. Live 
cells, bacteria, spores have been encapsulated in such 
devices. More recently investigations have been performed 
to make the concept more versatile. An example is furnished 
in Figure 2 where “multi-branched” FFD has been 
developed to perform specific tasks. By instance the device 
of Figure 2.b can be used to add gelling agent to the 
incoming oil phase for the gelation of the shell [10] while 
Figure 2.c is a double-FFD used for a double-layer 
encapsulation [11-14].  

From the encapsulation standpoint, there is a definite 
need for controlling the contents encapsulated in a droplet. 
It has been observed that many capsules are produced empty, 
with no content in them, just because the transported 
particles are randomly dispersed in the incoming microflow. 
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All the empty capsules must be discarded later by a sorting 
process. It is a time consuming process, not compatible with 
an integrated system. Hence, researchers have started 
investigations on this problem; they have focused on the 
ordering of the transported objects upstream of the device. 
For example, Edd and colleagues have searched the 
geometrical conditions in the injection channel to order the 
particles [15]. On the other hand, because encapsulation is 
often performed in polymeric solutions, such as alginates or 
other polysaccharides, Nam and colleagues, and D’Avino 
and colleagues have searched the conditions for alignment 
in a viscoelastic microflow [16, 17]. But these solutions are 
difficult to integrate in a microdevice, because they require 
a very long upstream channel to achieve ordering of the 
particles, they also require very precise flow rate conditions.   

In this work, we have designed a new passive concept 
where a droplet is formed only if there is content present, 
suppressing the formation of empty droplets. It is based on 
the possibility of the incoming dispersed phase to escape 
upstream from the junction (orifice), hence the name EFFD, 
for “escape FFD”. It is a passive system, not requiring 
additional energy source, such as electrical power or 
acoustic source. 

We first present the concept of the system, then we 
derive the pressure conditions for a proper functioning of 
the device, and finally we present an experimental 
realization. 

II. THE CONCEPT OF EFFD 

The principle is to authorize the dispersed phase—the 
phase which is later dispersed into droplets—to escape in 
side “moustaches” or “escape paths” just upstream of the 
orifice, as shown in Figure 3. These moustaches have a 
small orifice and are placed as close as possible from the 
orifice. In absence of particles transported by the dispersed 
phase—i.e. the dispersed phase is a homogeneous liquid—a 
meniscus remains stable at the orifice at least when the 
pressure (or flow rate) conditions are adequately chosen. No 
drop is then produced. Note that the stability of the 
meniscus requires very stable hydrodynamic conditions, and 
very-stable, pressure-actuated micropumps are a preferred 
solution. 

A sufficiently large incoming particle cannot escape 
through the moustaches because their orifice is small. It is 
trapped in the vicinity of the meniscus. In our original 
concept [18], it was expected that a large particle—of 
diameter comparable to the inner dimensions of the 
channel— trapped at the interface, will restrict the section 
available for the escape flow at the moustache orifice; the 
pressure at the meniscus then increases, until the meniscus 
breaks and a droplet containing the particle is released. 
After our experimental investigations, the phenomena 
appeared to be more complex because the system also works 
for smaller particles. Probably—this is what we infer from 
the experimental results—the dynamic pressure on the 
droplet contributes to the deformation of the stable interface, 
making it bulge and leading to its breakup.  

(a) (b)

(c) (d)

  
Fig. 3 Sketch of the functioning of the device: (a) in absence of transported 

object, a meniscus remains stable at the orifice; (b) an incoming large 
particle is trapped in the vicinity of the interface; (c) an overpressure builds 
up and the interface breaks; (d) a droplet containing the particle is released 

and the meniscus pins again at the orifice 

The concept has even been extended to a device using a 
few pairs of moustaches (Fig. 4). In this conceptual design, 
it is expected that two or more spherical particles will be 
expelled together, as will be discussed in Section V. 

(a) (b)

 
Fig. 4 Sketch of an EFFD: (a) with one pair of moustaches; (b) with two 

pairs of moustaches 

The principle is based on the possibility to obtain a 
stable meniscus. Experimentally it is very difficult to 
determine the adequate inlet pressures range. Thus, a 
theoretical approach has been developed. In the following 
section, we derive the hydrodynamic conditions for 
obtaining a stable interface in absence of any incoming 
particle. 

III. MENISCUS STABILITY 

In this section we investigate the hydrodynamic 
conditions before the arrival of a particle, for which a stable 
meniscus is observed. In this approach, Newtonian fluids 
are considered. The calculation, however, can be done in a 
similar, but more complicated approach for non-Newtonian 
visco-elastic fluids which are often used as the dispersed 
phase. The derivation of the hydrodynamic conditions for 
non-Newtonian fluids can be found in Appendix A, and we 
consider here Newtonian fluids. 

An interface pinned at its two ends is stable when the 
pressure difference across the meniscus does not exceed the 
Laplace pressure [19]. Let us first calculate the pressure in 
each channel. In the laminar approach, the general formula 
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for the pressure drop of a Newtonian fluid, in a channel of 
hydraulic resistance R is [20, 21] 

QRP =∆ .          (1) 
The value of R for rectangular channel is presented in 

Appendix B. Hence, the total pressure drop in a complete 
channel, from inlet to outlet, is 

QRP
j

jin ∑=                (2) 

where the index j denotes all the different sections of the 
network affected by the flow rate Q , and Pin

Consider first the continuous phase circuit (index e), 
where the upstream flow rates are Q

 is the inlet 
pressure. The outlet pressure is the atmospheric pressure and 
has been set to zero for simplicity. 

e

eedownstreamemen QRP ∑= ,, 2

. The pressure at the 
interface in the oil phase is then 

       (3) 

where Pmen,e is the pressure at the meniscus in the oil phase, 
and the coefficient 2 corresponds to the double flow rate 2 
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Using the same arguments for the dispersed phase, it can 
easily be shown that 
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where the coefficient ½ stems from the fact that there are 
two symmetrical moustaches, so that the flow rate Qi

Finally, using (5) and (6),  

 is 
divided in two at the moustaches’ orifice. 
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Using Laplace theorem, this pressure difference must 
not exceed 






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PP 11
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where Rh and Rv are the horizontal and vertical minimum 
curvature radii of the meniscus, and   the water-oil surface 
tension. Using the approximations Rh ~ w/2 and Rv ~d/2, 
where w and d are respectively the width and depth of the 
channel [15]
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, relation (8) becomes 

 .       (9) 

Let us assume for simplicity that the orifices of the 
moustaches are perfect (ideal case) and that the contact 
angle is 90°. The meniscus is stable if   
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In reality, in order to obtain aqueous droplets in an 
organic phase, the channels are silanized, and the contact 
angle is closer to 100-105° (Fig. 5). In this case, relation (10) 
must be corrected by 
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Note that (11) collapses to (10) for  =90°. Let us note 
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Then, combining (7) and (11) yields the conditions 
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This condition has been graphically represented in 
Figure 6. The meniscus stability region is the diagonal band 
in the figure. For the dimensions w=d=150 µm, and  ~40 
mN/m, and an approximate value  ~0.8, the width of the 

stability band is approximately 





 +

dw
112

α
γ ~1500 Pa. Note 

that the width of the stability band depends only on  , not 
on  . This sensitivity is obtainable using high precision 
micropumps (for example Fluigent®). 
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Fig. 5 Sketch of the two limit locations of the pinned interface for a two-
dimensional case: (left) for a contact angle of 90°, the lower limit is a flat 
interface and the upper limit a ½ circle; (right) for a contact angle of 105°, 

the upper limit is still a ½ circle, but the lower limit is slightly bulging. 
Below the lower limit the meniscus recedes inside the channel 

IV. EXPERIMENTAL RESULTS 

Due to the strict constraints on the geometry, the device 
has been fabricated in silicon. Conventional DRIE etching 
has been used, and a glass cover is sealed on top of the 
system. The dimensions of our first system are shown in 
Figure 7. The moustache orifice being 30 µm, and the width 
and depth of the channels being w=d=150 µm, it is expected 
that the system will work for particles between 30 and 150 
µm.  

Figure 8 shows the trapping of a hollow glass sphere 
followed by its expulsion inside a droplet. The dispersed 
phase is water and the continuous phase is mineral oil.   
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Fig. 6 Stability diagram for the meniscus: the meniscus is stable when point 

corresponding to the inlet pressures is located in the diagonal band 

The sketch of a particle trapped at the interface is shown 
in Figure 9. The particle and the droplet have been 
underlined, but the original movie can be found in the ESI. 

 
Fig. 7 Lithographic mask of the EFFD device 

 

 
Fig. 8 Left: a hollow glass sphere of 50 µm diameter arrives at the water-oil 

interface; right: the droplet is expelled while a new sphere arrives at the 
interface 

oil

water

oil

water

oil

water
(a) (b) (c)

Fig. 9 Left: a hollow glass sphere arrives at the water-oil interface; right: 
the droplet is expelled while a new sphere arrives at the interface 
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V. DISCUSSION AND CONCLUSION 

The detailed physical mechanisms leading to the droplet 
formation is not yet fully understood. We are expecting that 
the particles gathering at the interface would contribute to 
increase the pressure at the interface by clogging the 
moustaches. The principle is shown in Figure 10 where the 
results of a finite element model (COMSOL [22]) show the 
increase of velocity at the moustache orifice and an increase 
of the pressure on the sphere. In the calculation, the 
interface is supposed rigid, in order to avoid the complex 
problem of a two-phase flow with a moving spherical object. 
The pressure increases considerably upstream from the 
sphere and a downwards force is exerted on the sphere. If 
this force is larger than that of Condition (11), the interface 
breaks and a droplet containing the sphere is expelled.  

Similar calculation can be done for two or more 
spherical particles showing a larger increase of the pressure 
with the number of trapped particles (Fig.11). It can also be 
performed in the case of two pairs of moustaches.  

On the other hand, the experiments have shown that the 
device works with smaller particles which clog much less 
the moustaches. In such a case, we believe that it is the 
dynamic pressure on the particles that drives the expulsion 
of the particle with the droplet, combined to a capillary 
effect [3]. This is what appears in the movies from the ESI.  

Encapsulation is a vast domain. It encompasses biologic 
applications as well as material sciences applications. In the 
first case, the objects to encapsulate are most of the time 
deformable, aqueous-based objects, such as cells and 
bacteria. In the second case, the capsule content is often 
rigid, such as solid beads or shells. So far our experiments 
have used only rigid polystyrene or glass spheres. It is not 
yet known how deformable biologic objects will behave in 
the system. This is an important point that needs to be 
further investigated.    

In the future, it would also be of interest to investigate 
whether multi-FFD systems, such as the one sketched in 
Figure 2.c, can be implemented with EFFDs in series. At a 
first sight, it seems possible to obtain stable interfaces when 
no particle circulates in the system. However, the remaining 
question is whether a droplet released at the first EFFD will 
trigger instantaneous interface instability in the second 
EFFD, leading to the emission of an empty droplet.    

In conclusion, in this work, a novel flow-focusing device 
(EFFD), using escape channels or moustaches at the 
dispersed phase flow orifice, has been presented. It 
automatically suppresses the formation of droplets without 
particulate content. Droplets form only at the arrival of one 
or more particles. More study is needed to determine the 
best conditions for the encapsulation of one particle at the 
time, and to investigate the behavior of deformable objects. 

Oil phase

Aqueous phase

Rigid
sphere Rigid

sphere
Oil phase

Aqueous phase

(a) (b)

 
Fig. 10 COMSOL finite element model for the velocity field (a) and the 

pressure field (b) in the vicinity of the interface when a large particle 
restricts the escape channels (moustaches)  

(a) (b) (c)

 
Fig. 11 Pressure field for an EFFD: (a) two spherical particles; (b) three 

spherical particles; (c) EFFD with two pairs of moustaches 
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APPENDIX A: NON-NEWTONIAN APPROACH 

In the (frequent) case of a « power-law » or Waele-
Ostwald fluid [23], the fluid viscosity can be expressed by  

1−== nK γ
γ
τη 


        (15) 

where K and n are coefficients depending on the 
concentration in polymers, and γ  the shear rate. For 
example, in the case of a 1.25 wt% Keltone alginate 
concentration, K=0.5 and n=0.8. For cylindrical channels 
Rabinowitsch and Mooney have derived a closed form 
expression for the pressure drop [24,25] 
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where L is the length of the cylinder and r its radius.  We 
can define a hydraulic resistance by 
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To the difference with the Newtonian case, the hydraulic 
resistance depends on the flow rate. For rectangular 
channels, the pressure drop can be approximated by [26-28] 
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where D is the hydraulic diameter 
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The hydraulic resistance is then 
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We can then write 
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The coefficient *
jR depends on the geometry and on the 

exponent n. The pressure at the meniscus is then given by 
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This expression is very similar to that found for 
Newtonian fluids (6); the difference stems from the 
expressions of the hydraulic resistances. Note that only one 
of the two coefficients of the viscoelastic rheology appears 
in (22):  the exponent n is present in (22) while K is absent.  

APPENDIX B: HYDRAULIC RESISTANCE OF NEWTONIAN 
FLUIDS IN RECTANGULAR MICROCHANNELS 

There exist a few expressions for the hydraulic 
resistance of a square microchannel [20,21]. We have tested 
with success the one from Barhami and colleagues [29] 
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where w, d and L are respectively the width, depth and 
length of the channel,   the dynamic viscosity, and   an 
aspect ratio factor. This function can be expressed by 
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where   is the aspect ratio:  = min(w/d, d/w). 
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