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Abstract- In this paper a method for finger vein pattern extraction from infrared images of human finger is proposed. The finger 
vein pattern is extracted by the execution of a two-step region growing procedure, based on statistical properties of derivatives of the 
acquired infrared images. Initially, original image is filtered by four different Gaussian kernels (in order to take into account the 
different orientations of veins). Afterwards, the second partial derivatives of the obtained images are computed. Sequentially, the 
Hessian matrix of these images is constructed and its eigenvalues are computed in a pixel by pixel basis. The minimum eigenvalue 
and the absolute value of its gradient comprise the two characteristics (features) used in the two step region growing procedure 
which follows. The region growing procedure is restricted by statistical attributes such as the mean value and the standard deviation 
of the segmented regions (vein and tissue) and the mean value and the standard deviation of the gradient of the minimum eigenvalue 
image. Due to the occurrence of some misclassifications a final post processing step, based on morphological operations, is performed. 
The developed method achieves to efficiently segment the image despite of intensity variations which are evident in the original 
image. Moreover, an improved version of the proposed method, which uses the multidirectional response of a specially designed 
matched filter and its gradient as the two features used in the two stage region growing procedure, is also presented. The modified 
version, as experimental results show, outperforms the classic version and leads to more robust finger vein pattern extraction. 
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I. INTRODUCTION 

The problem of finger vein extraction arises mainly for biometrics purposes but it is also very important for the biomedical 
research community. A low number of studies have been presented in the literature due to the small time distance from the first 
corresponding work.  

In the pioneering work of Park et al. [1], an application specific processor for vein pattern extraction and its application to a 
biometric identification system is proposed. The conventional vein-pattern-recognition algorithm consists of a preprocessing 
part, applying sequentially an iterative Gaussian low-pass, a high-pass, and a modified median filter and a recognition part 
which includes the extraction of the binary veins via local thresholding and finally the matching between the individual 
patterns. Consequently the conventional algorithm [1, 2, 4] consists of low pass spatial filtering for noise removal, high pass 
spatial filtering for emphasizing vascular patterns, thresholding and matching. 

An improved vein pattern extracting algorithm is proposed in [3], which compensates the loss of vein patterns in the edge 
area, gives more enhanced and stabilized vein pattern information, and shows better performance than the existing algorithm. 
Also, the problem arising from the iterative nature of filtering preprocess is solved by designing a filter that is processed only 
ones, increasing significantly the recognition speed and reducing the hardware complexity. The proposed algorithm is 
implemented with a FPGA device and the Fa1se Acceptance Rate shows five times better than the existing algorithm and the 
recognition speed is measured to be 100 [ms/person]. 

The problem with conventional hand vascular technology mentioned above is that the vascular pattern is extracted without 
taking into account its direction. So, there is a loss of vascular connectivity which leads to a degradation of the performance of 
the verification procedure. An attempt to improve this problem can be found in [5], where a direction-based vascular pattern 
extraction algorithm based on the directional information of vascular patterns is presented for biometric applications. It applies 
two different filters: row vascular pattern extraction filter for abscissa vascular pattern extraction, and column vascular pattern 
extraction filter for effective extraction of the ordinate vascular patterns. The combined output of both filters produces the final 
hand vascular patterns. Unlike the conventional hand vascular pattern extraction algorithm, the directional extraction approach 
prevents loss of the vascular pattern connectivity.  

Although, the above algorithm considers the directionality of veins, assumes that the veins oriented in only two principal 
directions. In [6-7] a method for personal identification based on finger-vein patterns is presented and evaluated using line 
tracking starting from various positions. This method allows vein patterns to have an arbitrary direction. Local dark lines are 
identified and line tracking is executed by moving along the lines pixel by pixel. When a dark line is not detectable, a new 
tracking operation starts at another position. This procedure executes repeatedly, so the dark lines that tracked multiple times 
are classified as veins. 

The performance of the above method is strongly related to the number of repetitions. To achieve meaningful results, the 
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number of repetitions must be large and consequently the computational complexity increases dramatically. Despite these 
drawbacks [8, 9], this algorithm is still used.  

In [9], authors introduce a wide line detector for feature extraction, which can obtain precise width information of the vein 
and increase the information of the extracted feature from low quality image. They also developed a new pattern normalization 
model based on a hypothesis that the finger’s cross sections are approximately ellipses and the vein is close to the finger 
surface.  

Methods for vein pattern extraction using non-adaptive techniques based on curvlets for multi-scale object representation 
are presented in [10] and [11]. In [11], the maximum curvature model is adopted to extract the finger-vein pattern with regard 
the both characteristics of low contrast and intensity inhomogeneity in the infrared vein images. Then, seven moment 
invariants are extracted to be matched by the Euclidean distance. The problem of high false rate in finger-vein recognition is 
solved using the single-feature method and the equal weights fusion strategy, the matching scores are fused by the weighted 
average strategy, and the equal error rate (EER) is minimized to obtain the optimum weights. Finally, the fused matching score 
is used to make the final decision. 

In [12], dyadic wavelet transform is adopted to extract finger-vein pattern from finger images. Images are transformed from 
spatial domain to wavelet domain, and wavelet coefficients of the vein patterns and the noise are processed by soft-
thresholding denoising method, which can recover the vein pattern from noisy data. Then modified moment invariants are 
computed as the features to represent the vein pattern and matching is performed using Hausdorff distance. Researchers 
propose different thresholding methods. One of them (local adaptive threshold) is described and used in [13] and [14].  

In [15] the authors propose a method based on the position-gray-profile curve. Using local minimal gray-profile-curves 
across the image for a given line, the local minima are located line by line. Unfortunately, in some cases veins cannot be 
detected. In low contrast images, veins are not visible in the histogram as peaks. For this reason the algorithm uses six profiles 
to extract exactly the vein positions associated with high computational complexity. 

An innovative method for finger vein image binarization is given in detail in [16]. The main purposes in the developed 
method are: lower time consuming comparing to other methods, simplicity and promising results achievement in spite of 
working with low contrast images. 

Typically, the infrared images of finger veins are low contrast images, due to the light scattering effect. An algorithm for 
finger vein pattern extraction in infrared images is proposed in [17]. This algorithm embeds all the above issues and proposes 
novel preprocessing and postprocessing algorithms. Initially, the image is enhanced and the fingerprint lines are removed using 
2D discrete wavelet filtering. Kernel filtering produces multiple images by rotating the kernel in six different directions, focus 
into the expected directions of the vein patterns. The maximum of all images is transformed into a binary image. Further 
improvement is achieved by a two-level morphological process, i.e. a majority filter smoothes the contours and removes some 
of the misclassified isolated pixels, and a reconstruction procedure removes the remaining misclassified regions. The final 
image has segmented into two regions, the vein and the tissue.  

In [18] new issues are considered and a certification system that compares vein images for low-cost, high speed and high 
precision certification is proposed. The equipment for authentication consists of a near infrared light source and a monochrome 
CCD to produce contrast enhanced images of the subcutaneous veins. The phase correlation and template matching methods 
are used for classification. Several noise reduction filters, sharpness filters and histogram manipulations tested for best effort. 
As a result, a high certification ratio in this system obtained.  

In [14], the theoretical foundation and difficulties of hand vein recognition are introduced at first. Then, the optimum 
threshold of the segmentation process and the vein-lines thinning problem of infrared hand-images are deeply studied, 
followed by the presentation of a novel estimator for the segmentation threshold and an improved conditional thinning method. 
The method of hand vein image feature extraction based on end points and crossing points is studied initially, and the matching 
method based on a distance measure is used to match vein images. The matching experiments indicated that this method is 
efficient in terms of biometric verification.  

However, the finger vein technology, as mentioned above, has important applications and in biomedical field from which is 
originated from. An initial work for localizing surface veins via near-infrared (NIR) imaging and structured light is presented 
in [19]. The eventual goal of the system is to serve as the guidance for a fully automatic (i.e., robotic) catheterization device. 
The proposed system is based upon near-infrared (NIR) imaging, which has previously been shown effective in enhancing the 
visibility of surface veins. The vein regions in the 2D NIR images located using standard image processing techniques. A NIR 
line-generating LED module used for to implement structured light ranging and construct a 3D topographic map of the arm 
surface. The located veins are mapped to the arm surface to provide a camera-registered representation of the arm and veins.  

Also in [20, 21], a Vein Contrast Enhancer (VCE) has been constructed to make vein access easier by capturing an infrared 
image of veins, enhancing the contrast using software, and projecting the vein image back onto the skin. The VCE also uses 
software to align the projected image with the vein to 0.06 mm. Clinical evaluation of earlier monitor-based vein enhancement 
test systems has demonstrated the clinical utility of the infrared imaging technology used in the VCE. 

In [22], a finger-vein verification system using the mean curvature that can be used for personal verification is proposed. 
As a robust extraction method, authors propose the mean curvature method, which views the vein image as a geometric shape 
and finds the valley-like structures with negative mean curvatures. When the matched pixel ratio is used in matching vein 
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patterns, experimental results show that, while maintaining low complexity, the proposed method achieves 0.25% equal error 
rate, which is significantly lower than what existing methods can achieve. 

In this paper a finger vein pattern extraction method, based on a two-step region growing procedure is presented.  The 
region growing procedure is restricted by statistical attributes such as the mean value and the standard deviation of the 
segmented regions (vein and tissue) and the mean value and the standard deviation of the gradient of the minimum eigenvalue 
image. The minimum eigenvalue obtained from the analysis of Hessian matrix for every pixel. The output of this region 
growing procedure is the initial segmentation result. Due to the occurrence of some misclassifications in this image, a final 
post processing step, based on morphological operations, is performed. The developed method achieves to efficiently segment 
the image despite of intensity variations which are evident in the original image. Moreover, an improved version of the 
proposed method, which uses the multidirectional response of a specially designed matched filter and its gradient as the two 
features used in the two stage region growing procedure, is also presented. 

The remaining of this paper is organized as follows. Section II presents the classic and the improved version of the two step 
region growing procedure while in Section III both versions of the method are evaluated and the experimental results are 
shown. Finally, Section IV contains some conclusions extracted from this study. 

II. METHOD DESCRIPTION 

The developed method can be used (as mentioned above) either for biomedical or biometrics purposes and consists of eight 
steps which are presented in the flowchart shown in Fig. 1. 

Step A. Image acquisition and Region of Interest extraction 

Step B. Preprocessing 

Step C. Compute minimum eigenvalue image and its gradient 

 Step C.1 Compute the second partial derivatives of preprocessed images 

 Step C.2 Construct Hessian matrixes 

 Step C.3 Find eigenvalues 

Step C.4 Compute the gradient of the minimum eigenvalue image 

     
Fig. 1 The flowchart of the proposed method 
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Step D. Initial segmentation of the minimum eigenvalue image by global thresholding 

Step E. Compute the mean value and the standard deviation of the segmented regions 

Step F. Compute the mean value and the standard deviation of the gradient image 

Step G. Region growing 

 Step G.1 Initial seed generation based on mean values of two regions 

Step G.2 Iterative region growing based on statistical properties of the minimum eigenvalue image and its gradient 
and spatial restrictions 

Step G.3 Iterative region growing based on statistical attributes of the minimum eigenvalue image and spatial 
restrictions 

Step H. Post processing 

 Step H.1 Directional morphological filtering 

 Step H.2 Morphological neighbourhood filtering 

A. Image Acquisition and Region Of Interest Extraction 

The infrared digital image acquired using a low-cost CCD camera. The finger is placed between the camera and an array of 
infrared leds (five elements) with adjustable illumination. Haemoglobin, a substance of blood, has strong absorbance in 
infrared wavelengths. Thus, veins, which carry blood, have strong absorption of light and are related to the darker regions of 
the image. The goal of our study is to extract these dark regions from the background consists of other human tissues. The 
original image is shown in Fig. 2 (the original image obtained by the Study [6], [7]). The image after ROI extraction is shown 
in Fig. 3. A ROI extracted from the original acquired image in order to isolate the background which does not contain any 
useful information and to emphasize in our target which is a robust segmentation of infrared image of the finger in two regions 
(vein and tissue). 

               

Fig. 2 Original image                             Fig. 3 Image after ROI extraction 

B. Preprocessing 

ROI image is convolved with four Gaussian kernels, constructed in order to take into account the directional attributes of 
veins. It is obvious from the acquired images that the veins travel horizontally from left to right and they form small angles 
with the horizontal axis. So, the Gaussian kernels have the form: 
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where   is the standard deviation which depends on the vein’s diameter. In our experiments the vein diameter has the 
value of 11, so an appropriate value for is used. Four Gaussian kernels of the size 11x11 are constructed. Their spectrums are 
shown in the Fig. 4. 
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Fig. 4 Gaussian filter kernels’ spectrums 

C. Compute Minimum Eigenvalue Image and Its Gradient 

Our aim is to look for features which are independent of variations in image intensity. Ridges and peaks are topological 
descriptors that have this property, and veins expected to be ridge-like. The second directional derivatives describe the 
variation in the gradient of intensity in the neighbourhood of a point. A ridge is located on top of a line structure where the 
gradient undergoes large changes and occurs where there is a local maximum in one direction. Therefore it must have a 
negative second directional derivative and also a zero first directional derivative in the direction across the ridge [23]. 

1) Compute the Second Partial Derivatives of Preprocessed Images: 

Original infrared image I is convolved with four Gaussian kernels Gxx, Gxy, Gyx, Gyy one for each expected vein’s 
direction. The filtered images are denoted respectively as IGxx, IGxy, IGyx and IGyy. Thus: 
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where   denotes the convolution of image I with the Gaussian kernel. 

The second directional partial derivatives, used in the construction of Hessian matrix, obtained using the following 
approximations: 
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2) Construct Hessian Matrixes: 

In order to obtain useful information from the partial derivatives, a 2x2 Hessian matrix is constructed for each pixel: 
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                   (4) 

Since Ixy = Iyx the Hessian matrix is symmetrical with real eigenvalues and orthogonal eigenvectors which are rotation 
invariant [24]. 

3) Find Eigenvalues: 

The eigenvalues of the Hessian matrix, 1  and 2 , measure convexity and concavity in the corresponding eigendirections. 

A ridge is a region where 1 0   and 2 0  . Therefore, we are interested in the minimum eigenvalue. The sign is an 

indicator of brightness darkness. The magnitude of this eigenvalue is designated as the Feature λ. Fig. 5 shows the minimum 
eigenvalue image and its histogram. 
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Fig. 5 The minimum eigenvalue image and its histogram (The image has enhanced by a factor of 3 for visualization purposes) 

4) Compute the Gradient of the Minimum Eigenvalue Image: 

From the above analysis, the Hessian matrix is constructed for every pixel, and the minimum eigenvalue is selected. The 
result of this process is an image which is called the minimum eigenvalue image and is denoted as Lmin. This image is used as 
the first feature for the region growing procedure. The second feature is the magnitude of gradient of the minimum eigenvalue 
image which is computed as follows: 
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The gradient image and its histogram are shown in Fig. 6. 
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Fig. 6 The magnitude of gradient of minimum eigenvalue image and its histogram (The image has enhanced by a factor of 5 for visualization purposes) 

D. Initial Segmentation of the Minimum Eigenvalue Image by Global Thresholding 

The minimum eigenvalue image is divided in two regions by global thresholding obtained using Otsu’s method [25]. The 
pixels which have greater values than the computed threshold are considered as veins. The remaining pixels are considered as 
tissue.  This procedure results in the initial segmentation of the minimum eigenvalue image in two regions (vein and tissue). 
Otsu’s method is selected for thresholding the image because it is simple, full automatic and performs well. Alternately, 
instead of Otsu’s there is a variety of thresholding methods that could be used. 
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E. Compute the Mean Value and the Standard Deviation of the Segmented Regions 

After the initial segmentation of the minimum eigenvalue image, this image has been segmented in two regions (vein and 
tissue) each of them has different statistical attributes such as mean and standard deviation. In this step the mean value and the 
standard deviation both of the vein and the tissue region are computed. The mean value and the standard deviation of the vein 

and tissue region are denoted as vein , vein  and tissue , tissue  respectively. The mean values and standard deviations are 

computed using the preceding formulas: 
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F. Compute the Mean Value and the Standard Deviation of the Gradient Image 

Then the mean value and standard deviation of the gradient image is computed using the above formulas: 
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G. Region Growing 

The labelling algorithm is designed using information from the histograms of the images Lmin and GradLmin and spatial 
information from the 8-neighbouring pixels. The growing for both classes, at the first stage, is restricted to regions with low 
gradients, allowing rapid growth of regions outside of the boundaries, and allowing veins to grow where the values of Lmin lie 
within a wide interval. 

1) Initial Seed Generation Based on Mean Values of Two Regions: 

The region growing algorithm begins by considering as seeds for its region those pixels that satisfies a specific condition. 
So, a candidate pixel is considered as vein seed if its value is greater than or equal to the mean value of the vein region and as 
tissue seed if its value is smaller than or equal to the mean value of the tissue region. Thus: 

vein seed=pixel (i,j), ( min( , ) )veinif L i j   

tissue seed=pixel(i,j),          ( min( , ) )tissueif L i j                            (8) 

These conditions provide pixels with high probability to belong to one or another class. The initial seeds are shown in Fig. 
7 that follows. In this figure vein seeds are white, tissue seeds are gray and black are pixels that have not been classified yet. 

 

Fig. 7 Initial seeds 

2) Iterative Region Growing Based on Statistical Properties of the Minimum Eigenvalue Image and His Gradient and 
Spatial Restrictions: 

In this step the vein and tissue region are growing based on the following conditions: 

(( min( , ) 2 ) & ( min( , ) ) & ( 1))vein vein gradient gradient veinif L i j GradL i j N          the pixel (i,j) is considered as vein. 

(( min( , ) 2 ) & ( min( , ) ) & ( 1))tissue tissue gradient gradient tissueif L i j GradL i j N          the pixel (i,j) is considered as tissue.  

veinN  and tissueN are the number of neighbours of the pixel (i,j) which has been characterized as vein or tissue respectively. 
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These conditions restrict the growing in regions with low gradient values. This step is repeated until no more pixels can be 
aggregated in either region. The result is shown in Fig. 8. 

 

Fig. 8 Region growing based on statistical properties of the minimum eigenvalue image and his gradient and spatial restrictions 

3) Iterative Region Growing Based on Statistical Attributes of the Minimum Eigenvalue Image and Spatial Restrictions: 

The second stage of the region growing procedure lies only on statistical attributes of the two regions and on spatial 
restrictions. Unlike the previous stage of region growing procedure here the growing does not restrict by the gradient values. 
The pixel (i,j) here is aggregated in a region if it satisfies the desired condition. The conditions for the two classes are: 

(( min( , ) ( )) &( min( , ) ( )))vein vein vein veinif L i j L i j        the pixel (i,j) is considered as vein. 

(( min( , ) ( )) & ( min( , ) ( )))tissue tissue tissue tissueif L i j L i j        the pixel (i,j) is considered as tissue. 

Also this stage is iterative and it converges when no more pixels can be classified in each region. The segmented regions 
can be seen in Fig. 9. 

 

Fig. 9 The final result of the region growing procedure 

H. Post Processing 

The result of the two-step region growing procedure is adequate for visualization purposes compared with the original ROI 
image. However, this result could be used for disease treatment or for pattern matching. In such cases the misclassifications 
may cause trouble in the preceding operations. So, a final post processing step is usually required. This step consists of two 
morphological sub-steps. Firstly, a directional morphological filtering is performed and then a morphological neighbourhood 
filtering is applied. 

1) Directional Morphological Filtering: 

In order the image to be cleaned from large regions which have been erroneously classified as veins, the fact that veins 
orientates mainly in the horizontal direction and forms small angles with the horizon is exploited. So, in the segmented image 
are performed five morphological openings with different line structuring elements. These elements have 11 pixel length and 
they orientated in different directions (form with horizon angles of 0, 30, 60, 120 and 150 degrees respectively). The final 
result of the region growing procedure and the five morphological openings are shown in Fig. 10.  

 

Fig. 10 Final result of the region growing procedure and morphological openings in five different structuring elements 
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A structuring element that forms with horizon an angle of 90 degrees is excluded from the above morphological opening 
procedures because veins do not direct in the vertical direction and this helps us to clean the image from erroneous regions. 
Finally, the logical OR of those five openings is computed and is shown in Fig. 11. 

 

Fig. 11 The logical OR image of the five morphological openings 

2) Morphological Neighbourhood Filtering: 

Although the main erroneous regions have been sufficiently removed by using the above procedure there are still some 
outliers in the binary image. These are removed by the application of a morphological neighborhood filter called majority. This 
filter sets a pixel to 1 if five or more pixels in its 3-by-3 neighborhood have the value 1 otherwise, it sets the pixel to 0. The 
filtering process is applied iteratively until the output image in two successive steps remains unchanged. This filtering process 
removes the small miss-classified regions, which appears in image. The image after the application of the iterative majority 
filter is shown in Fig. 12. This image is the final extracted finger vein pattern. 

 

Fig. 12 Output of majority filter. Extracted finger vein pattern 

Improved method 

An improvement of the above method is achieved by using the maximum multidirectional response of a specially designed 
matched filter and its gradient as the two attributes of the two stage region growing procedure. 

A symmetrical filter kernel of size w w  with odd number of coefficients is designed in a manner that represents the 
intensity distribution across a cross sectional profile of vein. The centre element has the minimum negative value and the value 
of the neighbour elements is increasing by one ensuring that the sum of the values of all elements belonging to the same line 
would be zero. The number of the negative elements represents the width of the cross sectional profile of vein. If w is even the 
number of negative elements is w+1. If w is odd the number of negative elements is w. The coefficients of the designed filter 
are given by the following formula:  

1
, 0   -w

2 1
( , ) 1

, 0  -w
2 1

0,                           otherwise

f

w

w
x w x w y w

w
K x y w

x w w x y w
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

,              (14a) 

if w is odd.      
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x w x
K x

x w x

  
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,           (14b) 

if w is even.                  

In order to detect a vein with large diameter the number of negative elements should be large. In this paper, multiscale 
analysis has been adopted, in order to detect veins with various diameters. All kernel lines are the same. This fact orientates a 
filter in a specific direction. Filter spectrum is similar with the intensity distribution across a cross sectional profile of a vein 
because the absorption of light by blood is higher than by the other human tissues.  
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The maximum response along multiple scales is computed as: 

min max min max

( , ) max ( , ) max ( , ) ( , )
f f

w w
f

w w w w w w
M x y M x y I x y K x y

   
   .     (15) 

Fig. 13 shows the maximum multidirectional response of the multiscale matched filter designed using the methodology 
described above, while Fig. 14 shows the gradient of this response. Fig. 15 shows the initial seeds for the two regions (vein, no 
vein) which produced using the same conditions as in the classic version and they depicted using the same colours. The 
segmented image produced after the application of the two stage region growing procedure is shown in Fig. 16. In Fig. 17, the 
segmented image and the five morphological openings are shown, while Fig. 18 shows the logical OR of the five 
morphological openings. Finally, Fig. 19 shows the output of the majority filter which is the extracted, by the proposed method, 
finger vein pattern.  

  
Fig. 13 Maximum multidirectional response of a 

specially designed multiscale matched filter 
Fig. 14 Gradient of maximum multidirectional response 

of a specially designed multiscale matched filter 

  
Fig. 15 Initial Seeds Fig. 16 Segmented image (output of the two stage 

region growing procedure) 

 

Fig. 17 Segmented image and the five morphological openings 

  
Fig. 18  Logical OR of the five morphological openings Fig. 19  Output of the majority filter, finger vein pattern 
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III. EXPERIMENTAL RESULTS 

A. Artificial Image Database 

A quantitative evaluation of the proposed algorithm in real infrared images is difficult obtained due to the absence of 
manual segmentation data. The extremely low-contrast images increase the disagreement of human annotation. Therefore, the 
proposed method is evaluated using a small set of images each one created according to the following procedure. This 
construction involves the multiplication of two different layers. The first layer is a vein-like pattern. This pattern consists of 
connected lines of different widths with junctions and bifurcations which drawn by hand. The second layer is the non uniform 
image background which created by applying an iterative spatial low pass Gaussian filter with large window size to the 
original infrared image. The multiplication of the two layers gives the artificial infrared image used in the experiments. 

B. Evaluation Rates 

In the finger vessel segmentation process, each pixel is classified as tissue of vessel. Consequently, there are four events, 
true positive (TP) and true negative (TN) when a pixel is correctly segmented as a vessel or non-vessel, and two 
misclassifications, a false negative (FN) appears when a pixel in a vessel is segmented in the non-vessel area, and a false 
positive (FP) when a non-vessel pixel is segmented as a vessel-pixel. 

Two widely known statistical measures are used for algorithm evaluation: sensitivity and specificity, which are used to 
evaluate the performance of the binary segmentation outcome. The sensitivity is a normalized measure of true positives, while 
specificity measures the proportion of true negatives: 

                     
TP

sensitivity
TP FN




,                         (9) 

                    
TN

specificity
TN FP




.                       (10) 

The tradeoff between the two measures is graphically represented with the receiver operating characteristic curve (ROC), 
which is a plot of the sensitivity versus 1-specificity. Equivalently, ROC curve can be represented by plotting the true positive 
rate (TPR) versus the false positive rate (FPR). These rates are the fractions of TPs and FPs:  

                 
TP

TPR sensitivity
TP FN

 


,              (11) 

1 1
FP TN

FPR specificity
FP TN TN FP

    
 

          (12) 

The accuracy of the binary classification is defined by:  

TP TN
accuracy

P N





,                               (13) 

where P and N represent the total number of positives (vessel) and negatives (non-vessel) pixels in the segmentation 
process and is the degree of conformity of the estimated binary classification to the ground truth according to a manual 
segmentation. Thus, the accuracy is strongly related to the segmentation quality and for this reason is used to evaluate and 
compare different methods. 

C. Results 

Fig. 20 shows the original images (left) and the corresponding finger vein patterns (right) extracted by the application of 
the proposed method (classic version). Table I summarizes the evaluation rates of the proposed method in the artificial image 
database, in terms of sensitivity, specificity and accuracy.  
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Fig. 20 Original images (left), corresponding finger vein patterns (right) 

TABLE I EVALUATION RATES (SENSITIVITY, SPECIFICITY, ACCURACY) OF THE PROPOSED METHOD 

Image Sensitivity Specificity Accuracy 

Fv01.bmp 0.740 0.968 0.913 

Fv02.bmp 0.878 0.960 0.942 

Fv03.bmp 0.683 0.977 0.904 

Fv04.bmp 0.690 0.997 0.926 

Fv05.bmp 0.735 0.996 0.942 

Fv06.bmp 0.526 0.909 0.828 

Fv07.bmp 0.791 0.986 0.950 

Fv08.bmp 0.728 0.995 0.942 

Fv09.bmp 0.666 0.998 0.920 

Fv10.bmp 0.670 0.996 0.919 

Mean Value 0.711 0.978 0.919 

Standard 

Deviation 
0.091 0.027 0.035 

Fig. 21 presents the artificial infrared images (left) and the corresponding finger vein patterns extracted after the application 
of the proposed method (improved version) while Table II summarizes the evaluation rates in terms of sensitivity, specificity 
and accuracy. 
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Fig. 21 Original images (left), finger vein patterns (right) 

TABLE II EVALUATION RATES (SENSITIVITY, SPECIFICITY, ACCURACY) OF THE PROPOSED METHOD (IMPROVED VERSION) 

Image Sensitivity Specificity Accuracy 

Fv01.bmp 0.932 0.953 0.948 

Fv02.bmp 0.926 0.967 0.958 

Fv03.bmp 0.832 0.976 0.940 

Fv04.bmp 0.868 0.990 0.962 

Fv05.bmp 0.849 0.990 0.961 

Fv06.bmp 0.533 0.892 0.817 

Fv07.bmp 0.909 0.981 0.968 

Fv08.bmp 0.762 0.994 0.948 

Fv09.bmp 0.900 0.985 0.965 

Fv10.bmp 0.852 0.990 0.958 

Mean Value 0.836 0.972 0.942 

Standard Deviation 0.118 0.030 0.045 
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By observing Table I and Table II and the images and finger vein patterns shown in Figures 12 and 19 respectively, the 
modified version of the proposed method that uses the maximum multidirectional response of a specially designed matched 
filter and its gradient instead of the minimum eigenvalue of Hessian matrix and its gradient, as the two features used in the two 
stage region growing procedure, presents higher sensitivity and accuracy in the same levels of specificity and leads to robust 
finger vein pattern extraction. 

IV. CONCLUSIONS 

In this paper, a two-step region growing method based on statistical attributes of derivative infrared images for finger vein 
pattern extraction is presented. As the experimental results show this method performs good in spite of variations in image 
intensity and non uniform illumination which is unavoidable in infrared images with the available technology. The good 
behavior of the method is due to the usage of information obtained by the derivatives of the initial image. A novel post 
processing step based on mathematical morphology and on directional properties of the infrared finger images is included in 
order to remove the erroneous misclassified regions from the segmentation result. The extracted finger vein pattern is robust 
enough in order to be used in multiple applications such as biomedical imaging and biometrics. In case of biometrics, as 
pattern can be used either the finger vein pattern shown in Fig. 12 or its thinning version contains one pixel wide veins. This 
image can be produced by applying a thinning algorithm to finger vein pattern, like the algorithms proposed in [26] (the 
matching procedure is easiest for a pattern which has one pixel width). 
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