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Abstract- Block ramps are structures consisting of boulders on steep slope and used for the stabilization of streams by dissipation of 
energy of flow by means of generating excessive turbulence. This paper deals with experimental study of turbulence over a block 
ramp. Three-dimensional velocities were measured by acoustic Doppler velocity meter at a constant depth along the block ramp in 
the developing flow zone. Spiky velocity data were removed using computer code developed in this study for four filtering methods. 
Out of other filtering methods, the velocity correlation method was found more effective. Spatial variation of turbulence intensities, 
Reynolds stress, turbulent kinetic energy and skewness coefficients of velocity fluctuations along the length of block ramp were 
studied. The longitudinal turbulence intensity increases along the ramp length, while the vertical turbulence intensity decreases. 
Reynolds stresses and turbulent kinetic energy increase along the block rampas a result of development of boundary layer. Skewness 
coefficients of the longitudinal and transverse velocity components were observed to be uncorrelated with the block ramp length 
whereas skewness coefficient of vertical velocity component was observed to vary linearly with the length of block ramp. 
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I. INTRODUCTION 

 

Turbulence is an inherent property of flow and can be defined as spatially and temporally varying flow phenomenon, which 
can be predicted by use of statistical parameters. Various studies have been conducted on turbulent flow in open channel 
(Blinco and Partheniades, 1970; Grass, 1971; Nezu and Rodi, 1986; Wang et al.1993; Carollo et al. 2005 etc.). Grass (1971) 
studied the structural features of turbulence on smooth, transitionally rough and rough beds and extended the concept of 
bursting events in boundary layer given by Kline et al. (1967). Nezu and Rodi (1986) studied the turbulence by using Laser 
Doppler Anemometer (LDA) and developed equations for the vertical distribution of turbulent intensities for smooth bed. They 
observed that the turbulent intensities decrease exponentially from bed to water surface. Chen and Chiew (2003) studied the 
effect of sudden roughness change on turbulence. 

Block ramps can be defined as structures consisting of boulders on steep slope or stepped chute which can be used to 
dissipate energy of flow by means of generating excessive turbulence. Flow skims off over the boulders and causes the 
dissipation of energy by forming high amount of eddies and turbulence. Previous studies on block mainly deal with factors 
affecting energy dissipation, however, no worth notice was given on the aspect of distribution of various turbulence parameters 
on block ramps which may affect the process of energy dissipation(Pagliara and Chiavaccini, 2006;Pagliara et al. 
2008;PagliaraandLotti, 2009; Ahmad et al., 2009; Ghare et al. 2010, etc.). This paper deals with spatial variation of turbulence 
parameters of flow over block ramps with use of measured three-dimensional velocities by Acoustic Doppler Velocimeter 
(ADV).  

II. REVIEW OF FILTERING METHODS 

The ADV is based on Doppler back-scattered measuring system which measures the velocities after receiving the 
transmitted waves Doppler-shifted. Thus errors related to the Doppler back-scattered measuring system are automatically 
possessed by ADV. The most common errors in ADV measuring system are Doppler noise which is by virtue of turbulence of 
flow, amount of particles in flow, sensor geometry, etc. and aliasing of acoustic signals. These errors generate some spurious 
and uncorrelated velocity data in time series of measurements called as spikes. Various methods are given in literature to filter 
out the spiked data, however the most commonly four methods are described here. 

A. Maximum and Minimum Threshold Method 

This method assumes that velocity data follow the Gaussian distribution. The universal thresholding parameter, λ, is used 
to define maximum and minimum range of data. The velocity data are considered to be corrupted or invalid if they lie outside 
the range established by (Cea et al. 2007): 

  uuu min ;     uuu max             (1a-b) 
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where, umin and umax are minimum and maximum velocity threshold in x- direction, respectively,  = time-averaged velocity in 
x- direction, λ = universal threshold = 2ln	( ), σu= standard deviation of velocity in x- direction, N = number of data-points. 
Similar expressions can be used for velocity threshold of other two velocity components. 

B. Acceleration Threshold Method 

Acceleration or deceleration in the flow is proportional to acceleration due to gravity i.e., ai = λag. Here, ai = acceleration at 
‘ith’ time interval; λa = proportionality constant; g = acceleration due to gravity. Goring and Nikora (2002) proposed λa = 1-1.5 
by conducting a large number of experiments. Cea et al. (2007) divided λa into components of x, y and z-directions in the 
following way: 

  λax= λσax/g ; λay= λσay/g; λaz= λσaz/g      (2a-c) 

Here, σax, σay, σaz are the standard deviations of acceleration components in x, y and z-directions, respectively. Values of 
these components were observed to be more or less near to λa proposed by Goring and Nikora (2002). This method despikes 
the data in two phases, out of which first is assigned for deceleration phase and second for acceleration phase of flow. Firstly 
acceleration is calculated by back-difference method for a given time interval, say Δt, by  

  
  tuua iii  1                        (3) 

Then those points are removed which surpass the threshold limits given by ga ai   and ui kuu   (kσ is a 

proportionality constant and1.5).Since by removing or replacing the data some statistical parameters are changed, thus for 
second phase of positive acceleration new standard deviation, σu is calculated and again data are replaced or removed if 

acceleration surpasses the threshold limits given by ga ai  and ui kuu  .  

C. Phase-Space Threshold Method 

This method utilizes the Poincare map to distinguish unbiased data with spikes by plotting variable with its derivatives (Goring 
and Nikora, 2002). Firstly by using central difference method, the first and second derivatives of velocity are calculated as  

    211   iii uuu ;    211
2

  iii uuu     (4a-b) 

The standard deviations of all the three variables i.e. u, Δu and Δ2u are calculated and labeled as σu, σΔu and σΔ
2
u. Their 

expected maximum values are fixed by 

  uu max ; uu  max ;
u

u 2max
2


 

    
(5a-c) 

The data are plotted for Δui versus ui, Δ
2ui versus Δui and Δ2ui versus ui. The ellipsoid formed from the data of Δui versus ui, 

and Δ2ui versus Δui, is symmetrical with respect to principal axes with their major and minor axes coinciding with the principal 
axes, however in case of ellipsoid formed from Δ2ui versus ui axes are inclined at certain angle, θ 

      221tan iii uuu       (6) 

The major and minor axes of ellipsoid of Δui and ui are given as λσu and λσΔu, respectively. Data lying outside the periphery 
of the ellipsoid are curtailed off and recalculation of the standard deviations for u, Δu and Δ2uare carried out. The data are 
curtailed off if they lie outside the periphery of ellipsoid formed by Δ2ui and Δui, whose major and minor axes are given by 
λσΔu and λσΔ

2
u. The statistical parameters are calculated again for u, Δu and Δ2u. For ellipsoid formed by Δ2ui and ui, the major 

and minor axes, a and b respectively, are given by  

   22222 sincos)( bau  ;      22222 cossin2 ba
u


          

(7a-b) 

The ellipsoid with major and minor axes as a and b, respectively is plotted and the data are removed which lie outside of 
the ellipsoid boundary. Wahl (2003) improved the method by using median and median of the absolute deviations as location 
and scale estimator instead of standard deviation and universal threshold parameter, λ.  

D. Velocity Correlation Method 

In this method, the fluctuations of velocity components u' and v' are plotted against each other i.e., u'-v', which forms an 
ellipse. The data which fall outside of the ellipse periphery are considered as spikes. Firstly filtering is done and cleaned record 
is used to plot mean flow statistics. This method is advantageous where flow is highly turbulent with large concentration of 
spikes and where replacing algorithm can give rise to more spikes. Following formula are used to obtain the values of major 
and minor axes of ellipse i.e., a and b, respectively, and also the angle of rotation with principal axes θ. 
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Fig. 6 Variation of (a) TIu; (b) TIv; and (c) TIw along block ramp 

Figure 6b shows that the transverse turbulent intensity, TIv, decreases downstream and attains a constant value after a 
certain distance. The roughness elements act as obstruction to flow, which shred down large vortices and creates a transverse 

vortex sheet flow (Tritico and Hotchkiss 2005). This helps the transverse Reynolds stress component ( ''vu ) to overtake the 

vertical Reynolds stress component ( '' wu ) which signifies that the presence of obstruction enhances the transverse turbulence 
in form of wake of vortex sheet and inhibits the vertical turbulence. However, due to the interaction of wake generated by 
nearby roughness elements, the further production of turbulence in form of wake declines transverse turbulent intensities as 
shown in Fig. 6b. But as the boundary layer develops further downstream; the turbulence intensity approaches a constant value. 
This complies the finding of Balchandar and Patel (2002).   

Vertical turbulence intensity, TIw, decreases gradually downstream. This could be due to the breaking of large eddies into 
smaller eddies by the blocks (Tritico and Hotchkiss. 2005). Also the Grass (1971) has reinstated the fact of reverse correlation 
between vertical and longitudinal turbulent intensities. Therefore, this breaking of larger eddies into smaller eddies damps the 
magnitude of TIw along the block ramp length. 

D. Reynolds Stress Distribution 

Previous studies indicate decrease in Reynolds stress from bed to water surface (Nezu and Rodi, 1986; Grass 1971; 
Bigillon et al., 2006). However, no information is available for variation of Reynolds stress in the direction of flow. Present 
study reveals that Reynolds stresses in all the three planes increase downstream due to the development of boundary layer over 

the block ramp (Figs. 7a, b, and c). Reynolds stress ''vu in x-y plane increases up to a peak and then tends to attain a constant 
value which is in accordance with the observations of Tritico and Hotchkiss (2005) and Shamloo et al. (2001). Similar trend 

was observed for Reynolds stress ''wu  in x-z plane which was due to the de-attachment of shear layer due to the presence of 
large roughness elements (ejections) giving rise to increment in vertical Reynolds stress component. This finding complies 
with the observations of Lacey and Roy (2008), Papanicolaou et al. (2002), Nezu and Nakagawa (1993), Nakagawa and Nezu 

(1977), Raupach (1981).The Reynolds stress '' wv in y-z plane also increases linearly downstream as shown in Fig. 7c. 
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Fig. 7 Variation of Reynolds stress (a) RSuv= ''vu ; (b) RSuw = ''wu ; and (c) RSvw= ''wv  along the block ramp 

E. Turbulent Kinetic Energy 

The turbulent kinetic energy of turbulence is expressed as 

   TKE =   2''' 222 wvu 
      (12) 
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Turbulent kinetic energy decreases exponentially along the vertical direction and follows the following formula (Nezu and 
Nakagawa, 1993) 

   hzuTKE 2exp78.4/ 2
*               (13) 

Present study indicates increase of turbulent kinetic energy downstream of the block ramp due to the development of 
boundary layer and due to excessive ejections of shed vortices from the roughness lying on the bed of the block ramp. This is 
in accordance with the observation of Nezu and Nakgawa (1993).Similar facts were also proved by Nakagawa and Nezu 
(1977) and Raupach (1981), who suggested that due to the presence of intermittent events of bursting mainly comprising of 
ejections and sweeps, the turbulent kinetic energy is transported over the flow domain. The spatial variation of turbulent 
kinetic energy is shown in Fig. 8. 

x (cm)0 50 100 150 200

TK
E

0.000

0.005

0.010

0.015

0.020

0.025

 

Fig. 8 Variation of turbulent kinetic energy along block ramp 

F. Skewness Coefficients of Velocities 

Skewness is defined as the factor or property of any random variable describing asymmetry of random variable about its 
mean. Mathematically  

     








2/3
2

1

3 '' uNuSK
N

i
u                     (14) 

The turbulence skewness factors represent the transporting parameters of turbulence energy due to the turbulence 
fluctuation in their respective directions. Spatial variation of coefficient of skewness of fluctuation in the velocity u, v and w 
are shown in Figs. 9a, b, c, respectively. Coefficient of skewness of u' and v' show random trend along the block ramp, 
however coefficient of skewness of w' increases from negative value to the positive value downstream of the block ramp as 
shown in Fig. 9c. Previous studies on turbulence near the bed explain negative skewness as ejection phase and positive 
skewness as the sweep phase of bursting phenomenon(Nikora and Smart, 1997; Bigillon et al., 2006; Agnelinchaab and 
Tachie, 2006; Balachandar and Bhuiyan, 2007; Lin et al., 2008).Increase in coefficient of skewness of w' is due to ejection and 
sweep phenomenon of the flow. At the beginning of block ramp, the shear layer starts de-attaching from the bed due to 
roughness effect. This results in retardation in fluid velocity which gives rise to ejections. Along the length as boundary layer 
grows and within the boundary layer the fluid rushes towards the bed to lift up the decelerated fluid lying between interstices 
of roughness on the bed and hence gives rise to the sweep phase of bursting. The predominance of sweeps and ejections in 
skimming flow is in accordance with the observations of Papanicolaou et al. (2001).Similar observations were noticed by many 
investigators like Nakagawa and Nezu (1977), Raupach (1981), Nezu and Nakagawa (1993), Balachandar and Bhuyian (2007). 
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Fig. 9 Variation of coefficient of skewness of (a) u'; (b) v'; and (c) w' along block ramp 
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V. CONCLUSIONS 

Various methods for filtering were studied in the present paper and out of the various methods, velocity correlation method 
was observed to be most suitable for the low correlation highly spiked ADV data. Study of turbulence in the developing of 
flow over a block ramp reveals that the turbulent intensity, u' increases along the ramp while transverse turbulent intensity, v' 
first decreases and then attains an equilibrium value. The vertical turbulence intensity, w', decreases along the block ramp due 
to breaking of larger eddies by the protrusions on the bed. Reynolds stress components ''vu  and ''wu  increase first and then 
attain an equilibrium value, whereas '' wv increases linearly along the block ramp. Turbulent kinetic energy increases along the 
length of block ramp. Skewness coefficients for u' and v' were uncorrelated with the block ramp length while skewness 
coefficients for w' increase linearly along the length of block ramps. Increase in coefficient of skewness of w' is due to ejection 
and sweep phenomenon of the bursting.  
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NOMENCLATURE 

a, b = Major and minor axes of threshold ellipsoid, respectively 

ai = Acceleration in ith time interval 

g = Acceleration due to gravity 

h = Depth of flow 

kσ = Proportionality parameter in acceleration threshold method 

m = slope of least squared fitted line in velocity correlation method 

N = Number of data points 

Sku = Skewness coefficient of u-component 

Skv = Skewness coefficient of v-component 

Skw = Skewness coefficient of w-component 

TIu = *
2' uu = Relative turbulence intensity in x- direction 

TIv = *
2' uv = Relative turbulence intensity in y- direction 

TIw = *
2' uw = Relative turbulence intensity in z- direction 

TKE = Turbulent kinetic energy 

u = Temporally averaged velocity in x-direction 

ui = x- direction velocity component in ith 

umax = Maximum threshold velocity for x- direction velocity component 

umin = Minimum threshold velocity for x- direction velocity component 

u* = Shear velocity  

u' ,v', w'= Velocity fluctuations in x, y and z-directions, respectively 

''vu = Reynolds stress component in x-y plane 

''wu = Reynolds stress component in x-z plane 

''wv = Reynolds stress component in y-z plane 

x, y, z = Longitudinal, transverse and vertical axes, respectively 

Greek letters 
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Δui = First differentiation of ith velocity component 

Δ2ui = Second differentiation of ith velocity component 

λ= )ln(2 N = Universal threshold parameter 

λa= Proportionality constant  

σax = Standard deviation of acceleration component in x-direction 

σay = Standard deviation of acceleration component in y-direction 

σaz = Standard deviation of acceleration component in z-direction 

σu = Standard deviation of u 

σΔu = Standard deviation of Δu 

u
σ 2Δ

= Standard deviation of Δ2u 

θ = Angle of rotation of threshold ellipsoidal axes with reference axes 
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