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Abstract- Alteration in host-virus interaction dynamics during long-term infection by HIV necessitates consideration of inverse relationship 
between high viral load and density of CTL response leading to dis-regulation of host immunity system. Mathematical modeling introducing 
negative feedback control mechanism helps in establishment of threshold condition for disease eradication as well as necessary conditions 
for existence of different equilibria depending on values of basic reproduction ratio. Moreover, IL-2 adjuvenated HAART therapy has been 
found to be highly cost-effective in recovery of the immunity status in the present mathematical model using negative feedback effect. 
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I. INTRODUCTION 

The hallmark features of disease progression of HIV infection to full-blown AIDS include T-cell hyperactivation, 

impairment and dysregulation of the immune system manifested by depletion of CD 4 T-cell and CTL exhaustion. Antigenic 
stimulation by HIV leads to high turnover rate of productively infected cells disturbing T-cell homeostasis which is re-

established by supply of fresh cells from the thymus and proliferation of existing cells. Constant recruitment of CD 4 T cells 
helps in delayed initiation of CTL activities until peak viremia is reached and its subsequent persistence leading to killing of 
infected cells. Loss of infected cells means lack of antigenic stimulation for CTL population resulting in a relative loss of CTL 

activity [1]. Thus, when viral load is considerably high, CTL-mediated killing and cytopathic effect of virus on CD 4 T cells 
leads to exhaustion of HIV-specific immune response [2], emphasizing the existence of an indirect inverse relationship between 
high viral load and the density of CTL response [9]. A negative correlation may be assumed to exist between the viral load and 
rate of production of uninfected target cells [3]. When level of infection is low and also following therapeutic intervention 

through administration of HAART, where CD 4 T cell depletion has not started or the count goes up respectively, specific 
CTL responses are found to decline slowly. 

HIV infection can be finally eradicated through coordinated interplay between CD 4 T cells and CTLs when infected 

CD 4 T cells are killed by CTLs. Thus, if CTL population can always be maintained at a positive value, the HIV-infected 
individuals can remain healthy for a longer period of time due to slower disease progression. However, complete eradication of 
viral population from the system and total immune reconstitution is practically not feasible with HAART alone, even if 
continued for a long time, which may lead to precipitation of toxic effects. Viral relapse is known to occur as soon  as the 
therapy is discontinued [1, 10, 13]. 

Evaluation of eradication threshold ( 0T ) for HIV infection constitutes a significant strategy in characterizing the stage of 

infection and guiding intervention strategies. Threshold condition for eradication does not quantify the transient dynamics, the 

time course of the infection or the prevalence of the disease. HIV can be eradicated under the condition that 1<0T , but it can 

not be eradicated under the condition that 1>0T  [6, 7]. 

The possibility of immunotherapy to correct individual HIV-driven immune alteration, by exploiting the specific effects of 
different immunomodulants like IL-2 on T cell dynamics is indeed a fascinating and novel perspective in the treatment of HIV 
infection. Increasing evidence favors co-administration of HAART and IL-2 following an optimal treatment schedule leading 
to selective expansion of immune system and near extinction of viral population from the system [6, 7]. In a previous 
mathematical model of viral dynamics, Bonhoeffer postulated that there is no significant difference in total virus load due to 
drug administration, primarily the reverse transcriptase inhibitor (RTI), as the reduction in the rate of infection actually helps in 
recovery and restoration of uninfected healthy T cell population [12]. The present study has been designed with slight 
modifications of the above-mentioned model with introduction of two negative feedback functions justifying the inverse 
relationship between viral load and rate of production of uninfected cells on one hand and the decline in strength of immune 
response and viral load on the other hand. 
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Modified mathematical model of long-term viral dynamics (Fig. 1) with subsequent analysis and numerical simulations has 
successfully established the necessary conditions for existence of three steady states with respect to feedback factor, the rate of 
infection and killing rate of virus producing cells. Till date, no studies incorporating mathematical modeling of effect of 
optimal treatment schedule corresponding to different combination of HAART and IL-2, on long-term host cell -HIV dynamics 
have been done although the effect of HAART has been previously studied using a similar approach [13]. The present study 
attempts to fill up this particular lacuna in optimal control of HIV with dual therapeutic agents and has satisfactorily designed 

the most cost-effective therapeutic intervention leading to restoration of uninfected CD4  T cell, infected cell population, and 
recovery of CTL population. 

 
Fig. 1  Schematic explanation of Mathematical model 

II. GENERAL MATHEMATICAL MODEL 

In view of above biological perspective with slight modification [12], the infected CD 4 T cells can be assumed to exert a 

negative feedback inhibition on the rate of formation of uninfected CD 4 T cells and CTL stimulation [8]. Thus, we have 

reconstructed the mathematical model [12] considering x , y  and z  which represent the uninfected CD 4 T cell, infected 

CD 4 T cell and CTL response and hence the control equations are as follows: 
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The system will be analysed with the following initial condition : 

0>(0)x , 0>(0)y , 0>(0)z  and we denote  0}.0,0,,),,{(= 33  zyxRzyxR  

Here 21, dd  and 3d  are the natural death rates of uninfected CD 4 T cell, infected CD 4 T cell and CTL response 

declination rate respectively. We have considered   as the constant production rate of uninfected CD 4 T cells from thymus, 

where 0>  as because thymus is always functioning. Here we have also considered   as the rate of infection at which the 

uninfected CD 4 T cells become infected by the virus particle, and p  is the killing rate of infected cell by CTL. We have 

assumed s  as the rate of stimulation of CTL. Here 1s  and 2s  are growth terms and m  is defined as feedback factor. We also 

assume k  as host-virus interaction coefficient. 

III. THEORETICAL ANALYSIS 

A. Existence Condition  

In the present situation (1), three types of equilibria can exist: 
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If the above last equation has only one positive root then the steady state exists and uniqueness of the steady state is 
confirmed by Descartes rule of sign. 

Thus we get the Condition (2) stated below, for which *E  always exists. 

,>21 dd       ).(>)( 321113 kddpsdskd                                                      (2) 

B. Boundedness of the System 

To verify the boundedness of the system, the following lemma is very much useful. 

Lemma1: For )(tx  satisfying )()(<)( txqctx   where c  is a constant and )(q  is independent of x  and t .Then, 
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Proof: See Lemma 4.1  of [19] for the proof. 

For the system (1), 
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Hence the system is bounded in the region   defined below: 
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C. Stability of the System 
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For 1E , the Jacobian matrix becomes 1J  where the eigen values for 1J  are 2
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Proposition 1: The disease-free equilibrium 1E  corresponds to the maximum level of healthy uninfected CD4  T cells in 

absence of virus when the population of infected cells or CTL is nil. Here 1E  is attained when 1<0R . Also if 1<0R  then 

1E  is local asymptotically stable. If 1>0R  then the system 1E  becomes unstable. 

For 2E , the Jacobian matrix becomes 2J  where the eigen values are 
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Proposition 2 : Equilibrium state 2E  exists when 0R  varies between 1  and 
32
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other words, condition for existence of 2E  holds when immune response is highly active in killing the infected cells i.e. the 

host system has a tendency to eliminate infection on its own and is yet to attain endemic equilibrium. 

The Jacobian matrix for *E  is *J  . 

The characteristic equation for )( *EJ  is 
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From Routh-Hurwitz condition, the necessary and sufficient condition for local asymptotical stability |of the steady state is 

0>,0>,0> 32131 aaaaa  . 

Proposition 3 : The system *E  is stable if 
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)(ii  0>321 aaa   are satisfied. Thus we can conclude that the endemic equilibrium *E  exists when all the three 

components considered in host-virus dynamics possess positive values and the system attains infected equilibrium state. 

Moreover, it has been observed that *E  does not exist for very large values of k  or host-virus interaction coefficient. High 
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viral load affects the source of T cells, kills uninfected and infected CD 4 T cells and results in immunological gap due to 
deficiency of CTL stimulation. 

IV. THE OPTIMAL CONTROL PROBLEM 

In this section our main aim is to minimize the cost as well as the infected CD 4 T cell count and maximize the uninfected 

CD 4 T cell. Thus we construct the optimal control problem where the state system is  
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and the control function is defined as 
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The control functions )(1 tu  and )(2 tu  represent the percentage of effect RTIs and IL-2 have on interaction of T cell with 

virus. The Parameters P  and Q  are the weight on the benefit of the cost. These are the cost of per unit of RTI and IL-2 

respectively. 

Here we have considered that RTI reduces the infection rate by )(1 11u  where 1  is the drug effectiveness and 1u  is 

the control input doses of RTI. We have also considered the enhancement of uninfected CD 4 T cells and CTL responses 

through IL-2 treatment, defined by 22u , and 23u  respectively. Here 2u  denotes control input of IL-2 treatment and 2 , 

3  are the drug effectiveness of IL-2 for uninfected CD4  T cells and CTL population respectively. 

Here the control functions )(1 tu  and )(2 tu  are bounded, Lebesgue integrable function [20]. 
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To determine the optimal control 
*

1u  and 
*

2u , we use the “Pontryagin Minimum Principle” [14]. To solve the problem we 

use the Hamiltonian given by 
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By using the “Pontryagin Minimum Principle” and the existence condition for the optimal control theory [14] we obtain the 
following theorem. 
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Theorem: The objective cost function ),( 21 uuJ  over U  is minimum for the optimal control ),(= *
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* uuu  

corresponding to the interior equilibrium ),,( *** zyx . Also there exist adjoint functions 321  , ,   satisfying the equation. 
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Since the standard control is bounded, thus we conclude for the control 1u :  
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Hence the compact form of *
1u  is  
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In similar way we get the compact form of *
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According to “Pontryagin Minimum Principle”[14] 
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The above equations are the necessary condition satisfying the optimal control )( ),( 21 tutu  and the variables 

)( ),( ),( tztytx . 

The system (10)  is the adjoint system  
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 Taking the partial derivative of H we get, 
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The optimality of the system consists of the state system with the adjoint system together with the initial condition and the 

transversality conditions satisfying 1,2,3)=( 0,=)( it fi and 000 =(0)  ,=(0)  ,=(0) zzyyxx . 

V. NUMERICAL ANALYSIS 

We now numerically illustrate the change of the stability due to the negative feedback factor. We have chosen the initial 
condition of the parameters given as in Table 1. The initial values of the model variables are considered as 1000=(0)x , 

100=(0)y , 10=(0)z  [15] and the cell population is expressed as per 3mm . It should be noted that the asymptotic time 

series solutions of the model equation do not depend on the choice of the initial values of the model variables. Variation of the 

parameter p  is restricted by the condition 0.050.01
3

:
d

ps  which implies that CTL activity is limited upto a certain value 

because of the negative feedback effect exerted by high viral load on the stimulation and persistence of HIV-specific immune 

response after which immune system can no longer trigger off to fight against foreign antigen. The parameters s  and 3d  are 

as mentioned in the Table1. Fig. 2 shows the existence and stability conditions for the systems 21   , EE  and *E . Here we plot 

the basic reproduction ratio 0R  with respect to k . The zone above the red line indicates the zone where there is no possibility 

of existence of equilibrium of any type because of total break down of the host immunity system due to large value of k . 

TABLE I LIST OF PARAMETERS 

Para 
meters 

Definition Range (day
1

) Ref. 

  
Constant rate of production 

rate of CD
4 T cells 

1-10 
3mm  [16] 

1d  
Death rate of uninfected 

CD
4 T cells 

0.007-0.1 
3mm  

 
[16] 

  
Rate of infection 

of uninfected T cell 

0.00025-0.5 
3mm  

 
[12] 

2d  
Death rate of virus 

producing cells 0.2-0.3 3mm
[17], 
[18] 

p  Killing rate of virus 
producing cells by CTL 

0.002 
 

[12] 
 

s  Rate of stimulation of CTL 0.1-1 [12] 

3d  Decay rate of CTL 0.1-0.15 [12] 

 

Fig. 2  Phase diagram showing the basic reproduction ratio for the system (1) as a function of k  
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Thus the infection persists throughout with out any chance of remission. Fig. 3 reflects that numerical value of eradication 

threshold remains above 1 and possesses similar magnitude if rate of production of CD4  T cells is increased keeping host-
virus interaction coefficient constant at low values and rate of infection considerably high. Thus disease outbreak occurs 
because of the availability of target uninfected cells susceptible to infection, high infectivity of virus as well as less than the 
required CTL population for containment of infection. 

 

 

 

Fig.3  Phase diagram showing the outbreak condition of the system (1) as a function of   

Eradication is possible ( 1<0T ) for low values of   even if k  and   are increased because CTL response is effective at 

this stage.  

Thus it can be concluded that k  acts as a determinant in deciding the conditions for existence of eradication threshold or 

disease outbreak and CTL stimulation depends on  . Therapeutic intervention which will interfere with interaction between 

host cell and virus can theoretically lead to disease-free condition when eradication threshold T will be less than one. But with 
continuous increase of  , a point will come when eradication is no longer possible because of collapse of immune system.  

For the numerical illustration of the optimal control problem (5)  and (6)  we assume 100=ft , which can be used as an 

initial guess. We solve the optimality system by making the changes of the variable ftt/=  and transferring the interval 

[0,0.8] . Here   represents the step size which is used for better strategy with a line search method which will maximize the 

reduction of performance measure. We choose ff tt 1=  and initially 1=ft . We also assume that 0.1=ft  and our 

desired value of 100=ft . The solution are displayed in Fig. 4. 
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Fig. 4  The system behavior for the optimal treatment schedule of the control variable )(1 tu  and )(2 tu  

Inset: The system behavior in absence of treatment. 

If insets of Fig. 4 are considered, the negative feedback effect of virus load on intensity of CTL response is very clear. 
During primary stage of infection when viral load is low, CTL population is quite high which declines when viral count starts 
increasing. 

From Fig. 5 it is evident that IL-2 needs to be continued for a longer duration and given at a higher initial value compared 
to HAART. 

 

 

Fig. 5  The optimal control schedule for the system (1) 

If the observations from Fig. 4 and Fig. 5 are combined together, it can be concluded that keeping IL-2 dose constant 
through time interval of treatment reduces the dose requirement of HAART with time with successful enhancement of CTL 

and CD 4 T cell population, and consequent decline in count of infected cells. This maximizes treatment benefit with respect 
to incidence of side effects and cost. Thus if a sufficient immune response can be maintained through administration of 
immunomodulants such as IL-2, low drug treatment schedule with HAART can be achieved. 

VI. DISCUSSION AND CONCLUSIONS 

In the present study, the concept of host-virus interaction coefficient, k , has been introduced in delineating the 
complexities of host-virus interaction dynamics. For proper characterization of long-term dynamics it becomes essential to 
incorporate negative feedback control effect induced by high viral load on stimulation of HIV-specific CTL-mediated immune 
response. During primary stage of infection, when viral load is substantially low and CTL response is yet to develop in a full-
fledged manner, negative feedback effect is negligible.The present paper focuses on the existence and conditions of stability of 
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three equilibria depending on different values of basic reproduction ratio, 0R . 

Effect of negative feedback control by high viral load on CTL stimulation is observed in the relationship between   and T 

when threshold condition for eradication (or infection persistence) is established. 

Previous studies postulated that IL-2 acts as a potential adjuvant with HAART in effective containment of viral infection 
and rejuvenation of completely impaired host immune system. Our model shows that even if negative feedback effect is 
considered, the combination therapy of reverse transcriptase inhibitor and IL-2 is highly effective in immune reconstitution and 
simultaneous control of infected cell population by reduced doses of HAART in a cost-effective fashion. 
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