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Abstract-A power law relationship between the variance and the mean, when derived from sequential data using expanding 
enumerative bins, implies 1/f noise. This relationship, called fluctuation scaling by physicists and Taylor’s law by ecologists, is found 
within diverse physical, econometric and biological systems. Its origin remains controversial. Both fluctuation scaling and 1/f noise 
are proposed to manifest consequent to a central limit-like effect specified by the Tweedie convergence theorem that has as its foci of 
convergence a family of statistical distributions, the Tweedie exponential dispersion models. An example of fluctuation scaling and 
1/f noise is provided here based on deviations in position of the prime numbers; the Tweedie compound Poisson distribution is shown 
to correspond to these deviations. Whereas many different physical and biological mechanisms have been proposed to explain 
fluctuation scaling, Taylor’s law and 1/f noise, such mechanisms are inapplicable to a number theoretic example like this. The 
Tweedie convergence theorem provides a generally applicable explanation for the origin of these scaling relationships, and can 
provide insight into processes like self-organized criticality and multifractality.  
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I. INTRODUCTION 

Complex dynamical systems often manifest scaling behavior like 1/f noise, characterized by power spectra of the form 
ffS /1)(   with 20    and f representing frequency. Another related scaling behavior, fluctuation scaling[1], is also 

characterized by a power law relationship, now between the variance of a signal )(Var n  and its mean )(E n  such that, 

 bnn )(E)(Var  ,  (1) 

where the exponent b is a real-valued positive constant. This latter relationship manifests within physical and econometric 
systems [1, 2] and, as well, has been observed within many biological systems [3] where it has been called Taylor’s power 
law [4].   

 The origins of these scaling relationships remain a matter of controversy. A widely held paradigm for 1/f noise involves a 
dynamical mechanism called self-organized criticality[5]; in the physics literature fluctuation scaling has been attributed to a 
convergence property called impact inhomogeneity[1] as well as to the influence of an external physical field within non-
equilibrium statistical mechanical systems[2]. Biologists have explained Taylor’s law variously in terms of the balance 
between the migratory and congregatory behavior of animals [6], random demographic effects within populations [7], 
environmental stochasticity [8], and interspecies interactions [9].   

Recently another hypothesis has been proposed to explain Taylor’s law [3] based on mathematical convergence effects 
associated with the Tweedie exponential dispersion models, a family of statistical models used to model error distributions 
from the general linear model [10, 11]. This Tweedie hypothesis has been extended to explain the origin of 1/f noise [12] and 
has been found applicable to such scaling phenomena from number theory [13] and random matrix theory [12]. Here, a brief 
introduction to the Tweedie exponential dispersion models will be provided along with an additional number theoretic example 
of fluctuation scaling and 1/f noise, found within the distribution of prime numbers. Numerical examples like this are of 
interest: they cannot be explained by physical or biological mechanisms, yet the applicable mathematical theory can yield 
mechanistic insight into related physical and biological processes. 

II. THE DOUBLE POWER LAW  

The eponym Taylor’s law has been applied to different  manifestations of the variance to mean power law (Eq. 1). In 
Taylor’s initial description, the clustering of animals and plants within their habitats was assessed by dividing their habitats 
into a set of equal-sized and non-overlapping rectangular quadrats and, though multiple enumerative samples drawn from each 
quadrat, the mean and variance of the number of individuals of a species were calculated and plotted on log-log graphs [14].  A 
straight line relationship on a log-log plot of variance versus the mean was used to infer a power law; this finding has been 
confirmed for many hundreds of animal species [4, 6, 14]. Values of the exponent b greater than 1 have been taken to indicate 
a non-random clustering of organisms, compared to 1b  which indicates a Poisson, or random, distribution. As we shall see 
below the distinction between what is random and non-random is not so clear.  
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The variance to mean power law has also been observed from time series data [9] and other sequential data [15, 16], 
commonly though a different enumerative method. In the method of expanding bins, a sequence of numerical measurements is 
apportioned into equal-sized and non-overlapping enumerative bins, the data values within each bin are summed, and the mean 
and variance of the new sequence of summed values are determined, and re-determined over a range of different bin sizes. A 
log-log plot of these variances versus their corresponding means may demonstrate a straight line relationship indicative of the 
power law Eq. 1 with appropriate processes.  

By this second method, the sequential distribution of genes [16] and single nucleotide polymorphisms [15] within the 
human genome, as well as the spatial distribution of insects [17] and temporal manifestation of measles epidemics [18] have 
been represented as having demonstrated Taylor’s law. Although both Taylors’s original method, and the method of expanding 
bins, both can yield variance to mean power laws, the associated scaling behaviours are mathematically distinct. 

A double power law has been proposed to account for the scaling properties of these two approaches [19]. We define the 
mean of the number of individuals per unit area   of habitat and the mean number of individuals per sampling bins of size t, 

tn  )(E  . The double power law is then 

 
  2

)(Var tban  (2) 

with a  being a proportionality constant and β a dimensional parameter related to fractal dimension [19]. This equation 
distinguishes the scaling behaviour of the mean number of individuals per unit area from the mean number per sampling bin. 
Despite this difference, one may still plot a variance to mean power function with either mean,   or E(n) provided appropriate 

data.   

III. SELF-SIMILAR PROCESSES  

We will focus here on the scaling properties found with the method of expanding bins, which have been well studied in the 
context of self-similar, or fractal, processes [20]. The  mathematics of these processes was developed to describe the self- 
similarity or “burstiness” of Ethernet traffic [20].   

Given the discrete time series sequence ),...,2 ,1 ,0:( NiYY i   with mean ][Eˆ iY , any deviations about the mean 

̂ ii Yy  can be assessed using the autocorrelation function 

 ][E/][E)( 2
ikii yyykr   (3) 

defined for the lag k.  The variance of the sequence is 

 ][Eˆ]var[]var[ 22
iyyY   .  (4) 

Self-similar processes are defined based on their long-range property[21], 

 )(kr ~  kkLk     ),(   (5) 

with 10    being a real-valued constant and )(kL  being a slowly varying function as k . We can construct a set of 

equal sized counting bins of length m that can be used to further define a set of sequences )(mY  such that 

 )...(
1

 1 immim
(m)

i YY
m

Y   , i 1, (6) 

where m is an integer chosen so that N/m is also an integer.  The mean ][][ˆ )(mYEYE  and variance 2̂  of Y are held to be 

constants, and so the variance to mean power law 

   mY m 2)( ˆ]var[  (7) 

can be  specified if and only if [22] 

 ])1(2)1[(
2

1
)( 222    kkkkr . (8) 

This autocorrelation function also obeys the limit [22] 

 )12()1)(2(
2

1)(lim 


HH
k

kr

k
 , (9) 

where H is the Hurst parameter. 
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There corresponds to these reproductive sequences )(mY  a parallel set of additive sequences 

 )...( 1
)(

immim
m

i YYZ    (10) 

with means and variances ][][ )()( mm YmEZE   and ]var[]var[ )(2)( mm YmZ  , respectively. Provided that ̂  and 2̂  are 

constants we can construct a variance to mean power law from this method of expanding bins, 

   2)(22)(2)( ][)ˆ/ˆ(]var[]var[ m
i

mm
i ZEYmZ  (11) 

where the exponent  2b . The biconditional relationship between Eq. (6) and Eq. (7) implies that any sequence that yields 

this variance to mean power law will also manifests autocorrelation functions that have the limiting form  kkr )( .    

The power spectral density )( fS can be obtained from the autocorrelation via Fourier transform, 

 




 dkekrfS kfi    2)()(  . (12) 

We have, from the Wiener-Khintchine theorem [23], the relationship 1)(  ffS . Power spectra that take this form with 

210    demonstrate 1/f noise. Thus sequential data that demonstrate 1/f noise should also be expected to manifest a 

variance to mean power law, and vice versa.   

1/f noise was described initially from time sequence data; in more recent years the term has been applied to such scaling 
associated with any form of discrete sequential data.  In these latter cases a frequency analogue is inferred from the sequential 
data as is done with time series data. 

IV. THE TWEEDIE MODELS  

Exponential dispersion models are a class of probability distributions developed to describe error distributions for 
generalized linear models [11]. A subclass of these models, known as the Tweedie models [10], are defined by closure under 
additive and reproductive convolution as well as under scale transformation [11]. The reproductive exponential dispersion 

models ),(ED 2 , specified by position parameter   and dispersion parameter  , subject to a change in scale by the factor 

c will necessarily obey the transformation rule,  

 ),(ED),(ED 222  bccc  . (13) 

This rule implies that the variance function )(V  relates to the position parameter such that bV  )(  . 

In the case of additive exponential dispersion models defined for the random variable Z, the variance )()(Var VZ   and 

the mean )(E Z  are related by the equation bZaZ )(E)(Var   where 2/1    .  

The Tweedie models are conventionally sub-classified in accordance with the values of the exponent b. For the additive 
Tweedie models we have the cumulant generating functions (CGFs): 
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where    and   are the canonical and index parameters, s is the generating function variable, the exponent )1/()2(  bb , 

and the cumulant function )(b  is 

 



























2                 )log(

2 1,             
1

1
1                            

)(

b

b

be

b












. (15) 

We have the extreme stable distributions for 0b ; the Gaussian distribution, 0b ; the Poisson distribution, 1b ; the 
compound Poisson distribution, 21  b ; the gamma distribution, 2b ; the positive stable distributions, 32  b ; the 
inverse Gaussian distribution, 3b ; the positive stable distributions, 3b ; the extreme stable distributions, b ; and for 
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10  b  the Tweedie models do not exist.  

Whereas many of the Tweedie models include well-known distributions like the Gaussian, Poisson and gamma 
distributions, there are other distributions that are less common. The Tweedie compound Poisson distribution is one of these; 
data conforming to it represent a random sequence of discrete ‘jumps’ in value. A closed form expression for the compound 
Poisson probability density currently does not exist. It can, however, be expressed in the form [11]: 

 )](exp[);(),,;( **   zzczp  (16) 

where 

  

1

!)()/1(
1

);(
1

*







 



n
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z

. (17) 

Means and variances can be derived from the CGFs by differentiation with respect to s and setting s = 0. This exercise can 

be used to confirm that the power law bZaZ )(E)(Var   follows as an inherent property of the Tweedie distributions.    

The relationship between 1/f noise and the variance to mean power law would suggest the corresponding range of the 
power law exponent b should fall within the interval (1, 3). This would implicate the compound Poisson, gamma and positive 
stable distributions as potential candidates for stochastic processes manifesting 1/f noise.   

The compelling reason to propose the Tweedie models as explanations for fluctuation scaling/Taylor’s law and 1/f noise 
rests with their role as foci of convergence in a central limit-like effect. The Tweedie convergence theorem states that for 

exponential dispersion models ),(ED 2  with unit variance functions and of the form bV  ~)( , as 0  or   then  

),(ED 22-1 bccc   will converge to the form of a Tweedie model [24] as the factor 0c  or c .  Indeed, the variance 

functions of many probability distributions will approximate pV  )(  as 0  or  , and so these models have their 

role as foci of convergence for a wide variety of stochastic processes. 

The Tweedie convergence theorem can be viewed as part of a spectrum of limit theorems, which would include the Poisson 
convergence theorem for 1b  and the central limit theorem for 0b . Other convergence theorems may be proposed to 
account for fluctuation scaling or 1/f noise.  However limit theorems for independent and identically distributed random 
variables, like the Tweedie convergence theorem, should be considered as being primary for the generation of any given 
distributional form.     

V. CHEBYSHEV DEVIATIONS  

Self-similar processes that demonstrate both a variance to mean power law and 1/f noise have been reported with the 
eigenvalue deviations of the Gaussian Unitary Ensemble (GUE) and Gaussian Orthogonal Ensemble (GOE) of random matrix 
theory[12]. We will examine here another type of deviation associated with the placement of prime numbers amongst the 
natural numbers. We will begin with a brief introduction to prime number theory.  

Gauss has been credited for estimating that the local density of prime numbers near the nth prime np  should be 

approximately )ln(/1 np . Integration of this density gives an average number of prime numbers less than a given value x, 

which is known as the logarithmic integral 

 
x

t

dt
x

0 )ln(
)(Li . (18) 

The exact number of primes less than the real value x is given by the prime counting function )(x , and so a measure of 

prime number deviations may be obtained from  

the difference )()(Li xx  . Riemann has provided an explicit estimate for this difference [25] , 

 )()(Li xx  ~ )(Li
)( /1

2

x

n

x
n

n







, (19) 

where )(n  is the Möbius function on the integers n, 

DOI: 10.5963/JBAP0202002



Journal of Basic and Applied Physics  May 2013, Vol. 2 Iss. 2, PP. 40-49 

- 44 - 

 

      primesdistinct   ofproduct  a is  if

factors prime repeated moreor  1 has  if

                                                 1 if

 )1(

0

1

)(

kn

n

n

n
k












 . (20) 

The fact that this difference tends asymptotically towards zero for large values of x follows from the prime number theorem, 
proven independently by Hadamard [26] and de la Vallée Poussin [27]. The error terms in this theorem can be related to the 
Riemann hypothesis that the nontrivial zeros of the Riemann zeta function on the complex variable s 

 





1

1
)(

n
sn

s  (21) 

have as their real part the value 2/1)Re( s . If the Riemann hypothesis is true, Schoenfeld has shown that [28]  

  8/))(Log()(Li)( xxxx  , (22) 

for all 2657x . 

The prime counting function )(x  can alternatively be replaced by the Chebyshev function 

 



xn

nx )()( , (23) 

which has the advantage of more linear dependence on x. Here, )(x   is the von Mangoldt function which takes the value of 

)log(p  if x is a positive power of a prime number p, but otherwise assumes the value of 0. The expression )(x ~ x is then 

equivalent to the prime number theorem and we have, if the Riemann hypothesis is true, the relationship [28] 

 2.73for    )8/()(log)( 2  xxxxx  . (24) 

We will now focus on the Chebyshev deviations, 

 xxx  )()(   . (25) 

Fig. 1 provides these deviations for the first thousand (1a) and million (1b) integer positions. The patterns from both graphs 
appeared self-similar. There was a similar increase in size of deviations over the first million values as seen with the first 
thousand. The pattern of these deviations was also characterized by irregular cusps (multifractal singularities) as well by 
segments where the deviations within a certain range of magnitude were irregularly punctuated by other segments with an 
abruptly different magnitude. To a degree these data could be considered to have lacked stationarity.  The analytical methods 
being applied here, however, were sufficiently robust and the scaling properties sufficiently strong that certain features 
remained evident from these data.     

 

Fig. 1  Chebyshev deviations Δ(x) for the first thousand (a), and million (b), integer positions 

The Chebyshev deviations were evaluated empirically using the method of expanding bins, over a range of bin sizes from 1 
to 25,000 integer positions. A log-log plot of the means and variances was then constructed (Fig. 2). The plot revealed an 
approximately linear fit with the power law exponent b = 1.93. The fit was quite close, holding over several orders of 
magnitude of the mean, yet some discrepancies from this linear fit were evident at the  extremes.   
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Fig. 2 Variance to mean power law function for Chebyshev deviations 

To further analyse the properties of b the data set was divided into sequential non-overlapping segments of 103 integers and 
a variance to mean power function was fitted from the data contained within each of these smaller segments. Fig. 3 provides 
the frequency histogram for the measured values of b. A range of values was found from 1.87 up to just over 2.0.   

 

Fig. 3 Frequency histogram for the power law exponent, b 

We will return to the implications of this distribution of values for b later. Before doing this a second evaluation of the 
applicability of the Tweedie models was conducted. The empirical cumulative distribution function (CDF) derived from the 
deviations Δ(x) was fitted to the theoretical Tweedie compound Poisson CDF. Fig. 4 provides the probability-probability plot. 

 

Fig. 4 Probability-probability plot for the Chebyshev deviations based on the Tweedie compound Poisson CDF 
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This plot revealed an approximately linear relationship, which indicated an acceptable model fit. The value for the power 
law exponent obtained from the theoretical CDF was b = 1.81, reasonably close to those obtained from the variance to mean 
power law in Fig. 2. 

Next the Chebyshev deviations were examined to see whether they might reveal 1/f nose. In this evaluation the first 
100,000 values of Δ(x) were subject to a discrete Fourier transform using a Hamming window of 555 data positions to smooth 
the resultant spectrum. Fig. 5 provides a log-log plot of power versus frequency.       

The power spectrum revealed a region of noise with an  

 

Fig. 5 Power spectrum for the Chebyshev deviations Δ(x) 

Approximate 1/f-1.8 dependence that ran over several orders of magnitude of frequency. This 1/f noise pattern corresponded 
to a predicted value of b = 2.8. 

Although a variance to mean power law could be demonstrated from the Chebyshev deviations over several orders of 
magnitude, the empirical CDF and the Tweedie compound Poisson CDF appeared consistent, and 1/f noise could be detected, 
some discrepancy was evident from the measured values for b from the different assessments.  Indeed, the analysis connected 
to Fig. 3 had demonstrated that the power law exponent b possessed a distribution of values. We recall also that Fig. 1 had 
demonstrated both a lack of stationarity as well as multifractal-like singularities and abrupt transitions in the magnitude of the 
fluctuations. These properties could have contributed to a bias in estimate for b, particularly with that made in the frequency 
domain [29].   

Multifractal analysis has evolved to deal with some of the inadequacies of more conventional methodologies in the analysis 
of complex signals[30]. The wavelet transform method of multifractal analysis will be applied here to the deviations Δ(x).  

To briefly introduce the technique one may construct a wavelet transform )~,
~

](
~

[ abfT  of a function f
~

 by means of 

decomposition with analysing wavelets  , for  translations and dilations specified by the scale and shape parameters Ra~  

and  Rb
~
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 . (26) 

Typically successive differentiations of the Gaussian function are used to generate analysing wavelets,  

 NNN dxdx /)e()( 2/-x)( 2

 . (27) 

Multifractal singularities within the function f
~

 at the point x0 are assessed by means of the local Hölder exponent )( 0xh , 

the largest valued exponent for which a polynomial )(xPn  of order n exists that satisfies 

 )()()( 00
h

n xxOxxPxf   (28) 

for x in a neighborhood of x0. The )(hD , or singularity, spectrum provides the Hausdorff dimension where the Hölder 

exponent takes the value h, 

 ])([dim)( hxhxhD H   (29) 
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A partition function  

 
 











)(

)',](
~

[
)',(

sup
),(

al

q

axfT
lax

qaZ
L

  (30) 

can then be constructed such that Rq  specifies the order of the generalized fractal dimension, and )(aL  represents the set 

of wavelet maxima lines li that reach or cross the a-scale. If the partition function ),( qaZ ~ )(qa  demonstrates power law 

scaling, one may then construct a multifractal spectrum from the exponents )(q . These exponents )(q  are related to the 

singularity spectrum )(hD by the Legendre transformation, 

 )]([min)( qqhhD
q

 . (31) 

A wavelet analysis was conducted on the initial 10,000 values of the Chebyshev deviations. Fig. 6 gives the resultant 
multifractal spectrum. 

 

Fig. 6 Multifractal spectrum for the Chebyshev deviations Δ(x) 

This spectrum exhibited an inflexion in its slope, indicative of multifractality. The corresponding singularity spectrum is 
given in Fig. 7.   

 

Fig. 7 Singularity spectrum for the Chebyshev deviations Δ(x) 

This second spectrum had an inverted convex form that also indicated the presence of multifractality within the Chebyshev 
deviations Δ(x).   

VI. CONCLUSIONS 

The analysis presented here provided reasonable evidence that fluctuation scaling and 1/f noise could be found with the 
Chebyshev deviations Δ(x). The variability evident to the assessed values of b could be attributed to the lack of stationarity in 
the sequence Δ(x), to limitations of the assessment methods, and to an inherent multifractality. Despite these discrepancies the 
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Tweedie compound Poisson model corresponded fairly well to these data, much as might be expected from the Tweedie 
convergence theorem. 

The power law exponent b relates to the Hurst parameter H and the fractal dimension D through the equation, 

 2/22 bHD  . (32) 

As demonstrated within Fig. 3 the sequence of Chebyshev deviations revealed an apparently random distribution of values 
over its assessed length that would correspond to local variations in D. When different regions of an object are found to exhibit 
different fractal properties the term multifractal can be applied [31].     

There are various criteria that have been used to identify multifractals; often the determination is based on the presence of 
cusps in the data sequence (Fig. 1) in conjunction with a typical inflection seen in the multifractal spectrum (Fig. 6) and convex 
form seen in the singularity spectrum on wavelet analysis (Fig. 7). 

If we accept all of these demonstrations of multifractality within the Chebyshev deviations, and the evidence that the 
Tweedie distributions provide a model for these deviations (Fig. 4) there is a further implication. The exponent 

)1/()2(  bb  from the Tweedie CGFs (Eqs. 14, 15) would similarly be affected by the variation associated with b. Since 

the Tweedie convergence theorem specifies that the Tweedie exponential dispersion models act as foci for the mathematical 
convergence of a broad range of complicated systems, we would have a plausible mechanism for the genesis of  multifractality.   

Multifractality is attributed to long range temporal correlations or fat-tailed probability distributions. In the case of the 
Chebyshev deviations long range temporal correlations were demonstrated by virtue of the demonstration of 1/f noise. 
However, the Tweedie convergence theorem provides additional mathematical insight into multifractality that has not been 
well recognized.  

The Chebyshev deviations served the purpose to provide a further example of fluctuation scaling and 1/f noise. Because 
these deviations were purely mathematical in origin, any physical mechanism used to explain fluctuation scaling and any of the 
biological explanations for Taylor’s power law should be considered clearly inapplicable. Similarly, the dynamical mechanism 
proposed in self-organized criticality should also be considered inapplicable. Other purely mathematical examples of 
fluctuation scaling have been reported, most notably with the GUE and GOE [12]. In contrast, the Tweedie convergence 
theorem with its foci of convergence the Tweedie exponential dispersion models provided a generally applicable explanation 
for the origin of fluctuation scaling and 1/f noise. 

The Tweedie convergence theorem states that any exponential dispersion model, which has an asymptotical power law 
variance function, will have as its domain of attraction a Tweedie model. Since any distribution function that has a finite CGF 
constitutes an exponential dispersion model, the range of distributions that can be approximated by the Tweedie models is very 
large, and thus this convergence theorem covers a wide range of processes.   

Processes that consist of multiple small independent perturbations would likely tend to converge to the form of a Tweedie 
model. This would include many of the numerical simulations and algebraic approximations for Taylor’s law as well as 
simulations for self-organized criticality.   

The biconditional relationship between Eqs. 7 and 8 in self-similar processes (Section III) provides a theoretical connection 
between fluctuation scaling and 1/f noise. Provided this relationship the Tweedie convergence theorem can then be viewed as 
the basis for the genesis of 1/f noise.    

Bak, Tang and Wiesenfeld have proposed that 1/f noise can be attributed to self-organized criticality, where critical states 
can spontaneously arise within extended dynamical systems that possess many degrees of freedom [32].  These critical states 
characteristically have no intrinsic length or time scales and so, long range temporal correlations and 1/f noise could be viewed 
related to an associated fractal structure of the critical state[33]. We have seen here how long range correlations and 1/f noise 
associated with the Chebyshev deviations can be attributed to a mathematical convergence theorem related to the Central Limit 
Theorem.  Further evidence for such convergence and scaling behavior has been demonstrated with the GUE and GOE [12] as 
well as with the Mertens function [13].   

All of these examples are purely numerical and cannot be attributed to physical processes like self-organized criticality. 
Consider, for example the derivation of the Maxwell-Boltzmann distribution: using physical principles the associated entropy 
is maximized subject to the requirement that the system’s kinetic energy be proportional to the absolute temperature to yield 
this distribution. On the other hand one may apply the Central Limit Theorem to the momentum exchange distributions of the 
particles in the gas to yield the same distribution. The Central Limit Theorem, though, has applicability and generality that 
ranges further than the ad hoc application of physical principles [13].           

In this context the Tweedie Convergence Theorem provides an explanation for the origin of the scaling behavior seen with 
all of the examples provided and referred to here. Self-organized criticality can still be regarded to explain sand piles and 
avalanches; however, the potential exists here that the Tweedie Convergence Theorem and its foci of convergence, the 
Tweedie exponential dispersion models might be applicable here, too.  
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