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Abstract- Having at our disposal a dataset of 186 lip cancer cases in Greece, we attempt to interpret them by applying four different 

statistical methods: Generalized Linear Model (GLM), Markov Chain Monte Carlo (MCMC), Cox proportional hazards model and 

Bayes factor. The likelihood score equations from GLM exerted estimators with bounded influence, so that the resulting estimators 

were robust against outliers while maintaining high efficiency in the absence of outliers. Batch means method of estimating the 

variance of the asymptotic normal distribution, used in MCMC, gave strong consistency when it was applied to our data. A Cox 

proportional hazards model done with a weighted expectation-maximization gave efficient parameter estimates. Finally, using Bayes 

factor to the prior distributions for the parameters in compared regression models was proved to be highly sensitive. 
Keywords- Bayes Factor; Cox Regression; Generalized Linear Model; Lip cancer; Markov Chain Monte Carlo  

I. INTRODUCTION 

One of the questions many people ask when first diagnosed with cancer is about their prognosis. Patients might want to 

know whether their cancer is relatively easy or more difficult to treat. A doctor cannot predict the future, but an estimate is 

possible based on medical data. The study of cancer patients’ data can give an idea of prognosis — the chance of survival. 

Statistics can also show how people with the same cancer type and stage respond to treatment. Doctors can use this information 

to weigh the pros and cons of each treatment option and develop a treatment plan. Thus, the selection of an appropriate 

statistical method for survivability prediction is of great importance. General Linear Models, Markov Chain Monte Carlo 

methods, Cox regression and Bayesian statistics are four techniques, among others, used to find good ways to predict 

survivability of cancer patients. 

A. Generalized Linear Model (GLM) 

Generalized Linear Model (GLM) is very attractive for handling a wide variety of continuous and discrete dependent 

variables. The response variables yi, for i=1, 2, …, n approximate an exponential distribution such as E(yi)= μi, var(yi)=V(μi) 

and linear predictor,  

 
where β is a p-dimensional vector of parameters and g is a link function. The Maximum Likelihood Estimators (MLE) for β 

can be obtained by solving the score equations:  
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These MLE have unbounded influence, so they are sensitive to outliers. Reference [1] developed a robust estimation for 

GLM, considering a general class of M-estimators of Mallows’s type, which are the solution of the amended score equations, 
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Where ri=( yi-μi)/V1/2(μi), ψc(ri)=max(-c, min(ri,c)) is the Huber function, giving an estimator with bounded influence and 
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This approach has been studied by [2], [3], [4] and [5]. Extensions to Generalized Linear Mixed Model (GLMM) have been 
developed by [6] and [7]. Finally, [8] developed Poisson and binomial GLM and their extensions to GLMM.  



International Journal of Life Science and Medical Research                                                Aug. 2013, Vol. 3 Iss. 4, PP. 155-161  

- 156 - 

DOI：10.5963/LSMR0304003 

B. Markov Chain Monte Carlo (MCMC) 

Suppose that we want to calculate χ ( ) ( )E g g x dx   , with π a probability distribution having support χ and g a real-

valuated, π-integrable function. Suppose that π is such that Markov chain Monte Carlo (MCMC) is the only viable method for 

estimating Eπg. 

Let X={X0, X1, …} be a time-homogeneous, aperiodic, π-irreducible, positive Harris recurrent Markov chain [9]. In this 

case, X is the Harris ergodic and given an MCMC algorithm that simulates X, it is conceptually easy to generate large amounts 

of data and use 
ng  to obtain an arbitrarily precise estimate of Eπg. 

Several methods can be used to determine when n is sufficiently large, i.e. when to terminate the simulation ([10]; [11]; 

[12]; [13]). We consider two methods for estimating the variance of the asymptotic normal distribution: Regenerative 

Simulation (RS) and nonoverlapping Batch Means (BM). Both have strengths and weaknesses: BM is easier to implement, 

while RS is on a stronger theoretical footing. Conditions provided for the consistency of BM, allowing the batch sizes to 

increase as n increases, are given by [14]. In this case, we denoted the method as CBM to distinguish it from the standard 

fixed-batch size version. 

C. Cox Regression 

In clinical trials and observatory studies, complete covariate data are often not available for every subject. Missing data 

may arise due to many circumstances, including the loss of hospital records or survey nonresponse. Intuitively, when the 

subjects with missing covariates differ systematically from those with complete data with respect to the outcome of interest, 

results from a traditional data analysis that omits the missing cases may no longer be valid. 

Because standard techniques of survival analysis require full covariate information, a simple way to avoid the problem of 

missing data is to analyze only those subjects who are completely observed (complete case analysis). However, complete case 

analysis can be biased when the data are not Missing At Random (MAR) and generally leads to large standard errors. In 

addition, as the fraction of missing data increases, the deletion of all subjects with missing data is wasteful and inefficient. 

Another method for dealing with missing covariates is to exclude those covariates subject to missingness from the analysis. 

However, this procedure leads to model misspecification. A method proposed by [15] uses an Expectation-Maximization (EM) 

Monte Carlo algorithm to obtain parameter estimates in the Cox proportional hazards model in the presence of missing 

categorical covariates. Reference [16] propose a different approximation that uses a weighted EM algorithm to obtain 

parameter estimates when the missing covariates are categorical or continuous. Previous work in this area includes methods 

developed by [17], [18], [19], [20], [21], [22], [23], [24]. 

D. Bayes factor 

The Bayes factor is a tool for model selection for Bayesian statisticians. The Bayes factor summarizes the evidence 

provided by the data in favor of one scientific theory represented by a statistical model as opposed to another. Reference [25] 

provided a comprehensive review of Bayes factor including information about their interpretation. Bayes factor is known to be 

highly sensitive to the prior distributions used on the parameters of the models. Hence it is important to study the sensitivity of 

the Bayes factor to the prior distributions before drawing any conclusions. The traditional approach to study the sensitivity of 

the Bayes factor to the prior distribution is to evaluate the Bayes factor over classes of prior distributions [25]. However, this 

becomes very intensive computationally and there is no unanimity regarding the question of what class should be used. 

Reference [26] proposed an approach for studying the sensitivity of Bayes factor without the need of using a specific class of 

prior distributions. 

The aims of this article are to: 

1. investigate the robustness of GLM and make comparisons with other robust estimators,  

2. examine the finite-sample properties of batch means methods (MCMC), 

3. use a weighted expectation-maximization in a Cox proportional hazards model to handle missing covariate data, and 

4. use Bayes factor, a Bayesian statistician’s tool, for model selection, by applying these statistical methods to a dataset of 

lip cancer rates, in order to improve survivability prediction of lip cancer patients. 

II. MATERIALS AND METHODS 

Reference [27] analyzed n=186 lip cancer cases in Greece. 
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A. Generalized Linear Model (GLM) 

Consider a hierarchical model 2N( , )i i iy    , where ( ) t

i i i iE y   x β . This leads to the model t

i i iy e x β  (1) 

where ei=σizi and N(0,1)iz . When 2 2

i   we have the ordinary regression model. 

Suppose that conditional on unobservable random variables υi for i=1, 2, …, n, yi follows a negative-binomial distribution 

with density function 
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Let υi=τui, where ui follows the inverse-gamma distribution. 

Here var( ) (1 )i i i i iy      . When τ=0, it becomes the Poisson model, with estimating equation (1) for β with V(μ)=μ; 

this gives unbounded influences as yi goes to infinity. 

Suppose that, conditional on υi, yi follows a beta-binomial distribution with density function 
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Here  var( ) (1 ) 1 ( 1) / (1 )i i i i i i i iy m p p m        . When τ=0, it becomes the binomial model with estimating equation 

(1) for β with V(μ)=mp(1-p); this gives unbounded influences when yi approaches 0 (or mi), with mi going to infinity. 

In the Poisson GLMM, the h likelihood estimator 
iu  for ui satisfies the relation ( )i iu O y  , with i ij

j

y y  , as yi+ goes to 

infinity and in the binomial GLMM, the h likelihood estimator 
iu  for ui satisfies the relation ( )i iu O m  , with i ij

j

m m  , 

as yi+ approaches to 0 or mi+, with mi+ going to infinity (Noh and Lee 2007). 

In our study, there was an effort to avoid the presentation of unstable rates for the smaller ages. For analysis, the following 

model was considered [28]: 

0 1log log 10i i i i in n x u        

where  1 2( , ,... ) exp ( )2 2t

n i ji j
u u u u u   v  and i j  denotes adjacent ages. 

B. Markov Chain Monte Carlo (MCMC) 

Consider the Greek lip cancer dataset consisting of 186 lip cancer cases registered [27], together with the expected number 

of cases given the age-sex structure of the population. We assume a Poisson likelihood for spatially aggregated data. 

Specifically, for i=1, 2, …, N, we assume that given μi, the disease counts yi are conditionally independent and  

( )i

i i iy Poisson E e
  where Ei is the expected number of disease events, assuming constant risk and μi is the log-relative risk 

of disease for the ith region. Set υ=(υ1, …, υΝ)
Τ
. Each μi is modeled as μi=θi+υi, where 
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where ni is the number of neighbors for the ith region. Each θi captures the ith region’s extra-Poisson variability due to area 
wide heterogeneity, whereas each υi captures the ith region’s excess variability attributable to regional clustering. The priors 

on the precision parameters are (1,0.02)H gamma . It is important that the random-effects parameters (θi, υi) are not 

identified in the likelihood and the spatial prior used is improper.  

Reference [29] established uniform ergodicity of a Harris-ergodic Metropolis-Hastings independence sampler with 

invariant distribution ( , , , )h c y      where θ=(θ1, …, θΝ)
Τ
. In our implementation of RS, we used the formula for the 

probability of a regeneration given by [30]. 

C. Cox Regression 

Think on the Greek lip cancer dataset of 186 lip cancer cases[27]. We compare our method to estimation based on complete 
cases, because other methods valid under MAR do not handle mixed covariates with a nonmonotonic pattern of missingness. 

This study involved n=186 patients with outcome of interest in the overall survival, defined as the time from randomization 
from receiving radiotherapy or observation (z1) until death from squamous cell carcinoma. In addition, several prognostic 
factors were identified as important predictors of survival. These included the patient’s age (z2), thickness of the tumor in mm 
(z3), size of the primary tumor in cm

2
 (z4) and the type of the primary tumor (z5), which was either superficial spreading or 
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other. Treatment and age were observed for all patients, while thickness, size and type were missing for some subjects, so that 
30% of the patients had missing covariate data. Logarithms of age, thickness and size were used in all analyses to achieve 
approximate normality in the distributions of the continuous covariates, which were also standardized to have mean 0 and 
variance 1. 

We assume that the missingness does not depend on the values of the missing covariates. We use Cox regression to model 
the relationship between overall survival and the given prognostic factors. Because three covariates are subject to missingness, 
we must specify their distribution for the analysis. Using the [15] model 

1 1 1 , 1 , 1 1 , 2 1 1 1( ,..., ) ( ,..., , , ) ( ,..., , , )... ( , )i ir i i i r i r i r i i r i r i ip z z p z z z p z z z p z     α v α v α v α  

where αj is a vector of location and scale parameters for the jth conditional distribution, the αj’s are distinct and α=(α1, α2, …, 
αr), we model the covariate distribution as 

3 4 5 1 2 5 1 2 3 4 5 4 1 2 3 4 3 1 2 3( , , , , ) ( , , , , ) ( , , , )... ( , , )i i i i i i i i i i i i i i i i ip z z z z z p z z z z z p z z z z p z z z  α α α α  

where i=1, 2, …, n [16]. Because treatment and age are always observed, they do not need to be modeled and are conditioned 
upon through the analysis. We model tumor type, a dichotomous covariate, using a logistic regression model. We then model 
the continuous covariates size and thickness as normal random variables. 

D. Bayes factor 

Once again, consider the Greek lip cancer dataset [27]. Patterns of regional variation in the disease incidence rate for lip 
cancer were investigated. The dataset contains: the observed number of lip cancer cases among males from 1995-2005, y1, 
y2, …yn; the expected number of cases adjusted for the age distribution E1, E2, …, En; the percentage of people employed in 
agriculture, fishing and construction (AFC) x1, x2, …, xn (since increased exposure to sunlight has been implicated in the excess 
occurrence of lip cancer, people working outdoors were thought to be under greater risk of the disease); and the set of 
neighboring regions N1, N2, …, Nn. 

Assume that the disease incidence counts yi’s follow the independent Poisson distributions 

) ( , )i i i iy Poisson E  , i=1, 2, …, n, 

with λi representing a relative risk parameter for the ith region. In practice the Poisson model by itself does not provide an 

adequate fit due to factors not included in the model. One way to address the effects of unobserved covariates is to incorporate 

random effects. Reference [31] propose a mixed linear model for the vector of log relative risk parameters, log(λ): 

log( ) n    Χ , 

where X is the covariate matrix containing a vector of 1’s as the first column and another column containing values of the 
variable AFC; β is a vector containing the fixed effect parameters β0 and β1; n=(n1, n2, …, nn)’ is a vector of spatially random 
effects and ψ=( ψ1, ψ2, …, ψn) is a vector of uncorrelated heterogeneity random effects. 

The spatial random effects ni’s are intended to represent unobserved factors that, if observed, would display substantial 
spatial correlation in that the values for a pair of contiguous zones would be generally much more alike than for two arbitrary 
zones. For known matrices C and M, we take the prior distribution for n as a conditional autoregressive (CAR) distribution 

2 2 1, (0, (1 ) )n N     C M  

where τ
2
 and υ are parameters of the prior distribution and C, M matrices as suggested by [32]. 

We focus on the Bayes factor (BF) for comparing the Poisson regression model to the CAR model, in order to test if there 

is any spatial structure evident in the unexplained risk. The Bayes factor of interest 2

10

,
BF

 
 is defined in [26]. 

III. RESULTS AND DISCUSSION 

A. Generalized Linear Model (GLM) 

The results of fitting Poisson and binomial GLMM are given in Table 1. Our robust results are similar to those from the 
MLE method without the outliers. 

TABLE I SUMMARIES OF ANALYSIS FOR THE GREEK LIP CANCER DATA 

 Classical MLE method 
Poisson GLMM Binomial GLMM 

 Full data Without outliers 

 Estimate SE Estimate SE Estimate SE Estimate SE 

β0 -0.246 0.148 -0.394 0.160 -0.369 0.160 -0.381 0.160 

β1 0.431 0.160 0.566 0.160 0.541 0.148 0.541 0.160 

λ 2.962  2.838  4.442  12.957  
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Considering the case study, the use of robust statistical models for GLM classes gives robust estimations against outliers 

while maintaining high efficiency in the absence of outliers. 

B. Markov Chain Monte Carlo (MCMC) 

Table 2 reveals that the estimates of the coverage probabilities are all below the desired 0.95, but BM has the lowest 

standard error. Coverages show that the chains do not mix as well. This is due to the nature of the data and hence larger batch 

sizes are required. 

TABLE II SUMMARIES FOR BM, CBM AND RS 

Method bn n*/R* Average half-width Average chain length Coverage probability 

CBM n1/2 10,000 0.004 160 0.93 

CBM n1/3 10,000 0.004 130 0.90 

BM n/30 10,000 0.003 130 0.80 

RS  25 0.004 170 0.94 

Whereas CBM and RS appear comparable in terms of coverage probability, RS tends to result in slightly longer runs than 

CBM, which in turn results in longer runs than BM. Moreover, RS and CBM are comparable in their ability to produce 

intervals that meet the target half-width more closely than BM. Also, the intervals for RS are apparently more stable than those 

of CBM and BM. Finally, BM underestimates the Monte Carlo standard error and thus suggests stopping the chain too early. 

In conclusion, RS and CBM appear comparable. Also, like RS, CBM avoids the burn-in issue, which has been an obstacle 

to MCMC practitioners. CBM is slightly easier to implement, thus CBM has a place in the tool kit of MCMC practitioners. 

C. Cox Regression 

The results of this analysis are compared to the traditional complete case analysis in Table 3. Both methods yield similar 

qualitative results in terms of the treatment effect. Patients who received radiotherapy survived longer than those who were 

only observed after surgery. However, in the complete case analysis, the treatment effect achieves only marginal statistical 

significance (p=0.06), whereas the effect of radiotherapy is statistically significant (p=0.02) in the proposed EM method once 

the additional information provided by partially observed patients is taken into account. In addition, the effect of age becomes 

marginally significant (p=0.10) in the EM analysis, indicating that older patients have a poorer prognosis. Thus for these data, 

we see that a complete case analysis indicates that treatment has no significant effect on survival at the 0.05 level, whereas the 

proposed EM analysis shows that treatment does significantly improve survival. 

TABLE III ESTIMATES FOR SQUAMOUS CELL CARCINOMA DATA 

Effect Method Estimate Standard error p-value 

Treatment 
Complete case -0.34 0.17 0.06 

EM -0.30 0.12 0.02 

Age 
Complete case 0.08 0.07 0.40 

EM 0.10 0.06 0.10 

Tumor thickness 
Complete case -0.09 0.10 0.40 

EM -0.01 0.07 0.90 

Tumor size 
Complete case 0.03 0.13 0.90 

EM 0.03 0.08 0.70 

Tumor type 
Complete case -0.01 0.20 0.99 

EM 0,01 0,14 0,90 

D. Bayes factor 

The approximate Bayes factor obtained using  

max

2 2

(0, )

max

1
( , ) ( 2.5,1.5)p I Inv gamma   


    

is 0.01, which seems to give a strong evidence against the null hypothesis indicating that there seems to be evidence of spatial 

correlation in the unexplained risk of lip cancer incidence in Greece. However, before making any definite conclusion, we 

should examine if the Bayes factor of interest is sensitive to the prior distribution p(υ,τ
2
). The values of the quantity 2

10

,
BF

 
 

(“point mass prior Bayes factor”), comparing the Poisson regression model with the CAR model, are computed for a grid of 

values of υ and τ
2
. The quantity of 2

10

,
BF

 
 varied a great deal with change in υ and τ

2
; in fact, on logarithmic scale, it varied 

from about -6(which means vary strong evidence for the CAR model) to 6 (which means very strong evidence for the Poisson 

model). 
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To sum up, the sensitivity of Bayes factor gives a clear idea about comparison of two nested models, since it varies 

significantly for a grid of parameter values, without requiring the Bayes factor to be computed for any particular class of prior 

distributions. 

In order to demonstrate the efficacy of the previous four approaches, blinded predictions of patient survivability based upon 

real data have been made, and the difference between real survivability and survivability predicted from the four models is 

reported in Table 4 (most accurate prediction is in bold).  

TABLE IV ESTIMATES FOR SURVIVAL (IN MONTHS) AND COMPARISON TO REAL DATA 

Cancer’s stage I and II 

  Real data GLM MCMC Cox Bayes 

1-year 

Survival (months) 153.00 152.69 152.35 152.65 152.76 

Survival 

(% of patients) 
95.03 94.84 94.63 94.82 94.88 

3-years 

Survival (months) 135.00 134.65 134.88 134.70 134.58 

Survival 
(% of patients) 

83.85 83.64 83.77 83.66 83.59 

5-years 

Survival (months) 126.00 126.88 126.46 126.47 126.44 

Survival 
(% of patients) 

78.26 78.81 78.55 78.55 78.53 

7-years 

Survival (months) 94.00 93.79 93.90 93.99 93.54 

Survival 
(% of patients) 

58.39 58.25 58.32 58.38 58.10 

Cancer’s stage III 

  Real data GLM MCMC Cox Bayes 

1-year 

Survival (months) 6.00 5.65 5.44 5.67 5.76 

Survival 

(% of patients) 
60.00 56.47 54.37 56.74 57.56 

3-years 

Survival (months) 4.00 3.87 3.77 3.65 3.45 

Survival 
(% of patients) 

40.00 38.75 37.65 36.55 34.48 

5-years 

Survival (months) 4.00 3.88 3.88 3.69 3.65 

Survival 
(% of patients) 

40.00 38.77 45.00 45.00 45.00 

7-years 

Survival (months) 2.00 1.88 1.87 1.69 1.53 

Survival 
(% of patients) 

20.00 18.77 18.65 16.88 15.34 

Cancer’s stage IV 

  Real data GLM MCMC Cox Bayes 

1-year 

Survival (months) 5.00 4.65 4.80 4.69 4.46 

Survival 
(% of patients) 

55.56 51.72 53.32 52.08 49.51 

3-years 

Survival (months) 2.00 2.80 2.65 2.70 2.55 

Survival 
(% of patients) 

22.22 31.10 29.50 29.99 28.30 

5-years 

Survival (months) 2.00 1.85 1.46 1.68 1.66 

Survival 
(% of patients) 

22.22 20.61 16.18 18.72 18.47 

7-years 

Survival (months) 2.00 1.99 1.59 1.70 1.45 

Survival 

(% of patients) 
22.22 22.08 17.63 18.88 16.14 

As we can see in Table 4, all four techniques can be used and are suggested for survivability prediction; there are not any 

great differences between them, as regards both cancer’s stage (I-II, III, and IV) and years of survival (1, 3, 5, and 7 years). 

General Linear Models, Markov Chain Monte Carlo methods, Cox regression and Bayesian statistics are proven to be good 

methods to predict survivability of lip cancer patients. 
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