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Abstract- One dimensional laser logistic map is derived from semi-classical theory of single mode laser and discussed. Later, we write 
lasers in a ring cavity, with a system of two maps symmetrically coupled. The theoretical system reveals complicated dynamics. We 
investigated bifurcation phenomenon and crises behavior for the system. 
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I. INTRODUCTION 

Willis E. Lamb, in 1964, presented semi-classical theory of lasers in homogeneously broadened media [1]. In later years, an 
analogy between semi-classical lasers and Lorentz model for incompressible fluid dynamics was introduced by Herman Haken 
[2]. Based on Maxwell-Bloch equation, Haken’s proposition was considered a foundation stone to explain nonlinear evolution 
in laser. However, it was observed that in this proposition the required laser parameters correspond to bad cavity limit, that is, 
cavity decay time is considerably larger than atomic decay time. In other laser models, a periodic solutions have been found for 
single-mode lasers with either a constant [3] or modulated [4] external field for laser parameters, and for optically pumped 
three level lasers [5]. One-dimensional maps are useful models not only for the description of specific population evolution but 
also as a kind of stroboscopic representation of the continuous solutions of nonlinear differential equations [6]. The 
competition between two species has already been discussed in the literature in term of coupled first order equations of form 
similar to that governing the single species growth [7]. In this paper, we explain two-mode ring lasers as a function of coupling 
strength, as the given equations reduce to coupled first order equations [8, 9]. In coupled logistic maps, we found self-
similarity stripe structure of basins, distortion of torus and transition to chaos [10]. Since, there are two types of coupling linear 
and bilinear coupling. Both have its own importance but here we are studying bilinear coupling. Coupled oscillators are very 
important in nonlinear dynamics and for its developments from classic problems of coupled lasers, electronics oscillators to 
biological model [11]. Localized synchronization is observed in two coupled but non-identical semiconductor lasers [12]. 
Coupled logistic maps exhibit complicated dynamical behavior, including quasi-periodicity, period adding, phase locking, 
intermittency, long-lived, and chaotic transients, etc. 

II. EINSTEIN MAXWELL'S EQUATIONS 

We consider excited atoms placed inside a cavity in a ring configuration. Mirrors 1 and 2 have reflectivity R, while mirrors 
3 and 4 have hundred percent reflectivity, so that the reflected amplified light is back to interact with the atoms. 
Phenomenologically laser process takes place as light interacts with the material atoms that emit identical radiations, the 
phenomena continues. 

 

Fig. 1 Ring cavity in which EMT wave is propagating in one direction 

Since mirrors R1 and R2 have reflectivity less than hundred percent, some of photons are transmitted out of the cavity. We 
consider the interaction of a single-mode radiation field of frequency ν with a two-level Schrödinger atom [13, 14], and label 
the two state |a〉 and |b〉, indicating the excited and ground state respectively. We take H0 as the atomic Hamiltonian so that 
both state |aۧ and |b〉 are its eigenstate state with ћωa and ћωb as the corresponding eigen-energies. Therefore, by using the 
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completeness relation, |a〉ۦa|+|b〉ۦb|=1, the Hamiltonian of the LS is defined as the sum of atomic Hamiltonian and Hamiltonian 
describing the interaction of the atom with the e.m. field, that is, 
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Where ℘ab=℘ba* = eۦa|x|b〉 is the matrix element of the electric dipole moment and, E(t) is the field at the atom. The 
equations of motion for the density matrix elements, ρij, are given as, 
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where aa , and bb  express the probability of finding the atom in excited state, ground state and transition from ground to 

excited state respectively. Here, a and b are the decay rates associated to level a and b. Furthermore λa = a ρaa
(0) and λb 

= b ρbb
(0) are constant rate at which atoms are being pumped from level b to upper level a. The electric field is linearly 

polarized in the cavity and electromagnetic field radiation is described by following Maxwell’s equation; 
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where , μ0, σ and c are the permeability, conductivity and speed of light respectively. The macroscopic polarization P acts as a 
source term in the equation for radiation field. The variation in the field intensity transverse to the laser axis is typically slowly 
varying on the scale of optical wave length, and for the reason, we neglect the x and y dependence of E, i. e, E(r, t) = E(z, t)x, 
polarized along x-axis. Hence, the field of frequency ν is represented as, 
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where amplitude ( , )z t  and phase φ(z, t) are slowly varying functions of position and time. The corresponding response of 
the medium, neglecting the higher harmonics, is given by the macroscopic polarization, 
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Here ( , )z t  is a slowly varying function of position and time, which may be expressed in terms of the population matrix 
as, 
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We apply the slowly varying amplitudes and phase approximation [15, 16]. Substituting field and macroscopic polarization 
Eqs. (4) and (5) in Eq. (3) and equating real and imaginary parts, 
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where 
02

k
c




   is linear loss coefficient. We determine the driving polarization ImP(t) using Eq. (6) in Eq. (2) and on 

simplifying we get, 
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By substituting the expression in equations (2) and (3), in the steady state (
. .

0aa bb   ), we find 
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 is the rate constant, which determines the rate at which the population difference varies in time, 

1 1
0 a a b bN       and / 2s a bR     . Therefore, the population difference is directly proportional to 0N  which appears in the 

absence of field and inversely proportional to the intensity. On substituting Eqs. (8) and (9) in Eq. (7), the equation of motion 
for the field amplitude becomes,  
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Here A, B and C, are the Einstein gain coefficient, nonlinear saturation and losses in the system respectively and V is the 

volume of the cavity. We define a dimensionless intensity
2

0
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
, which corresponds to number of photons in the laser field. 

By substituting in Eq. (10) the laser equation responsible for the intensity growth, 
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Similar rate equation is obtained by quantum theory as we consider the interaction of single-mode quantized field of 
frequency ν with two level atoms. The probability of n photons in the field is obtained by using equation of motion for the laser 
field density matrix in the presence of interaction with active lasing medium and damping mechanism is 
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Where 
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as discussed above. We derive an equation for the mean number of photons, n   from above 

equation, 
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which yields, 
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and explain the evolution of mean number of photons in the lasing cavity. Following quantum mechanical treatment to single 
mode LS [15, 16] we obtain, 
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We proceed further under the condition of large average photon number, i.e, 1n   and decorrelation approximation and 

which implies 
2 2.n n      

III. LASER LOGISTIC MAPPING 

We analyze the nonlinear evolution of laser light, in semiclassical and quantum mechanical domains, by developing 
mapping. Equation (11), obtained by semi-classical theory, lead us to develop laser logistic map (LLM) by expanding the 
denominator using Taylor’s series expansion,  
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Rescaling the equation by introducing steady state solution, 0
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where 0 A C   . Using ab-initio method, left-hand-term in difference form is, 
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Where jN  defines the number of photons at the onset of jth cycle, and 1jN   is the number of photons at the onset of next (j 

+ 1)th cycle, i.e., after one round trip time, t , of the field in the ring cavity. 

 1 [1 ] .j j j jN N N N     (20) 

Where ( )A C t     is dimensionless effective gain coefficient that acts as the controlling parameter of the laser system. 
Using Eq. (15) obtained by quantum mechanical laser theory, we arrive at the same laser logistic map. Laser threshold 
condition takes place at 0  , which implies that the gain is balanced by the cavity losses, thus no amplification takes place. On 

increasing effective gain coefficient   laser logistic map displays different behavior: (1) For 0 2   the iteration converges 
to value 1N  . This asymptotic value is independent of initial value and corresponds to steady state value of laser. (2) For 
2 2.449   the iteration alternatively changes between two values, which implies that there are two field intensities available 

within the cavity corresponding to the   values from above mentioned domain. (3) For 2.6  the iteration never settles into 

any pattern and stays aperiodical. As  increases beyond 2.6 the light intensity displays a chaotic behavior as a function of j 
which determines interaction time. We have discussed stable, bistable, multi-bistable and chaotic laser in a ring cavity using 
convergent, cyclic and chaotic solution of LLM. The evolution of the LLM, given in Eq. (20), is explained both analytically 
and numerically in our present discussion. 

IV. TWO-MODE COUPLED LASERS 

We consider a two-mode ring cavity in which waves are propagated in clockwise and counter-clockwise directions around 
the ring [17, 18], as shown in the Fig. 2. 

 

Fig. 2 The possible diagram of ring cavity in which two waves are propagating in clockwise and anti-clockwise direction 

Mathematical formulation and simplification of these two-mode traveling waves in the cavity has been calculated [1, 19].  

These equations, written for electric field E1 and E2 are also called nonlinear coupled laser dynamical equation, 
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where   is given as, 

 2
1

1
,

[1 ( ) ]T





   (22) 

where 1T  is natural life time of laser transitions, and   is detuning [19]. We multiply 
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simplification and normalization with 1( )
( )i

B

A C


 , which is steady state photon number, leads us to obtain the difference 

equations, 

 
1 1

1 2

2 [1 ( )],

2 [1 ( )].
n n n n n

n n n n n

x x x x y

y y y y x

 
 





   
   

 (23) 

We obtain the difference equations using ab-initio method, that is, 
1 .j jx xdx

dt t
 


 . Furthermore, we take ( )i iA C t     as the 

controlling parameter, and t t t    is the cavity round trip time. Here t and t  are times of the waves which are 
propagating clockwise and anticlockwise directions respectively. Equation (23) provides the set of coupled logistic maps, and 

shall be discussed in detail in next section with   as real.  

V. TWO-MODE COUPLED LASERS 

The dynamical system described here which serves as a distinct concept for an entrainment behavior between the strange 
attractors of coupled nonlinear oscillators. In general in the absence of coupling, each behaves like a single longitudinal and 
transverse mode [10, 12]. We find that there is a certain range of coupling strength for which synchronized chaos exists. 
Beyond this range of coupling strength synchronization breaks down, and the system enters a regime of turbulence or 
spatiotemporal chaos [9, 13]. Hence, we report that in two-mode ring lasers, synchronization oscillates between quasi-periodic, 
intermittency state, period bifurcation and chaoticity, by fixing controlling parameter and changing the coupling strength. Here, 
we also discuss period fusing and emerging because of crises where strange attractors fluctuate corresponding to the change of 
parameters. We may write the coupled logistic equations as [24], 
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where, i  and 2 ,i   (i = 1; 2) are the characteristic parameters, therefore, the system is controlled by mean of three 
parameters. A mapping of bilinear and linear coupling terms have been shown to exhibit complicated dynamical behavior 
including quasi periodicity, phase locking, intermittency, period adding, long-lived chaotic transitions and then periodicity [25, 
26]. Following we explain necessary terms and their symbols used in our later discussion.  

Fixed points: A fixed point x is a point in the space defined by function f , so that ( )nf x x   n . 

Periodic motion: A periodic motion (P) of a system is defined as 1( ) ( )n nf x f x . 

Quasi-periodic motion: A Quasi-periodic motion (QP) of a dynamical system is defined as : nf R R ; dynamical function 

can be represented in the form 1 2 3( , , ,........... )nf H     ; where H is periodic with period 2  in each argument, and the real 
numbers 1 2 3( , , ,........... )n    describe the finite set of base frequencies [27, 28]. 

Phase locking: The process of phase locking exists whenever the chaotic actions of the individual subsystems shift to the 
ordered actions of the collective system [29, 30]. Sometimes phase entrainment is called phase locking. 

Chaotic motion: In the chaotic system, there occurs sensitive dependence to initial conditions, i. e, chaotic trajectories 
locally diverge away from each other and small changes in starting conditions build up exponentially fast into large deviations 
in the evolution [31]. 
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Fig. 3 Phase space ( , )n nx y is plotted by solving Eq. (24) for 1 2 1.19    and 0.660.  . We note that the system displays a 4P to 2P behavior through period 
bifurcation by means of crises. In the plot on right hand side, we present y axis of the phase space as a function of number of iterations. The possible diagram 

of ring cavity in which two waves are propagating in clockwise and anti-clockwise direction 

There occurs a fascinating behavior of the coupled equations (24) for various values of i  and  . The key to understand the 
structure of these equations in xy-space is a careful analysis of fixed points of the mapping functions as well as their iterates. 
Since the function (1)f and (2)f are symmetrical, we expect symmetrical behavior in x and y. The two fixed points [32], 
corresponding to Eq. (26) are, 
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which overlap for 0.i  By fixing i  and varying   we have found evidence for a boundary crises in our system, like or similar 
to what was found in Henon’s maps by Grebogi, Ott and Yorke [26, 33]. A boundary crisis occurs in our case through the 
collision of a chaotic attractor with the basin boundaries that separate it from the several other coexistent periodic attractors, in 
addition with another chaotic attractor [34, 35]. An increase of beyond its critical value for the onset of crises, results in 
disappearance of the chaotic attractors and its basin while the basins of remaining attractors undergo a sudden expansion. 

We report chaotic behavior in our system corresponding to various values of the parameters. We explain the behavior and 
classify our discussion in two cases: In the first case we fix i and vary   over a range of 999.0001.0   for 1.00 x and 

11.00 y  [27, 28]. At 25.0i  the trajectory in phase space (x; y) converges to a fixed point. The asymptotic character of the 

solution is typical 1P. For 0.1i , system shows oscillatory behavior between QP and 2P character upto .999.0 There is still 

2P character for 1.19i  and in the interval [0.001,0.21]  . At the upper range of this interval, it shows QP 2 Torus, 4P and 2P 
respectively at 0.22,0.222,0.6851.   Periodic bifurcation phenomena at 0.660   is also observed, as shown in the Fig. 3. There is no 
chaotic behaviors seen but our coupled system oscillates between 2P to 4P through quasi-periodicity. It is clear that if coupling 
strength is increased periodicity fuses and comes out of the crises, finally we get period 2 at 0.999.   

For 1.25i  and 0.001  the four chaotic attractors grow as coupling strength increases. They are synchronized (mirror image 
of each other) as well as orthogonal, and the trajectory in phase space converges to 4P. When 0.1750   transition from 4P to 
8P takes place, which shows quasi periodicity in which each attractor displays curious nine wing pattern before settling to the 
asymptotic 8P state. They also fluctuate and expand at 0.1790   which generates mirror image of laser attractors. At 0.1845,   
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transient solution again shows curious nine wing pattern before going to periodic regime. At 0.2   the lasing system shows 
chaotic behavior  through QP and laser attractors in phase space have exact mirror image of each other, as shown in Fig. 4(a,b). 
In laser chaos there exists inner crisis, a boundary crisis where a strange attractor collides with unstable fixed points on the 
boundary of basin of attraction, causing disappearance of both [36, 33]. But in our case when they collide unstable fixed points 
disappear and shape of the strange attractor remains invariant that becomes unstable as parameters increase. 

 

 

Fig. 4 Phase space ( , )n nx y is plotted by solving Eq. (24) for 1 2 1.25    and (a) 0.1845,  (b) 0.2.   Isolated points in (a) and (b) are part of transient evolution. 
The plots on right hand side shows behavior of our system, which is going from 4P state to chaos through QP in which each attractor shows nine wing pattern 
as in Fig. 2(a) and  fluctuates up to certain values of coupling strength. The attractors expand as a function of increasing coupling strength,   as shown in Fig. 

2(b), corresponding to frequency locking 

However, at 0.269  each period (line) split into eight to four to two and then finally fused in 4P and chaotic attractors 
remain mirror images to each other, as shown in the Fig. 5(a, b). It has been observed that our coupled nonlinear system got 
synchronized to each other during these intervals, such that [0.26,0.27]  and [0.29,0.30]  [25, 36]. Chaotic attractors are mirror 

images of each other in the interval, i. e, [0.319,0.445].  While the trajectory changes at 0.384  and increases above this 
value as we get different form of trajectory, i. e, chaotic attractors are not mirror images [29]. The coalesce (8 4 2 )C C C  chaos 
to chaos is analogous to the band emerging in a logistic map [25]. Therefore, periodicity of coupled lasing system oscillates 
(4P to 32P, each line of period 4 bifurcate then multibifurcation behavior and then converges to 4P at 0.999  ) 4P to 8P to 16 
to 32P through QP and chaotic and then comes at 4P at last value of  and attractors rotate in clockwise direction. 

For 1.26i  and [0.001,0.15]  it has same behavior as for 1.25i  for all values of  . From 0.152   to 0.2271, the trajectory 
converges to a periodic solution with the period equal to 4 but strange attractors are not mirror image of each other. However 
for 0.2275  to 0.2279  system remains chaotic and then converges to exactly 20 iteration (20P and 20 attractors) at 0.2285.   
Chaoticity and periodicity (20P) oscillate in the interval [0.2285, 2395]and some other complicated phenomena also happened 

[36]. At 0.2398,   there exists transient state in which phase space trajectory and periodicity change because of crises as 
shown in Fig. 6(b). When   is increased in the interval [0.295,0.445]  having 20P, chaotic behavior through intermittency occurs 
at 0.449,   as shown in Fig. 7 and QP at 0.510   and then converges to 4P at all above values of 0.575.   Therefore, for this 
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fixed value of controlling parameters and changing coupling strength our system remains chaotic in between 4P. 

 

 

Fig. 5 Phase space ( , )n nx y is plotted by solving Eq. (24) for 1 2 1.25    and (a) 0.2690,   (b) 0.4450.   Our dynamical system is going from unstable state to 
stable state through QP and trajectory of basin boundary remains invariant after crises. The plots on the right hand side show that (a) there occurs 32P state and 

(b) QP state after crises 
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Fig. 6 Phase space ( , )n nx y is plotted by solving Eq. (24) for 1 2 1.26    and (a) 0.09,  (b) 0.2398.   Isolated points in (a) and (b) are part of transient evolution. 
The plots on the right hand side show behavior of our system that is going from stable state to stability through chaotic and QP states. Here trajectory and 

periodicity of our system dramatically change because of crises. Here exterior crises is observed between two trajectories 

For 1.27i  and [0.001,0.011]  the trajectory in the phase space converges to four strange attractors corresponding to 
periodicity its asymptotic character of solution is 4P, as shown in the Fig. 8. At the upper range of this interval our system 
shows chaotic behavior through nodal period, QP and 20P. Lasing system shows chaotic behavior for small interval of time 
and comes back to its initial state when the coupling strength reaches its maximum value for small values of parameters. 

For 1.28i  and in this interval [0.001,0.017]  the trajectory converges to the 8QP or torus corresponding to periodicity it has 
an 8P asymptotic character of solution. Here, we observe QP (from 8P to 16P) and then (16P to 8P) in the 
interval[0.018,0.0321]and then chaotic behavior at 0.045   through intermittency state at 0.0429   [37]. From Fig. 9(a), there are 

16 chaotic attractors which are not mirror images at 0.0321  and correspond to intermittence state and show QP after crises, 
i. e, 16C coalesce into 4T at 0.0445,  which are mirror images as well as synchronized images [16, 26]. Moreover, initially 
chaos come through QP and intermittency state when system transits from 8P to 16P and after that our system shows chaoticity, 
but when it returns to its period 16 from chaoticity (infinite periods), no QP and intermittency state is observed up to four 
decimal places and then periods 8. It is also seen that periodicity, intermittency and chaoticity oscillate in the interval 
[0.365,0.370].  We observe a transitions from 8P to 4P because of crises at 0.6777  and then come back to its initial state of 8P 

at final value of 0.999   through QP and chaotic states. At the upper range of this interval [1.29,1.32]i   our system transits 
permanently to chaotic regime for all values of coupling strength. 

 

Fig. 7 Phase space ( , )n nx y is plotted by solving Eq. (24) for 1 2 1.26    and 0.4490.   Isolated points are part of transient evolution, intermittency state 
corresponds to strange at-tractors are synchronized as well as mirror images of each other. The plot on the right side in phase space shows intermittency state 

in (y; t) plane 

Thus, we can say that there exists such type of transition in which we observe ”cycle  (doubling)....  longer 
cycleHopf bifurcation torus various frequency locking chaos evolution of chaos chaos (fusion) and then 

hyperchaos in our system [25]. If one analyzes the two dimensional plots ( , )n nx y as Poincare surfaces of section for the 
continuous system, the sequence can be described as: The 2P corresponds to a stable limit cycle. As the increasing further, the 
limit cycle becomes unstable and bifurcates into a four-loop limit cycle and then evolves into an eight-loop torus through a 
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Hopf bifurcation. The torus represents quasiperiodic behavior of our system and is responsible for the four invariant orbits on 
the Poincare surfaces of section. The four intermittency periodic behaviors are obtained when the four characteristic 
frequencies on the torus are in ratio of two small integers [38]. Higher bifurcation of the torus occurs as the system moves out 
of quasiperiodic region, by increasing (Ruelle-Takens-Newhouse scenario) [38]. 

 

 

Fig. 8 Phase space( , )n nx y is plotted by solving Eq. (24) for 1 2 1.27    and (a) 0.045,   (b) 0.6099.   As we mentioned earlier, isolated points in (a) and (b) are part 
of transient evolution. The plots on the right side of (a) shows stability and (b) shows intermittency state of the system. Therefore, our dynamical system is 

going from stable state to unstable state through QP because of crises 

When 1 and 2 are not equal to each other then irregular behaviors displayed by means of period doubling bifurcation [38]. 

But in our dynamical system we have in region for which, start at same values for 0.051.   If   is fixed and i is varied from 
1.5to 4, we have detected period doubling bifurcation which leads to 64P solutions and then to chaos. Thus, from the above two 
cases we conclude that when 1 2  and variation exist in ,  chaos emerges through quasiperiodicity, however, when 1 2,  chaos 
emerges by mean of period doubling bifurcation sequence. 
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Fig. 9 Phase space ( , )n nx y is plotted by solving Eq. (24) for 1 2 1.28    and (a) 0.0321,  (b) 0.0445.   The plots on the right hand side show our system is going 
from unstable state to stable state through chaotic and QP states 

VI. CONCLUSIONS 

In this paper we analyze the nonlinear evolution of laser light in semi-classical and quantum mechanical domains and 
consequently explain the interaction of atoms with the field in a ring cavity. We report that LLM displays characteristics, such 
as, convergence, cyclic, and chaotic behavior, as a function of controlling parameter r which helps to identify different 
behaviors of lasers in a ring cavity. As an important result, we describe bistability and entanglement with the help of cyclic 
solution or bifurcation of LLM. In general, we discuss the stable, bistable/multi bistable and chaotic laser in a ring cavity. The 
Feigenbaum number is evaluated for our system to describe chaotic laser light. The coupling between two laser logistic 
equations has a profound effect on the character of solutions and approach to chaos that is observed for one dimensional 
logistic map. 

We here also provide detailed study of transition from stability to chaos and torus to chaos in two dimensional mapping. It 
is seen that transition from periodicity (stability) and quasiperiodicity (torus) to chaos occurs with frequency locking. Through 
our numerical calculations for two-mode ring lasers, we have concluded following points: (i) Torus appears by way of Hopf 
bifurcation; (ii) Shape of strange attractors changes as controlling parameter changes or torus is distorted as change. At certain 
values they expand and after that reduce in size; (iii) Chaos appears through a period-doubling bifurcation of some frequency-
locked cycle at some values of the bifurcation parameter; (iv) Our dynamical system oscillate from 2P to 4P and then 4P to 2P 
through quasi-periodicity and intermittency state, at [0.25,1.23]i  and for all values of [0.001,0.999];  (v) Above this value of 

i our system shows random behaviors through QP and some other complicated states. At some place we get periodicity and 
then chaoticity and then again periodicity not through QP but direct change of the state; (vi) Synchronization is destroyed and 
reinforced due to crises, corresponding to change of the coupling parameter. There are two pairs of laser attractors in phase 
space, which are totally different from each other at certain values of parameters, whereas synchronized as well as mirror 
images are the same of each other at other values of characteristic parameters. For 1.26i  and [0.001,0.051]  they display 

approximately same behavior as mentioned above, the difference is that it remains chaotic at 0.2279  and obtains asymptotic 
solution of 20P at 0.2285.   Therefore, our dynamical system shows periodicity, quasiperiodicity, intermittency state to chaotic, 
to periodic state and then shows permanently chaotic behavior at 1.3i  and all higher values, and for all positive values of 

[0.001,0.999].   In coupled laser logistic equations, periodicity changes during frequency locking because of interior crises. 

 

Fig. 10 Bifurcation diagram for the coupled lasers Eq. (24) for 1 2 1.5    range from 2.5 to 2.9 and 0.051.   . For each value of i  we used the final point of 

the previous i  value and 1600 iterates are plotted. This shows the period-doubling sequence as well as QP and chaotic regions 
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