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Abstract- A very significant issue today concerns the problem of air pollution caused mainly by human activity. The statistics show 
that most of the pollutants in the atmosphere are due to emissions caused by anthropogenic factors (e.g. power and industrial plants, 
traffic and combustion phenomena in general). In this paper we evaluate the implementation of a model using artificial neural 
networks to forecast short-term rate of air pollution for supporting environmental policy decisions. 
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I. INTRODUCTION 

The close correlation between environmental conditions and population health emerged from studies carried out jointly by 
the European Environmental Agency (EEA) and the European Centre for Environment and Health/World Health Organization 
(Eceh/Who) which identify air pollution due to emissions into the atmosphere as one of the more responsibles for the 
consequences on human health. 

Whereas the quality of air emissions is closely related to combustion technology, within the EU five areas have been 
identified of major sources of pollution, listed below in order of increasing incidence: 

 Energy production; 

 Transport vehicle; 

 Industrial production; 

 Agriculture; 

 Other. 

The first three sectors, i.e. energy, industry and transport, originate almost total emissions into the atmosphere, as shown in 
Table I: 

TABLE I BREAKDOWN OF POLLUTANTS EMISSION BY SECTOR (SOURCE: EEA) 

Emissions Energy Industry Transports 

CO2 33% 24% 24% 

CO n.a. n.a. 69% 

NOx <20% 13% 63% 

NMVOC n.a. 37% 47% 

SO2 60% 25% n.a. 

Particulates 40-55% 15-30% 10-25% 

where NMVOC stands for “non-methane volatile organic compounds”. The origin of the emission sources of air pollution is 
thus essentially of two types: 

1. Natural (forest fires, volcanic activity, erosion or decomposition of organic matter); 

2. Anthropogenic (traffic, industrial plants, electrical or heating systems). 

In this paper we want to analyze the concentrations of pollutants of both natural and anthropogenic origin in order to detect 
any exceedances of Air Quality Regulatory limits. The operational phases of our work start from the calculation of emission 
factors and the entries related to obtaining maps of concentrations for different meteorological scenarios, with the subsequent 
processing through neural networks. 

To do so, we therefore first recall some theoretical models for the diffusion of air pollutants in Section III. Then, we 
examine the importance of neural networks for the analysis of air pollution (Section IV), presenting the chosen model in 
Section V. Finally (Section VI), we present the comparison between the obtained maps and the concentration limits imposed 
by law on the subject: from this comparison it was possible to identify existing criticalities, thus providing a tool to test 
different hypotheses of the project prior to a simulation of the same. 
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II. BACKGROUND 

A. The Existing European Institutional Framework 

In Europe, air quality regulatory limits are mainly stated in the Directive 96/62/EC, which defines: 

 The objectives for the protection of human health and the environment, 

 The methods for evaluation in member States, 

 The acquisition of information to be made known to the population, 

 The improvement and maintenance of air quality in areas of high risk of pollution. 

Subsequent Legislative Decrees establish for the pollutants NO2, NOx, PM10, lead, benzene and CO: 

 Limit values and its terms; 

 Alarm thresholds; 

 Tolerance margins; 

 Criteria for data collection; 

 Upper and lower evaluation thresholds; 

 Information to the public; 

 Data communication.  

B. Air Quality Monitoring Networks 

The air quality control system was designed as a learning tool that can provide information on the general state of air 
quality of the entire region and not intended solely for the verification of compliance with regulatory limits in the most critical 
areas. It includes fixed measurement stations located in different sites representative of typical situations of the various regions 
in terms of orography, meteorological conditions and presence of sources of pollutant emissions into the atmosphere.  

C. Classification of Monitoring Stations 

According to Directive 2001/752/EC, the monitoring stations are classified based on type of area and major sources of 
emission. 

Type of area: 

 Urban (continuously built-up area); 

 Device (largely built-up area); 

 Rural (which do not meet the criteria for urban). 

Major sources of emissions: 

 Traffic (pollution is influenced by vehicular traffic); 

 Industry (pollution is influenced by industrial areas); 

 Fund (pollution is influenced by all emission sources in the area in question). 

III. THE IMPORTANCE OF MODELS 

To study the emission of pollutants into the atmosphere by different sources (such as industrial plants, vehicles, heating 
systems, etc.) and air quality of a given area, you can resort to the use of diffusion models of air pollutants [1, 2, 3]. Models for 
the estimation of concentrations of air pollutants [4, 5] can be grouped into (see Fig. 1): 

 White Box models (deterministic); 

 Grey Box Linear models (stochastic); 

 “Black Box” Non-linear models (of neural network type). 

A. White Box Models (deterministic) 

The model is well known and it is possible to build it entirely from the description of the constituent parts of the system by 
means of mathematical-physical laws that govern its behavior. 

1) Eulerian Model 

According to the Eulerian approach the behavior of pollutant concentrations is described by a differential equation (that 
expresses the instantaneous mass balance) relative to a coordinate system fixed in space, written for the various pollutants we 
are interested in simulating.  
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Fig. 1 Models for estimating concentrations of air pollution 

If we consider N polluting species, for a generic i-th substance such equation turns out to be (once the molecular diffusion 
has been neglected) the following: 
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In this equation the term Ri, which a priori depends on the instantaneous concentration of all substances, synthesizes all the 
chemical kinetics considered, while the term Ei represents the sources of pollutants and the term Si takes into account globally 
for all removal processes taking place in the atmosphere. It should be noted that the generic concentration ci is a molar 
concentration (expressed as moles  m-3). Obviously there are many equations as there are polluting species, and the system is 
closed if the wind field is known. 

Since it is virtually impossible to use this equation directly, we prefer the Reynolds hypothesis [6] that each variable (also 
the concentration of various pollutants, therefore) is equal to the superposition of a slowly time-varying mean value and a 
turbulent fluctuation with zero mean. Applying this hypothesis and by averaging, after some simplifications [3] we obtain the 
following relationship: 
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where 

 The first term on the left represents the time evolution of the average concentration, 

 The second term on the left represents the transport of the pollutant caused by the mean motion of air masses (advection), 

 The third term represents the interaction with the atmospheric turbulence and is indicated by the term turbulent diffusion, 

 The first term on the right (which is globally the chemical reaction) depends, with the limitations outlined by Seinfeld 
and Pandis [3], on the mean concentration of pollutant species. 

Again there are many equations as the pollutants considered, but - in this case - even if we assume to know the average 
wind field, the system is not closed for the presence of covariance between the components of wind speed and concentration, 
that is of turbulent flows. 

Eulerian Models: Gaussian 

This is a model that refers to a Gaussian scheme [6] for solving the diffusion equation. In essence, the Gaussian method 
defines the temporal evolution of physical quantities, and in the case of pollutant concentrations, measured at a fixed point of 
the flow field. The equation is: 
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aloft) 

 C = concentration of emissions, in g/m3, at any receptor located x meters downwind from the emission source point, y 
meters crosswind from the emission plume centerline, z meters above ground level 

 Q = source pollutant emission rate, in g/s 

 u = horizontal wind velocity along the plume centerline, m/s 

 H = height of emission plume centerline above ground level, in m 

 σz = vertical standard deviation of the emission distribution, in m 

 σy = horizontal standard deviation of the emission distribution, in m 

 L = height from ground level to bottom of the inversion aloft, in m 

Figure 2 shows a three-dimensional concentration profile of a pollutant emitted from a point source in a coordinate system 
oriented along the average direction of the wind. When in the atmosphere there are very unstable conditions the air flow inside 
the boundary layer is turbulent and ascending and descending movements are present. This causes the pollutants emitted from 
a source to be carried quickly to the upper layers of the boundary layer or close to the surface. The ascending movements have 
higher speed than the descending transport and cover smaller area. 

 

Fig. 2 Gaussian description of the emission of pollutants from a point source 

Therefore pollutants have higher probability to be located in a descending air movement, with the main axis of the plume 
moving to the surface as a final result. In total the plume moves to the surface or to the base of the boundary layer. This fact is 
not considered in the Gaussian model and requires caution for its application in very unstable conditions. 

2) Lagrangian Model 

In the Lagrangian approach, instead, the particle motion is expressed in a mobile coordinate system that follows the flow of 
dispersed concentrations in the atmosphere. The study of pollutant particle motion is at the base of the fundamental Lagrangian 
equation: 
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Whereas the Eulerian model describes the concentration of a pollutant dispersed into the atmosphere through a differential 
equation (called balance equation or mass conservation) relative to a coordinate system fixed in space, the Lagrangian model 
describes the statistical properties of the concentration in terms of the motion properties of a particle along a trajectory [7]. 

3) Climatological (or long-term) Model 

This model takes into account the variations of meteorological variables and emissions which in the previous models are 
assumed stationary. These variables include: 

wind speed class denoted by vn (n=1, …, 5); 

wind direction class indicated by Θ=1,…, 16; 

stability class denoted by S = [A, B, C, D, E, F]. 

B. Grey Box Models (stochastic) 

The model is partly built on the basis of mathematical laws, but some parameters are unknown and must be determined from 
the observed data. These models can predict the temporal evolution of the concentration of a particular kind of pollutant 
considered a random variable.  

1) Linear Models 

The temporal linear stochastic models are distinguished in: 

 ARMA (AutoRegressive Moving Average); 

 ARIMA (AutoRegressive Integrated Moving Average); 

 ARMAX (AutoRegressive Moving Average with eXogenous inputs). 

The ARMA, ARIMA and ARMAX models are linear and can be briefly described as the composition of a transfer function 
G(z), which sets out the link between the exogenous variable u(.) and the output y(.) in the absence of noise, and a transfer 
function W(z) powered by a remote white noise (.) whose output v(.) quantifies the error in describing the system with the 
function B(z). The resulting relation becomes (see also Fig. 3): 

 )()()1()()( tzWtuzGty   (5) 

 

Fig. 3 Block diagram of a linear model 

ARMA models 

The ARMA models are widely used stochastic models for predicting concentrations of pollutants in the atmosphere, 
providing excellent results when used for long-term forecasts, while not satisfactory when used for short-term forecasts and in 
the presence of non-stationary situations. Formally, an ARMA(p, q) model is represented as follows: 
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ARIMA models 

The ARIMA models (also defined on d-th differences of a stochastic process Xt) are used in the analysis of air quality data, 
as a feature often found in time series data of air pollution is the non-stationarity. The statistical properties of the series so vary 
if you translate the origin of the time axis. The expanded form of an ARIMA(p, d, q) is given by the following equation:  
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where dd B)1(   denotes the d-th difference of a process. If d=1 we talk about first order differences; for d=2 we talk 

about second order differences. 
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ARMAX models 

ARMAX models are obtained from ARMA models by adding appropriate exogenous variables, which can provide useful 
information to the prediction of a phenomenon. An ARMAX model can be seen as an improvement of an ARMA model, as it 
reduces the variance with the introduction of an exogenous variable in the model, which lowers the erratic component. An 
ARMAX model is represented as follows: 

mTmTqtqttptpttt uuaaaXXXX    
11112211   (8) 

where    represents a polynomial of order m, uTm
 represents the m-th exogenous input and Tm is the time delay between the 

output and the m-th input. 

2) Non-Linear Models 

A non-linear stochastic system with a discrete-time input and output can be described, under some weak assumptions, from 
the general NARMAX model (see Fig. 4): 
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where 

 y(t) represents the output at time t; 

 ny, nu and nξ are the maximum output, input and noise delays (called orders of the model); 

 ξ(·) is a white noise; 
 f(·) is a nonlinear function. 

 
Fig. 4 Block diagram of a NARMAX nonlinear model 

C.  “Black Box” Non-linear Models (of neural network type)  

The model is constructed without any prior information on the physical environment, using “default” facilities characterized 
by good flexibility and a good functioning in practice. The non-linear models of neural network type that make predictions in 
the time domain can be of type: 

 NARX (Non linear AutoRegressive with eXogenous inputs); 

 NARMAX (Non linear AutoRegressive Moving Average with eXogenous inputs). 

1) NARX Models 

The non-linear autoregressive models with exogenous inputs are obtained by considering only the regressors y(t-k) and u(t-k) 
of  (9) where 

 y(t-k) represents the output at time (t-k); 

 u(t-k) represents the exogenous variable introduced in the model at time t-k. 

The output is given by a nonlinear function that refers to the previous output and exogenous variable values, all powered by 
the white noise ξ(t). In other words, in NARX models only the process model appears, while the noise model is null: 
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2) NARMAX Models 

The non-linear autoregressive moving average with exogenous inputs models (NARMAX) are obtained by considering the 
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regressors y(t-k), u(t-k) and ξ(t-k) where ξ(t-k) represents the remote white noise at time t-k. Therefore, the output at time t is 
given by the following relationship: 

             )(,,1,,,1,,,1)( tnttntutuntytyfty uy           (11) 

NARMAX models are a generalization of the NARX model, which allows a better characterization of the noise. In these 
models  both the process and the noise model appear: 
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IV. THE IMPORTANCE OF NEURAL NETWORKS FOR THE ANALYSIS OF AIR POLLUTION 

Air pollution is an extremely complex phenomenon to be treated. The classical methods are not considered capable of 
efficiently modeling complex phenomena such as meteorology and air pollution because, usually, they make approximations or 
too rigid schematizations. 

Instead of the classical methods, you can then try to model these complex phenomena by adopting architectures that 
simulate the operation of biological neurons in our nervous system such as artificial neural networks. 

A. Concept of Artificial Neural Network 

A neural network is defined as “a set of interconnected artificial neurons” that try to simulate the operation of biological 
neurons in the human brain (see Fig. 5). The advantages of neural networks are: 

Robustness 

A neural network is resistant to noise, i.e. it is able to continue to give a correct answer even if some of its connections are 
deleted (damaged) or if noise is added to the input signal, the transmission channels or function activation of nodes. 

Flexibility 

A neural model can be used for a large number of different purposes: it does not need to know the properties of the specific 
application domain, because it learns by experience. 

Generalization 

A neural network, trained on a limited number of examples, is able to produce an adequate response to input patterns never 
seen before, but which nevertheless have some resemblance to the examples presented during the training. 

Content-based retrieval 

Artificial neural networks are able to recover their memories based on content from data incomplete, similar or corrupted 
by noise. As in biological nervous systems, we see that many faculties have parallel pathways which can compensate for 
damage to one of the routes through the brain. 

The disadvantages of neural networks are: 

 Learning times longer than the linear models; 

 The design of the model is empirical (the number of hidden neurons is found out by trial and error as well as the 
activation function); 

 Need for a very large training dataset; 

 The neural network acts as a black box as it does not reveal, in readable terms, the relations between the input and the 

equivalent output. 

B. Types of Neural Networks 

The principal types of neural networks [8] are: 

 Associative Memories (or Hopfield Networks); 

 Kohonen Maps (SOM); 

 Radial Basis Function (RBF) Networks; 

 Feed-forward (or Multi Layer Perceptron, MLP) Networks. 

1) Associative Memories 

This type of network (see Fig. 6) is able to learn associations between patterns (complex set of data as the set of pixels of 
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an image) so that by submitting an input pattern to the network you get the associated output pattern, even if the input is 
contaminated by noise or only partial. The typical transfer function of an associative memory is illustrated in Fig. 7. 

 

Fig. 5 The biological neuron Fig. 6 Associative neural network schema 

 

Fig. 7 Step function in an associative network 

2) Kohonen Self-Organizing Maps 

These are network models (see Fig. 10) with unsupervised competitive learning that perform data clustering, i.e. group 
similar data in the same category. 

3) Radial Basis Function Networks 

A RBFN (see Fig. 9) consists of neurons with local field, which activate when the input belongs to a specific region. The 
learning, of hybrid type (typically sigmoid for the output layer and Gaussian for hidden neurons), allows for interpolation and 
classification. 

Fig. 8  The sigmoid (or Fermi) transfer function Fig. 9 A Radial Basis Function network 
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Fig. 10 A bidimensional Kohonen map Fig. 11 A Multi-Layer Perceptron network 

4) Multi Layer Perceptron 

MLPs are networks able to learn the input-output function based on the examples provided in the learning phase. The 
transfer function of a MLP is a “sigmoid” (also known as Fermi function), as illustrated in Fig. 8. After the learning phase, the 
network is able to provide an output in response to an input even different from those used in the training examples. The 
neurons are arranged in layers and the information flow is unidirectional (see Fig. 11). A MLP network can be defined as static, 
because the outputs produced by the network depend solely on the inputs, then the network has no memory of previous 
computations. 

5) Feed-Forward Networks 

Feed-forward networks [9] receive, for each node, only signals from neurons in the previous layer and thus, the flow of 
information goes in one direction, from input nodes to output, and the network graph contains no cycles (see Fig. 12). 

 

Fig. 12 A Multi-Layer Feed-Forward network 

6) Feedback (or recurrent) Networks 

In Feedback networks, as opposed to Feed-forward, neurons receive their input signals from neurons of the same and 
previous layers. These networks are defined dynamical as the output provided by a network at a given time does not only 
depend on the input stimuli provided at the considered time, but also on the past history (memory of previous computations). 

V. CHOOSING THE ARTIFICIAL NEURAL NETWORK MODEL 

In order to estimate pollutant emission into the atmosphere, a neural network approach has been chosen with: 

 Feed-forward (static) structure; 

 Multi Layer Perceptron architecture; 

 Levemberg-Marquardt learning algorithm; 

 Sigmoid activation function. 

The schematic representation of the chosen artificial neural network of Feed-forward/MLP type is illustrated in Fig. 13. 
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Fig. 13 The chosen artificial neural network 

 
Fig. 14 The Levemberg-Marquardt learning algorithm 

A. Feed-Forward Structure 

The choice of using a Feed-forward network is essentially linked to a number of advantages over feedback networks: 

 Advantages in terms of efficiency, i.e. a faster convergence towards local minima than feedback (recurring) networks;  

 Less parameters than in feedback networks; 

 Feed-forward networks are the most studied in the literature with respect to feedback networks and are used in many 

application domains;  

 Compared to RBF (Radial Basis Function) networks, that require a more complex design before the training phase, they 

require an easier design in less time.  

B. Multi-Layer Perceptron Architecture  

The benefits of a Multi Layer Perceptron are:  

 It can exceed the limits imposed by the linear separability (such as those in the simple perceptron);  

 Its data generalization ability (doing approximations for inputs not previously observed);  

 Its high learning ability (good fitting response to the data submitted to the network);  

 Its ability to act as a universal approximator, in the sense that any continuous function can be approximated by a neural 
network with an arbitrarily high level of precision.  

C. Levemberg-Marquardt Learning Algorithm  

For the training phase the choice fell on the Levenberg-Marquardt (LM) algorithm of iterative down-error type, because the 
classic Error Back Propagation approach has a rather slow convergence to an absolute minimum as it makes use of the gradient 
descent optimization method (see Fig. 14). The LM algorithm also uses the information on the error function’s hessian without 
calculating it explicitly: it is therefore particularly fast when the number of inputs is not high. 

D. Sigmoid Activation Function 

The choice of the sigmoid activation function (see Fig. 8) is due to three important factors:  

1. It is a continuous function and therefore is everywhere differentiable; 

2. It is a nonlinear function; 

3. It is limited to [0, 1] and this translates into benefits in terms of learning. 
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Its analytical form is: 

 
ke

Fy kk Net1
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)Net( 
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where 

 yk (output) 

 Netk (net input) = uk - k 

 uk  (activation)  xiwki

i1

nk

  

 k (threshold) 

 xi (input) 

 wki (weights) 

 nk (number of connected neurons) 

E. Characteristics of the Chosen Neural Network 

In the Feed-forward/MLP chosen neural network several features have been defined, such as: 

Number of hidden layers 

set to one, as it has been shown that a neural network with one hidden layer is able to better approximate any continuous 
function; 

Number of hidden nodes 

set to 20 for empirical reasons, to avoid the phenomenon of overfitting (principle of structural risk minimization);  

Number of input data used for training 

set to half the input dataset, in order for the network to gain a good ability to “generalize” during the recognition operations. 

In our work, these parameters have been defined experimentally (as shown in next section), by trial and error after various 
tests. The data evaluation indicators used are 

Mean Square Error: 1 

   



m

i

p
i

p
i

m

i

p
i

p yt
m

e
m 1

2)()(

1

2)()( 11
MSE      (14) 

Correlation coefficient:  

  

    )(Var)(Var

Cov

1

22

1

YT

(T,Y)

yytt

yytt

m

i
ii

m

i
ii

ty 












     (15) 

where 

 ti represents the desired targets; 

 yi is the output obtained from the network; 

 (p) represents the input pattern given to the network for training. 

VI. APPLICATION OF THE FORECASTING MODEL 

In this work we have chosen a neural network model of NARX (Nonlinear AutoRegressive with eXogenous inputs moving 
average, see Fig. 15) type in order to make predictions [10] in the time domain of certain types of pollutants detected by a 
control unit for monitoring air quality. 

                                                 
1 Its square root provides an additional statistical index, the so-called Root Mean Square Error (RMSE) which corresponds to the internal 
variance given by the ratio between the inner deviance (or deviance within groups) and the total population. 
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Fig. 15 Block diagram of the NARX adopted model 

In order to test our forecasting model, we started from a series of pollutants detected by the control units: sulphur dioxide 
(SO2), nitrogen oxide (NOx), nitrogen monoxide (NO), nitrogen dioxide (NO2), carbon monoxide (CO), particulate matter 
(PM10). From these, pollutants analyzed in the model are sulphur dioxide (SO2) and nitrogen oxide (NOx), with the following 
weathering detected: wind direction, wind speed, temperature, rain. The results of the most significant experiments are detailed 
in the next subsections. 

A. Experiment #1 – NARX 1 

The followed mathematical model is: 

   )1(),(),1(mov.avg),1(),(,)(  tytytytytutfty  (16) 

The experimental results are detailed in Table II. The training has been made in MATLAB using the function trainlm, a 
network training function that updates weight and bias values according to Levenberg-Marquardt optimization. Its results are shown 
in Fig. 16. The regression analysis and the correlation between achieved outputs and desired targets are illustrated in Fig. 17. 

TABLE II EXPERIMENT #1 – NARX 1 

Experiment SO2 – NARX 1 

Input 
Norm.Time, Weathering, SO2(t-1), 

mov.avg[SO2(t-1), SO2(t), SO2(t+1)] 

Target SO2(t) 

Hidden neurons 20 

 

 % No. of samples MSE ρ 

Training 60% 10349 0.198499 0.936143 

Validation 20% 3449 0.516760 0.856899 

Testing 20% 3449 0.300849 0.914537 

 

Fig. 16 Experiment #1 – Training results 
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Fig. 17 Experiment #1 – Regression analysis and output-target correlation 

B. Experiment #2 – NARX 2 

The adopted mathematical model is: 

  )(),1(),2(mov.avg),2(),1(),(,)( tytytytytytutfty       (17) 

The experimental results are detailed in Table III. The training in MATLAB with the function trainlm produced the 
results shown in Fig. 18. The regression analysis and the correlation between achieved outputs and desired targets are 
illustrated in Fig. 19. 

TABLE III EXPERIMENT #2 – NARX 2 

Experiment SO2 – NARX 2 

Input 
Norm.Time, Weathering, SO2(t-1), SO2(t-2), 

mov.avg[SO2(t-2), SO2(t-1), SO2(t)] 

Target SO2(t) 

Hidden neurons 20 

 

 % No. of samples MSE ρ 

Training 60% 10348 0.476395 0.837379 

Validation 20% 3449 0.597655 0.804140 

Testing 20% 3449 0.570344 0.839577 

 

Fig. 18 Experiment #2 – Training results 
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Fig. 19 Experiment #2 – Regression analysis and output-target correlation 

C. Experiment #3 – NARX 3 

The adopted mathematical model is: 

  )1(),2(),3(mov.avg),3(),2(),1(),(,)(  tytytytytytytutfty     (18) 

The experimental results are detailed in Table IV. The training results shown in Fig. 20. The regression analysis and the 
correlation between achieved outputs and desired targets are illustrated in Fig. 21. 

TABLE IV  EXPERIMENT #3 – NARX 3 

Experiment SO2 – NARX 3 

Input 
Norm.Time, Weathering, SO2(t-1), SO2(t-2), SO2(t-3) 

mov.avg[SO2(t-3), SO2(t-2), SO2(t-1)] 

Target SO2(t) 

Hidden neurons 20 
 

 % No. of samples MSE ρ 

Training 60% 10348 0.494369 0.844331 

Validation 20% 3449 0.533465 0.810828 

Testing 20% 3449 0.573024 0.813115 

 

Fig. 20 Experiment #3 – Training results 
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Fig. 21 Experiment #3 – Regression analysis and output-target correlation 

D. Experiment #4 – NARX 1 

The adopted mathematical model is: 

   )1(),(),1(mov.avg),1(),(,)(  tytytytytutfty  (19) 

The experimental results are detailed in Table V. The training results are shown in Fig. 22. The regression analysis and the 
correlation between achieved outputs and desired targets are illustrated in Fig. 23. 

TABLE V EXPERIMENT #4 – NARX 1 

Experiment NOx – NARX 1 

Input 
Norm.Time, Weathering, NOx(t-1), mov.avg[NOx(t-

1), NOx(t), NOx(t+1)] 

Target NOx(t) 

Hidden neurons 20 
 

 % No. of samples MSE ρ 

Training 60% 10212 143.7393 0.899700 

Validation 20% 3404 208.24843 0.900660 

Testing 20% 3404 155.09356 0.910463 

 

Fig. 22 Experiment #4 – Training results 
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Fig. 23 Experiment #4 – Regression analysis and output-target correlation 

E. Experiment #5 – NARX 2 

The followed mathematical model is: 

  )(),1(),2(mov.avg),2(),1(),(,)( tytytytytytutfty       (20) 

The experimental results are detailed in Table VI. The training results are shown in Fig. 24. The regression analysis and the 
correlation between achieved outputs and desired targets are illustrated in Fig. 25. 

TABLE VI EXPERIMENT #5 – NARX 2 

Experiment NOx – NARX 2 

Input 
Norm.Time, Weathering, NOx(t-1), NOx(t-2), 

mov.avg[NOx(t-2), NOx(t-1), NOx(t)] 

Target NOx(t) 

Hidden neurons 20 
 

 % No. of samples MSE ρ 

Training 60% 10212 129.45675 0.907814 

Validation 20% 3404 174.98410 0.885201 

Testing 20% 3404 164.88923 0.905966 

 

Fig. 24 Experiment #5 – Training results 



International Journal of Environmental Protection  Aug. 2013, Vol. 3 Iss. 8, PP. 29-47 

- 45 - 

 

Fig. 25 Experiment #5 – Regression analysis and output-target correlation 

F. Experiment #6 – NARX 3 

The adopted mathematical model is: 

   )1(),2(),3(mov.avg),3(),2(),1(),(,)(  tytytytytytytutfty  (21) 

The experimental results are detailed in Table VII. The training results are shown in Fig. 26. The regression analysis and 
the correlation between achieved outputs and desired targets are illustrated in Fig. 27. 

TABLE VII EXPERIMENT #6 – NARX 3 

Experiment NOx – NARX 3 

Input 
Norm.Time, Weathering, NOx(t-1), NOx(t-2), NOx(t-3), 

mov.avg[NOx(t-3), NOx(t-2), NOx(t-1)] 

Target NOx(t) 

Hidden neurons 20 
 

 % No. of samples MSE ρ 

Training 60% 10212 128.31340 0.911783 

Validation 20% 3404 244.33651 0.851712 

Testing 20% 3404 146.58925 0.895261 

 

Fig. 26 Experiment #6 – Training results 
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Fig. 27 Experiment #6 – Regression analysis and output-target correlation 

G. NARX Experiments 

The comparison between results obtained in the NARX experiments carried on SO2 and NOx with normalized time is 
synthesized in Table VIII. The comparison between results obtained in the NARX experiments carried on SO2 (NOx) with and 
without time is shown in Table IX (Table X). 

TABLE VIII COMPARISON OF NARX EXPERIMENTS WITH NORMALIZED TIME 

# Name Pollutant ρ-Training set ρ-Validation set ρ-Test set 

1 NARX 1 SO2 0.936143 0.856899 0.914534 

2 NARX 2 SO2 0.837379 0.804149 0.839577 

3 NARX 3 SO2 0.844331 0.810828 0.813115 

4 NARX 1 NOx 0.899700 0.900660 0.910463 

5 NARX 2 NOx 0.907814 0.885201 0.905966 

6 NARX 3 NOx 0.911783 0.851712 0.895261 

TABLE IX COMPARISON OF NARX EXPERIMENTS ON SO2 WITH AND WITHOUT TIME 

Time # Name Pollutant ρ-Training set ρ-Validation set ρ-Test set 

Yes 1 NARX 1 SO2 0.936143 0.856899 0.914534 

Yes 2 NARX 2 SO2 0.837379 0.804149 0.839577 

Yes 3 NARX 3 SO2 0.844331 0.810828 0.813115 

No 1 NARX 1 SO2 0.924203 0.906917 0.914810 

No 2 NARX 2 SO2 0.817806 0.823199 0.830544 

No 3 NARX 3 SO2 0.830124 0.824901 0.812203 

TABLE X COMPARISON OF NARX EXPERIMENTS ON NOX WITH AND WITHOUT TIME 

Time # Name Pollutant ρ-Training set ρ-Validation set ρ-Test set 

Yes 1 NARX 1 NOx 0.899700 0.900660 0.910463 

Yes 2 NARX 2 NOx 0.907814 0.885201 0.905966 

Yes 3 NARX 3 NOx 0.911783 0.851712 0.895261 

No 1 NARX 1 NOx 0.927858 0.918192 0.910560 

No 2 NARX 2 NOx 0.923797 0.903678 0.903597 

No 3 NARX 3 NOx 0.915838 0.900658 0.896476 

H. Evaluations on the Absence of the Time Component in NARX Experiments 

The experiments outlined above show how the absence of the time variable in the input data has no significant impact in 
terms of the correlation coefficient’s value, which remains stable and at levels similar to those observed in cases where such 
component is present. This leads us to consider that the forecasting model is stable. 

I. Six-Hour Forecasts on the Best NARX Experiments without the Time Variable 

The six-hour forecasts made on the best NARX experiments without the time variable are detailed in Table XI. 
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TABLE XI SIX-HOUR FORECASTS OF THE BEST NARX EXPERIMENTS ON SO2 AND NOX WITHOUT TIME 

Experiment Pollutant Time ρ-Training set ρ-Validation set ρ-Test set Best 

#1 NARX 1 SO2 t+1 0.778581 0.759041 0.754776 X 

#1 NARX 1 SO2 t+2 0.708686 0.680791 0.619671 X 

#1 NARX 1 SO2 t+3 0.630116 0.612488 0.648440 X 

#3 NARX 3 SO2 t+4 0.587474 0.580585 0.595234  

#3 NARX 3 SO2 t+5 0.569433 0.529438 0.557897  

#3 NARX 3 SO2 t+6 0.580470 0.512588 0.511362  

#4 NARX 1 NOx t+1 0.790732 0.763441 0.747740 X 

#4 NARX 1 NOx t+2 0.671889 0.633358 0.638014 X 

#4 NARX 1 NOx t+3 0.554362 0.508112 0.545336  

#4 NARX 1 NOx t+4 0.491690 0.451437 0.465050  

#4 NARX 1 NOx t+5 0.400250 0.403929 0.374476  

#4 NARX 1 NOx t+6 0.424576 0.396898 0.409401  

VII. CONCLUSIONS 

The analysis of the problem of air pollution shows that most of the pollutants in the atmosphere are due to emissions caused 
by anthropogenic factors. In this work we developed a model using artificial neural networks to forecast short-term rate of air 
pollution for supporting environmental policy decisions. 

The chosen forecasting model is of NARX type, and has demonstrated its validity for short-term previsions. In fact, 
network training undergoes a decay process shown by the values of the correlation coefficient, which decreases for forecasts of 
more than one hour. 

The NARX model provides good results (relative to the correlation coefficient ρ) both for the pollutants SO2 and NOx. Its 
application shows that it is possible to make predictions up to three hours for the pollutant SO2 and up to two hours for the NOx. 
It is not possible to predict at a longer time period given the low correlation existing between network output and desired target. 

In addition, the adopted model is stable or time-independent, in the sense that the analyzed phenomenon does not depend 
on the time instant in which it occurs, but on a combination of meteorological factors present in that place and both the 
chemical and physical processes acting at that precise moment and earlier. 
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