
Global Perspective on Engineering Management Feb. 2013, Vol. 2 Iss. 1, PP.21-26

- 21 -

Use of Teams in Game Design and Software
Engineering Capstone Project Classes

Bruce R. Maxim1, Margaret Turton2
1Computer and Information Science, University of Michigan-Dearborn, Dearborn, Michigan, USA

2Information Systems, LaTrobe Melbourne, Australia
1bmaxim@umich.edu; 2mt0003@optusnet.com.au

Abstract- This paper describes experiences teaching software
engineering project courses at the University of Michigan-
Dearborn during the past seventeen years. Modern game
development involves significant software engineering effort.
Students in these courses are required to work as members of
small teams to complete software development projects. These
projects proceed from requirements gathering to analysis,
design, implementation, and delivery of products to real-world
or academic clients. Perhaps one of the best ways to teach the
importance of managing project resources is to allow students
to manage real projects with serious development constraints
including concrete deadlines. To improve students’ verbal and
written communications skills and experience in teamwork and
cooperative design projects, students are required to present
frequent written and verbal reports as project milestones are
completed. Final cumulative written reports and oral
presentations are required of all teams at UM-Dearborn.

Keywords- Software Engineering; Game Design; Project
Management; Interdisciplinary Teams

I. INTRODUCTION

The idea of project courses for undergraduate computing
majors is not new. Capstone courses in computing have
traditionally tried to provide senior students with
experiences similar to that encountered in professional
practice [1-6]. In several cases, course developers make a case
that the purpose of such a course is to help the students
integrate theoretical computing concepts with the demands
of computing practice. Real-world capstone design projects
can be used to meet the expectations of ABET [5, 7].

One approach in recent years has been to involve
students in projects that satisfy the needs of real-world
clients. One difficulty with this approach has been the fact
that real-world problems frequently require more that one
semester to solve. Because of this, some schools have
offered the course as a two-semester course sequence or
have offered the course outside of the normal academic year
[8]. However, with careful project selection, some schools
have been successful in offering a senior design experience
as a one- semester course [9, 10].

Some of the project courses described in earlier
literature do not require students to work as part of a
development team. More recently, a majority of project
courses described in recent years, require students to work
as a group as a major course objective as a practical lesson
in team dynamics [4, 6, 8, 11, 12]. Most instructors organize their
courses around the notion of having students follow a
computing project from its feasibility study through its

design, implementation, documentation and testing phases.
Peer evaluation is an important aspect of team projects to
reduce the likelihood of some students coasting during the
project [13].

The development of computer games is labor-intensive
[14, 16]. Game developers rarely build computer games on
their own, as they did 12 years ago [17]. Many best-selling
computer games contain thousands of lines of code and have
multi-million dollar development budgets. Modern game
development requires the effort of a team of skilled
professionals to integrate multimedia content and complex
computer software [18]. It is difficult for students to
comprehend the benefits and logistical problems of working
on interdisciplinary teams by simply reading textbooks and
yet, many game design courses described in the literature
emphasize the use of game projects implemented by single
developers [3, 16].

There is consensus among members of the Computer
and Information Science (CIS) department’s professional
advisory board that professional practice invariably requires
strong verbal and written communication skills. Robillard
and Lavallee write that communications breakdowns often
result in project failures [15]. Despite this, many computing
curricula fail to provide graduates with adequate
communication skills [12]. To develop their oral
communications skills, students need opportunities to make
presentations and to have opportunities to review other
students’ presentations. Some instructors believe that the
project activities inherent in team-based software
development encourage students to improve their written
and oral communication skills [9, 11].

There are some classic works that address the process of
helping teams to jell. DeMarco and Lister write that jelled
teams have a common definition of success and an
identifiable team spirit. Jelled teams are significantly more
productive than non-jelled teams [19]. Tuckman observes that
high performing teams go though four phases of
development (forming, storming, norming, performing) [20].
It is important to allow student teams to pass through these
phases. Jackman [21] lists several conditions to be avoided to
prevent team toxicity: frenzied work atmosphere, high
levels of frustration, poorly coordinated software process,
unclear team role definitions, and repeated exposure to
failure. Student teams need to be coached to avoid these
conditions.

It is difficult to motivate students to focus on the non-

Global Perspective on Engineering Management Feb. 2013, Vol. 2 Iss. 1, PP.21-26

- 22 -

technical aspects of software development if the final
software product is the only artifact assessed by the
instructor. By working on team projects students can see
the importance of having real-world problem solvers
complement their technical skills with knowledge of project
management skills. Possibly one of the best ways to teach
the importance of managing project resources and team
dynamics is to allow students to manage a real-world project
with serious development constraints including concrete
deadlines [1]. This paper summarizes the content of several
CIS project courses and the development professional skills
using team-based projects.

II. COURSES

The authors have created and taught a number of project
courses at the undergraduate level. This paper will focus on
the sequence of project activities taken by game design and
software engineering students at the University of
Michigan-Dearborn. Students elect these classes after
completing a junior level software engineering class where
they learn about software process, requirements modelling,
software design, cost estimation, and project scheduling. A
two semester course sequence (Computer Game Design and
Implementation I and II, CIS 487 and CIS 488 respectively)
focuses on the application of software engineering
principles in the development of computer games are taken
by third year students. Some students may take CIS 487 and
the junior level software engineering class at the same time.
The CIS capstone design experience is organized two
semester course sequence (CIS 4961 and CIS 4962) which
senior level students complete over two semesters. The
majority of students taking the senior design course
sequence complete projects for off campus clients as part of
this experience. Many of these clients are members of the
CIS Professional Advisory Board or CIS Alumni.

A. Game Design Courses

Game Design 1 deals with the study of the technologies
involved in the creation of computer games. The focus of
this course is on the application of software engineering
methods in the hands-on development of computer games.
Students study a variety of software technologies relevant to
computer game design, including: simulation and modeling,
computer graphics, artificial intelligence (AI), game theory,
software engineering, human computer interaction, graphic
design, game aesthetics and multi-media system design.

The student work for this course includes the completion
of two game projects. All projects include design activities
and students use existing programming tools. Using existing
programming tools and libraries allows students to focus on
software engineering design rather writing all source code
from scratch. The first project involves using a two person
team to create a 2D game. The second project requires a
four person team to work through all phases of the software
life cycle: specification, design, implementation, testing,
and evaluation in the creation of a 3D multimedia game.
Several students play test each game product and its design
to provide constructive feedback to the authors regarding its
overall quality during its development. Play testing is a

process where a game is tested using the perspective of the
intended game player. The intent is to uncover usability
issues, technical issues affecting game play, and places
where the game fails to be entertaining.

Game Design 2 focuses on the use of team software
engineering process in development of computer games and
the use of game development tools (e.g. game engines).
Students study a variety of software technologies relevant to
computer game design, including: 3D graphics, computer
animation, data-driven game design, game AI, game theory,
software engineering, and game content development. One
important aspect of this course is managing the process of
outsourcing game asset creation to art students attending
college in another city. Game assets are the artistic elements
of a game (graphics, animations, sound effects, music). The
term-long project for this course requires each student to
participate as a member of a multi-disciplinary team to
develop a 3D multi-player computer game.

B. Capstone Courses

Students enroll in Senior Design 1 after they complete
their required software engineering courses (Software
Engineering 1, Software Engineering 2, Design and
Architecture Patterns). Capstone projects generally require
approximately 500 hours of student effort to complete. The
major activities in Senior Design 1 are requirements
gathering and project planning (including risk management
and quality assurance efforts). The major activities in Senior
Design 2 are product design, implementation, testing, and
product delivery. Serious game projects usually make use of
a rapid prototyping process, so a clear distinction between
the analysis and design phases of a project may not exist.

Students are required to work in four person software
development teams for a period of eight months. In
exceptional cases and with proper justification, larger group
sizes are permissible. Project clients are usually non-profit or
for profit groups off campus. Students select their own
teammates and determine their own plan for rotating team
leadership. Students are free to determine their own team
organization. The use of external clients provides students
with real-world experience and improves their
communications skills.

III. USE OF TEAMS

The use of teams is an integral part of the learning
activities in these courses. The authors have observed that it
takes time for student management and collaboration skills
to develop the level required to complete a capstone project.
The details of the team activities are described below.

It is important to note that with each milestone
submission in these classes, students evaluate the quality of
their own participation during this phase of the project and
that of each of their teammates. Students provide numerical
ratings (0=none, 5=great) for each team member and provide
a list of tasks accomplished to justify their ratings. Students
are required to conduct a project post mortem at the end of
each project and provide individual summaries of their

Global Perspective on Engineering Management Feb. 2013, Vol. 2 Iss. 1, PP.21-26

- 23 -

perceptions of how things went for their team. Students may
submit this information anonymously to the instructor.

A. Game Design

Game Design 1 students self-organize into teams of two
and negotiate the approval of a 2D game idea for Project 1.
Each team of students prepares a game pitch and conducts a
structured walk-through in front of a group of peer reviewers.
The team has the opportunity to revise their game pitch
before submitting it for grading. The final 2D game produced
by each team is play-tested by at least eight students during
the Game Design 1 2D project fair.

Game Design 1 students self-organize into teams of four
and negotiate the approval of a 3D game idea. Each team of
students prepares a game design treatment (initial design
document) and conducts a structured walk-through in front
of a team of peer reviewers. The team has the opportunity to
revise their design treatment before submitting it for grading.
The final 3D multimedia game produced by each team is
play-tested by at least eight students during the Game Design
1 3D project fair.

The major project in Game Design 2 involves the design
and implementation of a 3D multimedia game by an
interdisciplinary team. Ideally the student teams are
composed of software engineering students from the UM-
Dearborn and digital art students from a nearby college.

 Before forming teams in Game Design 2, each student
participates in a game pitch process. During the one-week
pitch process, each student creates a short game pitch
document for an original 3D game and presents it to the class.
The class assesses each game for feasibility and game play
potential. The instructor and students consult with each other
in selecting games for further development.

Students organize themselves into four to six member
teams consisting of software engineers and game asset
developers. Students are free to structure their teams using
any model they wish.

Students have three weeks to refine their game
requirements and create a design treatment for the first
prototype of their 3D game. The game asset creators develop
storyboards and concept art for this document. The game
teams use feedback from peer reviewers following a
structured walk-through to revise their preliminary design
documents.

The second milestone activity for each team is to create
an alpha release prototype for their game. Teams have four
weeks to create UML models for their complete games and
create working game prototypes using specialized game
development tools. The game asset creators develop
placeholder art and develop the initial level design layout. A
formal technical walk-through of the UML model is part of
the peer review process. Students play test the game
prototypes. The teams use reviewer feedback to revise their
design documents.

The next milestone activity for each team is to develop a
beta release prototype for their game. Teams have four

weeks to develop the requirements for an intelligent agent or
NPC (non-playing character) to add to their game. This is
introduced in the context of a requirements change made by
the instructor playing the role of client. The implementation
of the intelligent agent becomes part of an incremental
release of the game product. A revision of their design
document reflects this change and regression testing occurs
to ensure that implementation of the intelligent agent has not
broken the game. The game asset creators develop the art
and audio assets to near production release quality. Students
outside the development team play-test the new prototype. A
formal technical walk-through of the design document is part
of the peer review process. The team uses reviewer feedback
to revise the game design.

The final milestone activity is to complete a gold game
release prototype. Teams have three weeks to deliver the
final design document for a 3D multi-media computer game
and the final game software. Several students play test each
of the final game products and provide constructive feedback
regarding the overall quality of each to the development
teams. The gold release prototype requires the creation of a
marketing piece to accompany its public debut at the 3D
Game launch festival.

B. Capstone

During the first two weeks of Senior Design 1, class time
is devoted to course introduction and project organization
issues. After project teams assemble, class meetings consist
of seminar-type class discussions on professional issues or
team presentations of significant project milestone artifacts.
These presentations might consist of brief progress reports, a
structured walk-through of a work product, or a product
demonstration.

In addition to the two hours of class-time each week,
students complete several hours of work on their project out-
of-class time. The out-of-class time in the capstone course
consists of team interaction, project planning, software
design, product implementation, presentation preparation,
report writing, meeting with clients, and consultation with
instructor. Students are expected to share their milestone
artifacts with their clients and obtain their feedback
frequently as their project evolves. The time spent outside of
class is very important as a means of fostering team
development and extremely important given the size of the
projects.

The role of the instructor in this course is that of a coach
or mentor not project manager. The students handle routine
client contact. Project scheduling and progress tracking is
also handled by the student teams. The instructor is available
to help student teams resolve unusual problems with the
project and the client. The instructor provides feedback on
the milestone documents and presentations. Students revise
their milestone documents based on the feedback from the
instructor and their classmates following the presentation of
their documents. The instructor participates in the paper
discussions, but does not control their direction or content.

Senior Design 2, continues the project work begun in
Senior Design 1. Teams continue without change. If team

Global Perspective on Engineering Management Feb. 2013, Vol. 2 Iss. 1, PP.21-26

- 24 -

members fail to elect the course, the teams need to determine
how to compensate for the lost student effort. Should this
situation occur, the teams will rely on their project
management plan and activate their risk management
scenarios to create during Senior Design 1. Students must
present a letter of acceptance from their client to the
instructor, indicating the client’s acceptance of the final
product, in order to receive a grade for Senior Design 2. The
use of the client acceptance letter is a very important element
of our course to drive home to students the importance of
satisfying their clients’ needs.

A final presentation is required of all teams at the end of
the Senior Design 2 and includes a product demonstration
and report. The final project presentation is very important as
a vehicle for assessing oral communication skills. The
project presentation requires the use of audiovisual support.

IV. LESSONS LEARNED

The anecdotal comments appearing in this section of the
paper come from the authors’ experiences supervising
student teams in the completion of several hundred projects
over the past 16 years. Approximately 85% of the senior
design projects have off-campus clients. Whereas very few
of the game projects completed prior to senior design are
undertaken for off-campus clients.

Students are not allowed to do routine maintenance work
on existing systems or recreate existing games. Students are
expected to have the opportunity to propose design trade-offs
to the client during requirements gathering. Potential clients
have several concerns about working with students, who are
not employees. Clients are concerned with the ownership of
the resulting software products and have some privacy
concerns that the instructor must address before they are
willing to agree to provide project opportunities. Students
may be asked to sign non-disclosure agreements (NDAs)
with their clients, which is a common industry practice for
software engineering contractors.

Clients require assurances that they will receive complete
products before students receive grades for the course. It has
been our experience that real-world clients have real
deadlines and firm product expectations. It is helpful to have
students compute budget estimates for their projects as if the
work were being done on a for fee basis. This provides
students with the process of preparing request for proposal
(RFP) and request for quotation (RFQ) documents. Sharing
this information with the client is an educational experience
for both students and clients.

Requiring students to obtain a letter of acceptance from
their client reinforces the importance of client
communication and meeting the client’s needs. This also
allows clients to feel they have some input into the student
evaluation process. Many external clients like to feel that
they are contributing to the education of future employees.

For courses with one-semester projects, teams need to
complete requirements gathering in a timely manner or the
whole project gets behind schedule and may fail altogether.
Single term projects seem to work best without involving an

external client. Similarly teams with uneven commitments to
completing the project will have trouble completing projects
with short time lines.

We believe that all students need to experience the role of
team leader before graduation. In capstone courses, students
self-select their projects from a list provided by the instructor
and self-organize into teams. Student teams are free to create
their own group structures, but their project management
plan must include a scheme for rotating the team leadership
position. This seems to give students a stronger sense of
ownership of the project and helps to build group cohesion.
When instructors assign students to teams or appoint team
leaders it too easy for students to blame the instructor for
team dynamics problems. Students learn very early in our
course that it is their project to complete and not the
instructor’s. We believe that allowing students to take early
project ownership can help reduce frustration when things do
not go well. Encouraging proactive risk management can
also help reduce team member frustrations.

Student team sizes of four seem to work the best for the
types of projects offered by our pool of external clients.
Game projects sometimes need additional team members to
assist with art asset creation. Teams with fewer than four
students do not have sufficient software engineering
resources to cover the full set of development roles needed to
complete the project. Teams having more than four software
engineering students may be difficult for novice team leaders
to manage and schedule effectively. This can help avoid the
problem of having teams with unclear team role definitions.

Modern software engineering practices require
document development early in the project life cycle and
making changes as the client’s needs evolve. Even agile
teams are expected to let their documentation evolve as the
as the new user stories are implemented and integrated into
the build. Waiting until the end of the project, makes it
difficult for the students to write a good final report and
receive client acceptance for the final system in a timely
manner. Evolving the documents as the project proceeds
helps to improve the coordination of the software process
activities.

Writing and presenting draft documents as project
milestones provides valuable opportunities for students to get
feedback from their clients, peers, and instructors. This
feedback helps to improve the final products as well as the
documents themselves. Starting the process of writing
documents earlier in the course makes it easier to complete
the final report in a timely manner. Creating a formal
planning document early in the course, can help reduce the
likelihood of frenzied work atmosphere developing, by
making sure the project scope is appropriate to the available
time and resources.

It is desirable to allow students to control all client
contact once the project begins. If the instructor buffers
client communication, students will not learn how to manage
change requests that can increase the scope of the project.
Similarly, students learn how to negotiate reductions in
scope with the client and experience its consequences first

Global Perspective on Engineering Management Feb. 2013, Vol. 2 Iss. 1, PP.21-26

- 25 -

hand. This always drives home the importance of satisfying
the client’s needs as the central goal for the project.

To insure smooth team operation during the project,
students evaluate their personal effort and the efforts of their
team members as each milestone is completed. Students rate
each team member’s anonymously effort using the value in
the range of 0 to 5 and describe the tasks completed by each.
This allows the instructor to detect team problems early. The
specter of peer evaluation is often enough to make sure that
students complete assigned tasks in a timely manner.
Learning to evaluate people’s performance objectively is
another benefit of this practice.

Students learn to appreciate the importance of using
software production tools during this course. Student teams
discover that making use of version control repositories is
necessary to allow team members to work on project artifacts
independently and merging them seamlessly at the
appropriate times. Student teams that have access to their
client’s development environment have the least difficulties
in delivering a software product and obtaining a customer
acceptance letter.

V. STUDENT POSTMORTEMS

Examination of the student post mortem documents
provides some insight into how well teams worked in
meeting the goals of each class. Students in Game Design 1
made the following observations:

• Incremental implementation is hard without the
existence of a complete code design;

• Proper planning is key to avoid adding new and
incompatible ideas to evolving game increment;

• Creating game assets interferes with game
programming and design;

• Parallel development of game elements is
impossible without the use of teams;

• It takes some time and effort to learn how to
collaborate with another programmer;

• Team development is easier if everyone is
following the same vision;

• Good coordination and communication is key to
the success of any project;

• E-mail and instant messenger communication is
not always as good as face to meetings;

• It is hard to use code written by someone else
especially if it is poorly documented;

Code design for reuse is an essential part of game
development.

The Game Design 2 students made the following
observations about teamwork in their post mortem
assessments:

• Game design is improved by having a diverse
group of people working on the team;

• Role specialization is helpful on large projects to
void the “jack of all trades, master of none” phenomenon;

• Roles need to be determined and assigned early in
the project;

• Project leaders need to be assertive in delegating
tasks and making sure workload is distributed evenly;

• E-mail is not sufficient as the only means of
communication among team members;

• It is easier to blow off digital meetings than face to
face meetings;

• Weekly team meetings and progress reports are
essential;

• It helps to know what other team members are
working on to anticipate interfacing issues;

• Software version control repositories are invaluable
in building large software products;

• Maintaining multiple copies of all project artifacts
(code, art, documents, etc.) in diverse locations is essential;

Maintaining a log of problems and fixes can be a
valuable project resource.

The Senior Designs 1 and 2 students made the following
observations about teamwork in their post mortem
assessments:

• An identifiable team leader is needed;

• Formal source code version control tools need to
be used, not Google Groups;

• Important to keep the game requirements up to date
during project to ensure smooth negotiation of the client
acceptance letter;

• Start early even on things that seem simple;

• Get early client involvement by giving them
prototypes to review;

• Game developers need to be serious about the
formal technical review process;

• Time management is key to success on large
projects;

• Testing takes more time than one thinks;

• Keep requirements specifications up to date at all
times and have client review them;

• Keep team mates updated on all work completed,
have mandatory weekly status meetings;

• Know your team member’s strengths and weakness;

• Trust your team mates to deliver what they promise
and accept the result;

• Monitor team members to ensure completion of
assigned tasks;

• Write down plans and commitments to avoid
misunderstandings;

• Function creep as project the proceeds must be
tracked;

• Duplication of game asset work needs to be
prevented, better communication is needed.

Global Perspective on Engineering Management Feb. 2013, Vol. 2 Iss. 1, PP.21-26

- 26 -

VI. CONCLUSIONS

The student projects and design activities that result from
these courses receive frequent praise from local computing
professionals and accrediting agency reviewers. The Game
Design students present their work in community showcases
sponsored the CIS department. Senior Design 2 projects have
earned the prize for best senior design project in the annual
College of Engineering and Computer Science senior design
competition eight times during the past sixteen years, the
latest being 2012. Many students have received job offers
from employers after showing their project portfolios during
the interview process.

It is interesting that students in each of these courses
seem to be learning similar lessons about the importance of
communication, planning, and collaboration. Students learn
from their mistakes if they are working in a supportive
environment. Students look forward to team projects once
they have experiences success using teams. Their prospective
employers appreciate the fact that the students have learned
the importance of teamwork.

REFERENCES
[1] G. Heitman and R. Manseur, “Organization of a Capstone

Design Course”, Proceedings of 30th Annual Frontiers in
Education Conference (Vol. 1, Oct 2000), IEEE Press, Los
Alamitos, CA, 2000, pp. 4cl1-4cl5.

[2] B. Maxim and K. Akingbehin, “Contemporary Software
Development Trends”, Proceedings of the Association of
Management 17th International Conference on Computer
Science (Vol. 17 August 1999), 1999, pp. 141-146.

[3] I. Parberry, T. Roden, and M. Kazenzadeh, “Experience with
an Industry-Driven Capstone Course on Game Programming,
an Extended Abstract”, Proceedings of 36th SIGCSE
Technical Symposium (St. Louis, MO, February, 2005), ACM
Press, New York, NY, 2005, pp. 91-96.

[4] D. Rover, “Perspectives on Learning in a Capstone Design
Course”, Proceedings of 30th Annual Frontiers in Education
Conference (Vol 2. 1, Oct 2000), IEEE Press, Los Alamitos,
CA, 2000, pp. f4c14-f4c19.

[5] G. Altuger and C. Chassapis, “Work in Progress – Preparing
Students for Lifelong Learning in a Capstone Environment”,
Proceedings of 40th Annual Frontiers in Education
Conference (Vol. 1, Oct 2010), IEEE Press, Washington, DC,
2010, pp. T2J1-T2J2.

[6] C. Dean, T. Lynch, and R. Ramnath, “Student Perspectives on
Learning Through Developing Software for the Real World”,
Proceedings of 41st Annual Frontiers in Education
Conference (Vol. 1, Oct 2011), IEEE Press, Rapid City, SD,
2011, pp. T3F1-T3F6.

[7] J. Ray, “Industry Academic Partnerships for Successful
Capstone Projects”, Proceedings of 33rd Annual Frontiers in
Education Conference (Vol. 3, Nov 2003), IEEE Press, Los
Alamitos, CA, 2003, pp. 3s2b24-3s2b29.

[8] R. Bruhn and J. Carp, “Capstone Courses Creates Useful
Business Products and Corporate Ready Students”, SIGCSE
Bulletin (Vol. 36 No. 2), ACM Press, New York, NY, June
2004, pp. 260-264.

[9] B. Maxim, K. Akingbehin, and L. Tsui, “A Capstone Design
Course Based on Computing Curricula 1991”, Computer
Science Education, (Vol. 5 1994), pp. 229-240.

[10] C. Rudd, and V. Delevear, “Developing and Conducting an
Industry Based Capstone Design Course”, Proceedings of
27th Annual Frontiers in Education Conference (Vol. 1, Nov
1997), IEEE Press, Los Alamitos, CA, 1997, pp. 644-647.

[11] B. Bond, “The Difficult Part of Capstone Design Courses”,
Proceedings of 25th Annual Frontiers in Education
Conference, (Vol. 1, Nov 1995), IEEE Press, Los Alamitos,
CA, 1995, pp. 2c31-2c34.

[12] M. Ardis, S, Chenoweth, and F. Young, “The ‘Soft’ Topics in
Software Engineering Education”, Proceedings of 38th
Annual Frontiers in Education Conference (Vol. 1, Oct 2008),
IEEE Press, Saratoga Springs, NY, 2008, pp. F3H1-F3H6.

[13] J. Wang, P. Imbrie, and J. L, “Work in Progress – A Feedback
System for Peer Evaluation of Engineering Student Teams to
Enhance Team Effectiveness”, Proceedings of 41st Annual
Frontiers in Education Conference (Vol. 1, Oct 2011), IEEE
Press, Washington, DC, 2011, pp. S4C1-S4C5.

[14] B. Maxim, “Game design: games for and the World Wide
Web”, The Internet Encyclopaedia, Wiley, Hoboken, NJ,
2004.

[15] P. Robillard and M. Lavallee, “Software Team Processes: A
Taxonomy”, Proceedings of the International Conference on
Software and System Process (ICSSP 2012), IEEE Press,
Zurich, Switzerland, 2012, pp. 101-109.

[16] K. Claypool, and M. Claypool, “Software engineering design:
teaching software engineering through game design”,
Proceedings of 10th Annual SIGCSE Conference on
Innovation and Technology in Computer Science Education
(Capprica, Portugal, June, 2005), ACM Press, New York, NY,
2005, 123-127.

[17] R. Rouse, Game Design: Theory and Practice, Wordware,
Plano, TX, 2001.

[18] B. Maxim, Software Requirements Analysis and Design, NIIT,
Atlanta, GA 2004.

[19] T. DeMarco and T. Lister, Peopleware, 2nd ed., Dorsett House,
1998.

[20] B. Tuckman, “Developmental Sequence in Small Groups”,
Psychological Bulletin, (Vol. 63 No. 6), pp. 384-399.

[21] M. Jackman, “Homeopathic Remedies for Team Toxicity”,
IEEE Software, (Vol. 15 No. 3, July/August 1998), pp. 43-45.

Bruce R. Maxim received his PhD from the University of
Michigan, USA, in 1982. He is currently Associate Professor of
Computer and Information Science, University of Michigan-
Dearborn, USA. His research interests include software
engineering, game design, artificial intelligence, and computer
science education. He is the designer of the courses described in
this paper.

Margaret Turton received her Master of Business (eBusiness and
Communication) from Swinburne University of Technology,
Australia in 2004. She is currently Lecturer in Information Systems,
La Trobe Melbourne – Melbourne, Australia. Her research
interests include, flexible learning in higher education, game
simulations for learning, user experience design, and distance
education. She has worked with Dr. Maxim and his software
engineering students for the past two years.

	2Information Systems, LaTrobe Melbourne, Australia
	1bmaxim@umich.edu; 2mt0003@optusnet.com.au
	references

