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Abstract- The positive matrix factorization (PMF) and the 
chemical mass balance (CMB) models were applied to the 
source apportionment of ambient PM study for a coastal 
industrial area. The PMF result for coarse fraction was similar 
to that of the CMB model. As for coarse fraction, correlation 
coefficients for the calculated contributions by the PMF and 
CMB models for individual samples were larger than 0.6 for 
the source categories of sea salt, soil and steel mill. As for the 
fine fraction, the PMF could also identify the following 
emission sources: steel mill, soil, Cl and NO3 rich secondary 
particle, aged sea salt, SO4 rich secondary particle, and refuse 
burning. However the CMB result for fine fraction was not 
satisfactory due to higher ratio of secondary particles. 
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I. INTRODUCTION 

Recently air pollut ion of fine particle became much  
concerned due to serious health problems. Source 
contribution to ambient PM in  a location is required for 
development of efficient air quality control strategies. Lack 
of emission data introduces to high uncertainties of source 
apportionment results. Receptor modelling has been 
introduced into the field, which assesses the contributing 
sources based on the observations at a receptor. The model 
is classified  into 2 main  branches, i.e. chemical mass 
balance (CMB) and multivariate approaches. Each  of them 
has its own advantages which compensate each other. CMB 
relies on source composition profiles, while multivariate 
assess the source contribution based on factor analysis 
without advance information on source composition profiles. 
The Positive Matrix Factorization (PMF) is one of 
multivariate receptor model softwares that use non-
negativity constraint. The major advantage of PMF model is 
to utilize a point-by-point least squares min imization 
scheme [1]. 

An air quality study has been conducted by the Industrial 
Pollution Control Association of Japan (IPCAJ) including 
fine fraction of PM and its composition (i.e. ions and 
elements) collected at Kashima area, Japan (one of the 

largest industrial complexes, 80km ENE of Tokyo). The 
brief summary had already been presented [2]. A previous 
source apportionment study using an ordinary multivariate 
model such as Varimax–rotated factor analysis (FA-MR) 
has already been conducted but it does not be able to work 
well. The reason may be the negative correlation between 
the sulfate (SO4

2-) and nitrate (NO3
-) concentrations for the 

entire four-season data set. Generally speaking, a factor 
analysis substantially assumes that all of the data have been 
extracted from one and only population. However, as for the 
fine fraction of the Kashima data set, this assumption can 
not be applied. It might be extracted from two populations, 
namely summer and another three seasons. 

Recently, the Positive Matrix Factorizat ion (PMF) 
technique was introduced on this multip le-site Kashima data 
set for source apportionment study. It could successfully 
estimate the emission source profile and the contribution of 
different sources to both coarse and fine fract ions [3]. 

The aim of this study is to examine the perfo rmance of 
the PMF for the Kashima dataset in which some chemical 
components show a negative correlation, as compare with 
the source contribution result from the CMB model.  

II. DATA DESCRIPTION 

The data used in this study were chemical composition 
data in fine and coarse fraction of PM obtained in the 
Kashima area. This project was conducted by the Industrial 
Pollution Control Association of Japan (IPCAJ). The 
Kashima city contains a number of industries in the 
industrial complexes. A large steel mill is located in the 
northern area of this industrial complex, while the southern 
area consists of an oil refinery, petrochemical industries and 
a 4400MW oil-fired power p lant.  

Particulate matter (PM) samples were co llected using 
Anderson size-selective impactors (8 stages with cut-off 
points, i.e. 11.0, 7.0, 4.7, 3.3, 2.1, 1.1, 0.65, 0.43 µm) at 16 
sampling sites. The sampling duration for each site  was 14 
days for four seasons. PM analysis was div ided into 2 
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groups. The first one is of stages 1-4 (aerometric diameter 
between 2.1-11 µm), which is considered as coarse fract ion, 
whereas PM in the stages of 5-7 and the backup filter 
(aerometric diameter under 2.1 µm) was considered as fine 
fraction. A total of 64 pairs of fine and coarse samples were 
used for PMF and CMB calculations. More details on 
monitoring program are described in our previous paper [2]. 

Particulate matter in this Kashima area contained very 
high concentrations of Na+ and Cl- (sea salt). This is because 
this area faced to the Pacific Ocean, and the wind frequently 
came from the ocean (NE wind direction). Compositional 
concentration of industry-related elements such as Cr, Ni, 
and V was not so high. Sulfate and nitrate (major 
component of secondary PM) were the most important 
members of the fine fraction of PM. In this area, SO4

2- in 
spring and summer was high, whereas the NO3

- was much 
higher in winter. Correlat ion between the SO4

2- and NO3
- 

was quite different in fine and coarse fractions as shown in 
Fig. 1. Good correlation between the SO4

2- and NO3
- in the 

coarse fraction has been observed for the entire four-season 
dataset, while two groups of data were classified in the fine 
fraction dataset. The correlations were positive and seemed 
to be similar for the three seasons (winter, spring, and 
autumn) except summer [2]. 
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Fig. 1 Scatter diagram between SO4
2- and NO3

- concentrations for fine and 
coarse fractions 

III. CHEMICAL MASS BALANCE MODEL (CMB-8) 

The CMB-8 model (U.S. EPA’s CMB version 8) uses 
least squares estimation method to solve chemical mass 

balance equations [4]. According to the model basic 
assumptions, the equations will yield a unique solution only 
when the number o f species is equal to o r greater than the 
number of sources. The basic equations can be solved by an 
effective variance weighted least squares estimation method 
[5]. The CMB-8.2 software is the latest version of CMB-8 
currently in use. It employs an effective variance solution, 
developed and tested by Watson, et al. [6]. Hereafter this 
model is called CMB model in th is paper. 

The source profile used in this calculation was the same 
as previous IPCAJ study [7]. Eight source profiles were used 
in the calculation including soil, sea salt, steel mill, refuse 
incineration (biomass burning), fuel oil burn ing, gasoline 
automobile, other industries (metal works, glass works, and 
so on) and limestone (assumed as paved materials in this 
study). Totally 13 marker elements were selected for the 
CMB calculat ion i.e. Al, Na, Mn, Zn, V, Pb, Sb, Ca, Cr, Sc, 
Ti, Fe, and Br. Note that the source profiles used in this 
study were prepared for a total mass. Hence, these data were 
assumed in  the calculat ion for both of fine and coarse 
fractional data. The diesel profile was not prepared in this 
study. This is because a half of data set did not contain 
carbon analysis. A cement industry appeared in the previous 
dataset seemed to be inappropriate because there were no 
significant cement industries and seemed to be very similar 
to paved materials of the roads. Therefore, the calculated 
contribution for its dataset was considered as a road dust.  

IV. POSITIVE MATRIX FACTORIZATION (PMF) MODEL 

Positive Matrix Factorization (PMF) developed by 
Paatero and Tapper [8] is one of multivariate models that 
assess the contribution using a factor analysis. Non-
negativity constraint for both loadings and scores is a key 
concept in the PMF. In addition, the PMF utilizes a point-
by-point least-squares min imization scheme in the 
calculation that is a major different from other multivariate 
approaches. PMF2 [9] was used in this study, and it is called 
as the PMF in this paper. 

The fine and coarse PM data from 16 sampling  sites 
were used in the calcu lat ion. By a preliminary screening, 
12 elements by INAA were deleted, because most data 
were under detection  limits. Elements and ions used in  this 
analysis are shown in Table 1. PM mass and their 
uncertainty (10% of mass were assigned) were included in  
the input data in order to constrain the model to mass. The 
missing values in this study were replaced with the mean  
of measured concentration  of those species, while 4 times 
the average concentration were assigned for uncertainty as 
an estimate o f missing values, accord ing to the Po lissar et 
al. [10]. More detail procedures were shown in  Pongkiatkul 
et al. [3]. 

V. RESULTS AND DISCUSSIONS 

A. PMF Results 

The PMF could identify six source categories for the 
coarse fraction; soil, sea-salt, industry (oil burn ing), steel 
mill, biomass or refuse burning and secondary particle 



International Journal of Environmental Protection                                                                                           Sept. 2012, Vol. 2 Iss. 9, PP. 1-6 

   - 3 - 

(including aged sea-salt, NaNO3). As for the fine fract ion, 
the PMF could  also identify the fo llowing emission sources; 
steel mill, soil, Cl- and NO3

- rich secondary particles, aged 
sea salt, SO4

2- rich secondary particles, and refuse burning.  
TABLE I ELEMENTS AND IONS USED IN THIS ANALYSIS 

Coarse Fraction 

Al, Br, Cl-, Cr, Fe, K, Mn, Na, 

NO3
-, Sc, Si, SO4

2-, T i, V, Zn 

 

Fine Fraction 

Al, As, Br, Cl-, Cr, Fe, K, Mn, Na 

NO3
-,  Sb, Se, Si, SO4

2-, Ti, V, Zn 

 
The overall average (64 data = 16 sites x 4 seasons) 

contributions for each source category are shown in Table 2. 
The Cl- and NO3

- rich secondary particle in winter season 
was about 25% and the highest in fine fraction, but its 
contribution in summer season was very low (less than 1%) 
as shown in Fig. 2. Four-season average for this secondary 
particle was about 20% as shown in Fig. 2. The SO4

2- rich 
secondary particle in the fine fraction was highest in 
summer and its contribution was about 40%. The estimated 
source profile  fo r this SO4

2- rich secondary particle 
contained higher vanadium (V) rat io, and it  seemed to come 
from o il burning. 
TABLE II COMPARISON BETWEEN THE CMB AND PMF RESULTS 

Coarse Fraction 
CMB % PMF % 
Soil 57 Soil 21 

Sea Salt  14 Sea Salt  18 
Steel Mill 2 Steel Mill 11 

Refuse Burning 2 Refuse Burning 9 
Fuel Burning 1 Industry 16 
Automobile 3 Secondary Particle 25 
Road Dust 10   
Unknown 11   

 
Fine Fraction 

CMB % PMF % 
Road Dust 27 Soil 19 
Steel Mill 1 Steel Mill 6 

Refuse Burning 14 Refuse Burning 20 
Fuel Burning 6 SO4

2- Rich Secondary 25 
Automobile 5 Cl- Rich Secondary 20 

Sea Salt  0.1 Aged Sea Salt 10 
Unknown 47   

 

B. CMB Results 
Overall average contributions for designated emission 

source categories by CMB calculat ion are also shown in 
Table 2.  

Most dominant members obtained by the CMB 
calculations were soil and road dust (source profile derived 
by cement) for both of fine and coarse fractions. The 
contributions by CMB model did not contain the secondary 
particles, therefore unknown parts were large, especially as 
for the fine fract ion, the unknown parts were nearly a half.  
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Fig. 2 Seasonal variations of fine fraction 16-sites average source 

contributions by the PMF model 

C. Comparison by Individual Data 

Comparison by individual data points obtained by the 
PMF and CMB models was conducted. Since the CMB 
model can not identify the secondary particles, a limited 
number of source categories were compared. Scatter 
diagrams for some selected sources are shown in Fig. 3, 
while Table 3 shows the correlation coefficients between the 
results from CMB and PMF models. As for the coarse 
fraction, the estimated contribution for sea salt was almost 
comparable with high correlation (R2 = 0.71).  

TABLE III CORRELATION COEFFICIENTS FOR THE RELATED 
SOURCE CATEGORIES PRODEUCED BY CMB AND PMF 

 Coarse Fraction Fine Fraction 
Soil (and road dust) 0.749 0.835 

Steel mill 0.673 0.640 
Refuse burning 0.486 0.564 

Sea salt 0.844 - 

 
The estimate contributing mass-produced by the both 

models for soil and steel mill also showed high correlation 
(R2=0.56 and 0.45, respectively). However, the CMB 
produced higher soil contribution (about 4 times) than the 
one estimated by the PMF, whereas the PMF produced 
almost 2.5 times higher mass contribution for steel mill (Fig. 
3). This is because of the difference in steel mill profiles. 
PMF produced high Ti fract ion in the profile , whereas Fe 
was the major element in  the profiles used in the CMB 
calculation. Note that the source profile used in the CMB 
calculation was derived by some limited source data in 
particulate facilities such as a coke oven, a smelter, and a 
blast furnace, therefore, its data may not represent the entire 
steel mill emissions. Since the CMB relies mostly on the 
input source profiles, different contribution for both sources 
might be created. However, they were together correlated. 
Similar trends were also observed in the fine fract ion for 
soil and steel mill (Fig. 3).  

The tendency of scatter diagram for refused burning was 
similar for coarse and fine fractions. They exhib ited quite 
week correlation (R2=0.24 and 0.32, respectively). Note that 
the Kashima area is surrounded by rice paddy field and 
forest, open burning including biomass might be significant.  
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Coarse fract ion 
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Fig. 3 Comparison between the CMB and PMF calculations 
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Therefore, the source data for straw burning were 
selected as the profile  for refuse burning in  this CMB 
calculation. The scatter diagram for th is refuse burning 
suggested that the selection of the source profile seemed to 
be correct.  

Since the SO4
2- rich and Cl- rich secondary particles 

produced in the fine fraction cannot be estimated by the 
CMB model due to no source profile available. Comparison 
between a combination of SO4

2- rich and Cl- rich secondary 
particles produced by the PMF and unknown particles from 
the CMB was also conducted. The scatter diagram showed 
that there was a weak correlation (Fig. 3). Therefore almost 
sulfate might come from outside or more upstream distant 
areas. 

A part of this dataset did not contain carbon analytical 
data, and contributions for diesel exhaust could not be 
estimated by the CMB calculations. The Kashima area had 
three major towns, not the cities at the moment of this study, 
and its population was less than several tens thousands each. 
Therefore, traffic-related pollution was not so severe at that 
moment. A large amount of unknown parts by CMB results 
might contain the diesel exhaust. However, the PMF result 
exhibited nearly zero  contribution for the diesel exhaust. 
The result suggested that important marker elements should 
be included even in the PMF calculations. 

Comparison between source profiles obtained from the 
PMF and the one used in the CMB model was also 
performed (Fig. 4). However, only 2 sources show almost 
similar p rofiles. Major elements in soil profile are A l and Na, 
which are found in both profiles (PMF and CMB). However, 
the soil profile obtained from PMF for fine fraction was lack 
of Na, and contained high concentration of Zn and Fe. Ti 
and Fe were also observed in the soil profile co llected in the 
IPCAJ study, whereas the profile obtained by the PMF 
model does not contain those elements for coarse and fine 
fractions. This is because the profiles collected under the 
IPCAJ were estimated from the PM total mass. High Na and 
Br were observed in the seasalt profile for both CMB and 
PMF. Note that the PMF did  not produce soil pro file  for the 
fine fraction. 
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Fig. 4 Comparison between source profiles used in CMB model and source 
profiles produced by PMF model 

VI. CONCLUSIONS 

The positive matrix factorization (PMF) and the 
chemical mass balance (CMB version8) models were 
applied to the source apportionment of ambient PM study 
for Kashima area. As for coarse fraction, high correlat ions 
between the PMF and CMB calculations were obtained.  

As for the fine fraction, the PMF could identify the six 
emission sources: steel mill, soil, Cl- and NO3

- rich 
secondary particle, aged sea salt, SO4

2- rich secondary 
particle, and refuse burning. The CMB result for fine 
fraction was not satisfactory due to higher ratio of secondary 
particles. However, some limited emission sources both 
results showed higher correlations. 
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