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Abstract-In this paper, the dynamic response of two adjacent 
single-degree-of-freedom (SDOF) structures connected by 
viscous damper is investigated under base acceleration. The base 
acceleration is modeled as harmonic excitation as well as 
stationary white noise random process. The governing equations 
of motion of the coupled structure are derived and solved for 
relative displacement and absolute acceleration responses. The 
viscous damper is found to be effective for response control of 
adjacent structures by connecting with appropriate damping 
coefficient of damper. The optimum damping of viscous damper 
and corresponding response quantities are obtained for different 
frequency ratio and mass ratio for viscously damped connected 
structures. Explicit expressions for optimum damper damping 
are then obtained for minimum responses of the coupled 
structures using curve-fitting technique that can be conveniently 
used for applications in dynamical systems. The error in these 
expressions is found to be negligible.  Further, numerical results 
had indicated that the frequency ratio  affect the optimum 
damper damping and corresponding responses, where as mass 
ratio and damping of the connected structures does not have 
noticeable effect on the optimum responses. A simulation study 
has also been carried out to examine the effectiveness of the 
explicit expressions. 

Keywords-Adjacent Structures; Optimum Damping; Steady-state 
Response; Stationary Response; Viscous Damper 

I. INTRODUCTION 
Structural vibration control, as an advanced technology in 

engineering, consists of implementing energy dissipation 
devices into structures to reduce excessive structural 
vibrations to prevent catastrophic structural failure and 
enhance human comfort due to natural disturbances like 
strong wind and earthquakes.  In early 1990s, considerable 
attention has been paid to research and development of 
structural control devices, and medium and high rise structures 
have begun implementing energy dissipation devices or 
control system to reduce excessive structural vibrations.  
These control strategies able to modify dynamically the 
response of the structure in a desirable manner, thereby 
termed protective systems for the structures.   

When possible, the coupling of two adjacent structures 
with suitable mechanisms is a developing method among the 
various control techniques. The concept is to exert control 
forces upon one another to reduce the overall responses of the 
system. The free space available between two adjacent 
structures can be effectively utilized for placing the control 
devices and does not require additional space for the 
installation of such devices. Such type of arrangement is also 
prevent the mutual pounding between two adjacent structures, 
occurred in the past major seismic events such as 1985 mexico 
City earthquake [1], the 1989 Loma Prieta earthquake [2] and 
many others.  

Connecting the adjacent structures with passive energy 
dissipation devices is very effective in mitigating the dynamic 

responses as well as minimizing the chances of pounding. Past 
studies [3,4,5,6,7,8] found the passive energy dissipation 
devices to be very effective in mitigating the dynamic 
responses of adjacent coupled structures as well as minimizing 
the chances of pounding.  The present study, therefore, aims at 
developing explicit formulae for optimum damping coefficient 
of damper for damped coupled system subjected to base 
acceleration and response quantity being minimized. The 
specific objectives of the present study are (i) to obtain the 
optimum damping coefficient of damper for damped adjacent 
coupled structures subjected to base acceleration modeled as 
harmonic excitation as well as Gaussian white-noise random 
process, (ii) to study the effect of system parameter such as 
mass ratio  frequency ratio   and damping in the main system 
on the optimum damping of viscous damper and 
corresponding responses, and (iii) to derive explicit 
expressions for the optimum damper damping for practical 
application. 

II. STRUCTURAL MODEL  
Let us consider two adjacent structures connected with a 

viscous damper as shown in Figure 1(a).  The adjacent 
structures are idealized as SDOF systems and referred as 
Structure 1 and 2. The two structures are assumed to be 
symmetric with their symmetric planes in alignment.  The 
ground motion is assumed to occur in one direction in the 
symmetric planes of the structures so that the problem can be 
simplified as a two-dimensional problem as shown in Fig. 1(a). 
Both structures are assumed to be supported on stiff ground 
and subjected to the same ground acceleration. The viscous 
damper is modeled as linear dash pot, in which the force is 
proportional to the relative velocity of its both ends. The 
corresponding mathematical model of the damper connected 
structures is shown in Fig. 1(b).  

Let 1 1 1 2 2 2, ,   and ,  ,m c k m c k  be the mass, damping 
coefficient and stiffness of the Structure 1 and 2, respectively. 
The natural frequency of the structure is given by 

1 1 1k mω =  and 2 2 2k mω =  for Structure 1 and 2, 
respectively.  The damping ratio of Structures 1 and 2, is 
given by 1 1 1 1/ 2c mξ ω=  and 2 2 2 2/ 2c mξ ω= , respectively.  

Let β  and  µ be the frequency and mass ratios of two 
structures defined as   

2

1

ωβ
ω

=                                           (1) 

1

2

m
m

µ =                                          (2) 

Let dc  be the damping coefficient of the damper, which is 
expressed in the normalized form as  

1
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d

d m

c
ω

ξ =
                              

    (3)  

where dξ  is the normalized damping coefficient of damper. 
The governing equations of motion for the damper connected 
system can be written as 

1 1 1 1 1 1 1 2 1( )d gm x c x k x c x x m x+ + + − = −             (4a) 

2 2 2 2 2 2 1 2 2( )d gm x c x k x c x x m x+ + − − = −          (4b) 

Where x2 and x2 

gx
are the displacement responses, relative to 

the ground, of Structures 1 and 2, respectively; and  is the 
ground acceleration. The structural control criteria depend on 
the nature of dynamic loads and the response quantities of 
interest. Minimizing the relative displacement or absolute 
acceleration of the system has always been considered as the 
control objective. In case of flexible structures, displacements 
are predominant that need to be controlled.  On contrary to 
this, in case of stiff structures, accelerations are of more 
concern generating higher inertial forces in structures, which 
should be mitigated.  In view of this, the study aims to arrive 
the distinct expressions for optimum parameters of damper for 
minimizing exclusively displacement as well as acceleration 
responses. 

(a)

(b)  
Fig. 1 Structural model of  two SDOF adjacent coupled structures 

III. RESPONSE TO HARMONIC EXCITATION  
Let us consider the coupled system subjected to harmonic 

base acceleration given by 

0
i t

gx a e ω=                                   (5) 

where 0a  and ω  are the amplitude and excitation frequency, 
respectively of the harmonic ground motion. Thus, from 
Equation (4), the steady-state responses 1x  and 2x  are 
obtained as  

 1

1 0

i tN

D
x a e ω=  and 2

2 0

i tN

D
x a e ω=      (6a,b) 

where 

2 2

1 2 2( )dN iω ω ω= − − ∆ + ∆                 (7a) 
2 2

2 1 1
( )

d
N iω ω ω= − − ∆ + ∆                    (7b) 

4 3

1 2
( ) ( )

d
D iω ω= + ∆ + ∆ + ∆   
2 2 2

1 2 1 2 1 2 2 1
( ) ( )

d d
iω ω ω+ + + ∆ ∆ + ∆ ∆ + ∆ ∆   

2 2 2 2 2 2

1 2 2 1 1 2 2 1 1 2
 ( )

d d
iω ω ω ω ω ω ω+ ∆ + ∆ + ∆ ∆ +            (8) 

with  

               
1 1 1 2 2 2 1 1 1 2/    /    /    d e d d dc m c m c m∆ = ∆ = ∆ = ∆ = ∆ + ∆      (9) 

The absolute accelerations ( 1ax  and 2ax ) can be 
calculated by differentiating Equations (6) twice and adding it 
to the ground acceleration as given below 

1

1 0
a i t

a

N

D
x a e ω=  and 2

2 0
a i t

a

N

D
x a e ω=      (10) 

Where 
3 2 2

1 1 1 2 1 2 2 1 1

2 2 2 2 2 2

1 2 2 1 1 2 2 1 1 2

( ) ( ) ( ) ( )

                        ( )( )

a d d

d d

N i i

i

ω ω ω

ω ω ω ω ω ω ω

= ∆ + ∆ ∆ +∆ ∆ +∆ ∆ +

+ ∆ + ∆ + ∆ + ∆ +
    (11a) 

3 2 2

2 2 1 2 1 2 2 1 2

2 2 2 2 2 2

1 2 2 1 1 2 2 1 1 2

( ) ( ) ( ) ( )

              ( )( )

a d d

d d

N i i

i

ω ω ω

ω ω ω ω ω ω ω

= ∆ + ∆ ∆ +∆ ∆ +∆ ∆ +

+ ∆ + ∆ + ∆ + ∆ +
    (11b) 

From Equation (6) the steady state amplitude of 
displacement responses of two structures are expressed as  

                                                                                       
2 2 2 2

2 2

4 2 2 2 2 2 2

1 2 1 2 1 2 2 1 1 2

2 2 2 2 3 2

1 2 2 1 1 2 2 1 1 2

1 0
( ) ( ( ))

( ( ) )

  ( ( ) ( ))

d

d d

d d d

ax
ω ω ω

ω ω ω ω ω ω

ω ω ω ω ω ω

− + ∆ + ∆

− + + ∆ ∆ + ∆ ∆ + ∆ ∆ +

∆ + ∆ + ∆ ∆ − ∆ + ∆ + ∆

=        (12a) 

 
2 2 2 2

1 1

4 2 2 2 2 2 2

1 2 1 2 1 2 2 1 1 2

2 2 2 2 3 2

1 2 2 1 1 2 2 1 1 2

2 0

( ) ( ( ))

( ( ) )

  ( ( ) ( ))

d

d d

d d d

x a
ω ω ω

ω ω ω ω ω ω

ω ω ω ω ω ω

− + ∆ + ∆

− + + ∆ ∆ + ∆ ∆ + ∆ ∆ +

∆ + ∆ + ∆ ∆ − ∆ + ∆ + ∆

=        (12b) 

and from Equation (10), the steady-state amplitude of 
acceleration responses of two structures are expressed as  

2 2 2 2 2

1 2 1 2 1 2 2 1 1

2 2 2 2 3 2

1 2 2 1 1 2 2 1 1

4 2 2 2 2 2 2

1 2 1 2 1 2 2 1 1 2

2 2 2 2 3 2

1 2 2 1 1 2 2 1 1 2

1 0

( ( ))

( ( ) ( ))

( ( ) )

  ( ( ) ( ))

d d

d d

d d

d d d

ax a

ω ω ω ω

ω ω ω ω ω ω

ω ω ω ω ω ω

ω ω ω ω ω ω

− ∆ ∆ +∆ ∆ +∆ ∆ +

∆ + ∆ + ∆ + ∆ − ∆

− + + ∆ ∆ + ∆ ∆ + ∆ ∆ +

∆ + ∆ + ∆ ∆ − ∆ + ∆ + ∆

=   (13a) 

2 2 2 2 2

1 2 1 2 1 2 2 1 2

2 2 2 2 3 2

1 2 2 1 1 2 2 1 2

4 2 2 2 2 2 2

1 2 1 2 1 2 2 1 1 2

2 2 2 2 3 2

1 2 2 1 1 2 2 1 1 2

2 0

( ( ))

( )( ) ) ( ))

( ( ) )

  ( ( ) ( ))

d d

d d

d d

d d d

ax a

ω ω ω ω

ω ω ω ω ω ω

ω ω ω ω ω ω

ω ω ω ω ω ω

− ∆ ∆ +∆ ∆ +∆ ∆ +

+ ∆ + ∆ + ∆ + ∆ − ∆

− + + ∆ ∆ + ∆ ∆ + ∆ ∆ +

∆ + ∆ + ∆ ∆ − ∆ + ∆ + ∆

=   (13b) 

Considering the two SDOF connected structures with their 
mass ratio 1µ =  and frequency ratio 2β = . Thus, the 
Structure 1 is said to be soft structure and Structure 2 is said to 
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be stiff structure. The variation of displacement amplitude 
response and absolute acceleration amplitude response against 
the excitation frequency for five values of the damper 
damping coefficient (i.e. dξ =0, 0.1, 0.276, 0.447 and 1) are 
shown in Fig. 2 for undamped and damped connected 
structures with structural damping ratio 1ξ = 2ξ =0.05.  

From Fig. 2, it is observed that the peak displacements of 
both structures are reduced up to certain value of the damper 
damping coefficient after which they are increased. This is 
because, the higher damper damping coefficient reduces the 
relative velocity of damper and hence the energy absorbing 
capacity from damping force decreases. When the damper 
damping coefficient is too high, 

0

9
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the relative velocity and 
displacement of the two structures become nearly zero so that 
the two structures behave as though they are almost rigidly 
connected. Significant reductions can be achieved in 
responses of both structures when they are connected with 
viscous damper of optimum damping implying that the 
viscous dampers are quite effective in enhancing the seismic 
performance of connected structures. Further, from Fig. 2, it is 
interesting to note that in the connected undamped system, all 
curves are intersecting at a common point (refer point ‘S’) 
irrespective of damping coefficients of damper and whereas, 
this phenomena is not seen in case of the connected damped 
system.  

 
Fig. 2  Variation of displacements responses against excitation frequency 
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Fig. 3  Variation of absolute acceleration responses against excitation 

frequency ( 2β =  and 1µ = ) 

Thus, it can be concluded that connecting the adjacent 
structures with viscous damper enhances the seismic 
performance of both structures significantly and in case of 
connected undamped system, there exists a common point 
through which all curves pass irrespective of damping 
coefficient of damper. Similar effects of damper damping on 
absolute accelerations of connected structures are also 
observed in Fig. 3, which shows the variation of absolute 
accelerations, against the excitation frequency. 

The variations of the peak displacement and the peak 
acceleration responses of two structures against the damping 
coefficient of damper (mass ratio 1µ =  and frequency ratio

2β = ) are shown in Fig. 4 for different damping ratios in 

connected structures (i.e. 1ξ = 2ξ =0, 0.02, and 0.05). It is clear 
from graphs that there exists an optimum value for the damper 
damping coefficient to yield minimum responses. Further, the 
optimum damping coefficient of damper for two structures is 
different, but both optimum damper damping are close to each 
other, and in the vicinity of it, the response of the two 
connected structures does not vary significantly implying that 
the optimum damping for one structure also reduces the 
response of the other structure substantially.   

 

 

 

 

 

 

Fig. 4  Variation of peak displacement and peak absolute accelerations against 
damping coefficient of damper  ( 2β =  and 1µ = ) 

IV. OPTIMUM DAMPER DAMPING FOR CONNECTED STRUCTURES 

A. Minimization of Peak Displacement Response 
 In the optimal design of viscous damper connecting 

adjacent undamped structures subjected to harmonic 
excitation, fixed point “S” is obtained at which the response is 
independent of damper damping and further, the maximum 
steady state response occur at the fixed point.  Thus, the 
horizontal tangent at this fixed point gives the optimum 
damper damping.  In case of damped connected structures, 
there is not any fixed point but the response curves for 
different damper damping intersect at points clustered in the 
very close vicinity of the fixed point frequency, obtained for 
undamped coupled structures. Further, from Fig. 2, it is also 
observed that maximum steady state response occur at point 
clustered in the close vicinity of the fixed point. The values of 

0.276dξ =  and 0.447 are taken from Fig. 2 which 
corresponds to the value of damper damping for which the 
maximum amplitude attains the minimum value for Structures 
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2 and 1, respectively, and the horizontal tangent at this point 
gives the optimal damper damping. In the present case, the  
viscous damper is connecting damped structural system 
( 1 2ξ ξ ξ= = ), it is assumed that fixed point condition also 
approximately holds good even for moderate damping in the 
structural system, i.e. there exist fixed or invariant point on the 
response versus excitation frequency plot where response is 
almost independent of structural damping, i.e. steady state 
amplitude 1x  and 1ax  is independent of 1ξ ; and 2x  and 2ax  

is independent of 2ξ  . With this assumption, it is possible to 

equate the response amplitude for two extreme values of dξ , 

namely  for 0dξ =  and dξ = ∞ .  This, solving for  ω   and 
after algebraic simplification, will give the excitation 
frequency for Structure 1, expressed by  

2 2

2 1

1 2

(1 )(1 2 )

2(1 )(1 ) 4(1 2 )
x

ω β µ β
ω

β µ µ β ξ

+ + +
=

+ + − + +
               (14a) 

Similarly, using 0dξ =  and dξ = ∞  in Equation (12b) 
and equating them, solving for ω  will give the excitation 
frequency for Structure 2, expressed by   

2 2

2 2

2 2 2

(1 )( (2 ))

2 ((1 )(1 ) 2( (2 )) )
x

ω β µ β µ
ω

β β µ µ β µ ξ

+ + +
=

+ + − + +
    (14b) 

The optimum damping of damper for response 1x  and 2x   
can be obtained by setting the slopes of the curves equal to 
zero at 1xω  and 2xω , respectively. By setting the slopes of 
the response curves equal to zero, it gives fourth degree 
equation, which is quite complex and cannot be easily solved 
for the closed-form expressions for optimum parameter of the 
damper. The alternate option for optimum damper parameter 
is derived explicit expression. The optimum damper damping 
for undamped structures is very useful for obtaining an 
explicit expression for optimum damper damping coefficient 
for damped structures.  Close-form expression for optimum 
damping coefficient of damper for displacement 1x  and 2x  of 
connected undamped structures given  by [9] are 

2

1 3 2
,

(1 )(1 2 )

8(1 ) (1 2 )

opt
d ux

β µ

µ µ β
ξ

− +

+ + +
=  

 and 
2

2 3 2 2
,

(1 )(2 )

8(1 ) ( 2 )

opt
d ux

β µ

µ µ β µβ
ξ

− +

+ + +
=

                

 (15) 

It has been observed that optimum damping coefficient 
increases with increase of the frequency ratio; and increase in 
mass ratio reduces the optimum damping coefficient of 
damper. From Equation (6), the optimum parameters of the 
damper for minimum displacement responses are calculated 
numerically for various values of the frequency ratio and 
damping in connected structures, considering constant mass 
ratio. Then using a curve fitting technique as explain in [10], 
explicit expression are arrived at for the optimum parameter of 
the damper in terms of the structural parameters as given 
below   

  

2

1 2

2 2

2 2

,

(1 )(1 2 )

(1 ) 8(1 )(1 2 )

        ( 0.017 0.424 ) ( 0.476 7.523 )

        (0.311 3.293 )

opt
d x

β µ

µ µ µ β

ξ ξ ξ ξ β

ξ ξ β

ξ
− +

+ + + +

+ − + + − +

+ −

=

     (16a)            

2

2 2 2

2 4

2 3

2 2

,

(1 )(2 )

(1 ) 8(1 )( 2 )

        (0.376 28.41 )

        (0.252 7.056 46.153 )

        ( 0.339 1.966 )

opt
d x

β µ

µ µ µ β µβ

ξ ξ

ξ ξ β

ξ ξ β

ξ
− +

+ + + +

+ −

+ − +

+ − +

=

             (16b) 

B. Minimization of Peak Acceleration  Response. 
From Equation (10), the optimum parameters of the 

damper for minimum acceleration responses are calculated 
numerically for various values of the frequency ratio and 
damping in connected structures, considering constant mass 
ratio. Then using a curve fitting technique, explicit equations 
are arrived at for the optimum parameters of the damper in 
terms of the structural parameters as given below 

2 2

2

2 21

2 3 4

,

( 1)( 2 ) 1
( 0.019 0.428 )

2( ) 2(1 )(1 2 )

                                           (1.919 100.26 1555.26 7329.19 )

                                           ( 1.358 6

a

opt
d x

β β µ
ξ ξ

β µ µ µ β

ξ ξ ξ ξ β

ξ

ξ
− +

= + − +
+ + + +

+ − + −

+ − + 2 3 4 26.83 1022.55 4804.19 )ξ ξ ξ β− +

     

(17a) 

2

2 2

, 2 2 2

2

2 2 2

( 1)(2 ) 1

2( ) 2(1 )( 2 )

        (0.004 0.128 )

        ( 0.102 1.586 ) ( 0.043 0.909 )

a

opt

d x

β β µ
ξ

β µ µ µ β µβ

ξ ξ

ξ ξ β ξ ξ β

− +
=

+ + + +

+ +

+ − + + − −

       (17b) 

V. RESPONSE TO STATIONARY WHITE NOISE RANDOM 
EXCITATION  

Let the coupled system with structural damping 

1 2ξ ξ ξ= =  subjected to the Gaussian white-noise with 

constant power spectral density 0S . The mean square 

displacement  (
1

2
xσ  and 

2

2
xσ ) of Structure1 and 2, 

respectively, can be expressed as  

1

22

1 0( )  x x i S dσ ω ω
∞

−∞
= ∫                    (18a) 

2

22

2 0( )  x x i S dσ ω ω
∞

−∞
= ∫                     (18b) 

where 
1 ( )x iω

 
and 

2 ( )x iω
 
are amplitude of steady state 

displacement response of Structure 1 and 2 , respectively 
given by Equations (12a) and (12b), respectively. The mean 
square acceleration  (

1

2

aσ
 
and 

2

2

aσ ) of Structure1 and 2, 
respectively, can be expressed as 
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1 1

22

0( )  a ax i S dσ ω ω
∞

−∞
= ∫                          (19a) 

2 2

22

0( )  a ax i S dσ ω ω
∞

−∞
= ∫                         (19b) 

where 
1
( )ax iω  and 

2
( )ax iω  are amplitude of steady state 

acceleration response of Structure 1 and 2 , respectively given 
by Equations (13a) and (13b), respectively. 

VI. OPTIMUM DAMPER DAMPING FOR CONNECTED STRUCTURE  
1) Minimization of the mean square displacement 

response. 

The mean square displacement responses are obtained by 
solving the integral of Equation (18), and using the technique 
given in [11], can be given as 
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The optimizing condition 
1

2 0x dd dσ ξ = gives the 
optimum damping for the Structure1, but again it gives fourth 
degree equation, which is quite complex and cannot be easily 
solved for the closed-form expressions for optimum parameter 
of the damper. From Equation (20), the optimum parameters 
of the damper for minimum value of mean square 
displacement responses are calculated numerically for various 
values of the frequency ratio and damping in connected 
structures, considering constant mass ratio. Then using a curve 
fitting technique as explain in [10],  explicit expression are 
arrived at for the optimum parameter of the damper in terms 
of the structural parameters as given below   
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x
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 (21b) 

Minimization of the mean square acceleration response.  

The mean square acceleration responses are obtained by 
solving the integral of Equation (19), and using the technique 
given in [11], can be given as 
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The optimizing condition 
1

2 0a dd dσ ξ = gives the 
optimum damping for the Structure1, but again it gives fourth 
degree equation, which is quite complex and cannot be easily 
solved for the closed-form expressions for optimum parameter 
of the damper. From Equation (22), the optimum parameters 
of the damper for minimum value of mean square acceleration 
responses are calculated numerically for various values of the 
frequency ratio and damping in connected structures, 
considering constant mass ratio. Then using a curve fitting 
technique as explain in [10], explicit expression are arrived at 
for the optimum parameter of the damper in terms of the 
structural parameters as given below   

2

1

2

2

2,

2

2 2

( 1)
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−
= + − −

++
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The optimum damping in damper for displacement and 
acceleration responses are calculated from above explicit 
expression and corresponding responses for different mass 
ratio, frequency ratio and damping in a structures are tabulated 
in Tables 1 and 2, respectively. It is seen from the results, that 
maximum error in optimum displacement responses are 
5.11 %, whereas maximum error in optimum acceleration 
responses are 1.43 %.  Thus, these explicit formulae are in 
very good agreement with the actual values.  

 

 

 
 

 

 
 
Fig. 5  Effect of frequency ration on the optimum damper damping  opt

dξ  and 

corresponding  displacement responses 

The variations of optimum damping of damper against 
frequency ratio for different mass ratio of structures and 
corresponding optimum responses of displacement and 
acceleration responses for undamped connected structures are 
plotted in Figures 5 and 6, respectively. It is seen from graph 

that the optimum damping coefficient increases with increases 
of the frequency ratio. This is due to the reason that higher 
frequency ratio increases the relative velocity between the 
connected floors and thus, requiring a higher damping 
coefficient. Further, the increase in mass ratio reduces the 
optimum damping coefficient of damper.  

 
 

 
 
 

 
 
 

 
 
 
 

 
 
 

Fig. 6  Effect of frequency ration on the optimum damper damping  opt
dξ  and 

corresponding acceleration responses 
The variation of optimum damping of damper against 

frequency ratio for different structural damping, considering 
mass ratio µ =1 are plotted in Figure 7. It is seen from the 
graph that damping in structure have negligible effect on 
optimum damping in damper. This is due to the reason that 
supplemental energy dissipation devices control the structural 
responses and structural damping plays marginal role for 
response reduction. 

VII. APPLICATION TO A REAL STRUCTURE   
The applicability of the above derived explicit equations 

for optimum damping of damper for connected structures to 
practical example with 20 and 10 stories, under real 
earthquake motion is verified. Two adjacent structures with 20 
and 10 stories are considered, such that the floor mass and 
inter-story stiffness are assumed to be uniform for both 
structures. The mass and stiffness of each floor are chosen 
such that to yield a fundamental time period of 2.0 sec and 1.0 
sec for Structures 1 and 2, respectively. The earthquake time 
histories selected to examine the seismic behavior of the two 
structures are: Imperial Valley (1940), Kobe (1995), 
Northridge (1994), and Loma Prieta (1989). The two 
structures are connected with viscous dampers at all floors and 
the damping in dampers is considered same in all dampers. A 
parametric study is carried out by varying the damping in 
dampers and the minimum displacement and acceleration 
responses of these structures under the considered earthquakes 
are obtained by solving the equations of motion in the 
incremental form using Newmark’s step-by-step method 
assuming average acceleration over small time interval, t∆ .  

The response corresponding to the optimum damping of 
viscous damper, calculated from the explicit expression, are 
also obtained from the numerical procedure and are compared 
with the minimum responses that are obtained from the 
parametric  study. Tables 3 and 4 present the responses for 
two  cases,  namely,  (i) minimum  responses  obtained   from 
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TABLE 1  
EFFECT OF DAMPING IN STRUCTURES  ON OPTIMUM DAMPER DAMPING FOR MINIMUM DISPLACEMENTS 

µ  Damp-ing ratio 

Optimum normalized damping coefficient 
1.25β =  1.50 1.75 2.00 

1S 2S#  
1S  

2S  
1S  

2S  
1S  

2S  

1.0 
0.00 0.098 0.088 0.205 0.171 0.312 0.238 0.422 0.306 
0.02 0.098 0.082 0.206 0.159 0.318 0.228 0.431 0.293 
0.05 0.104 0.071 0.214 0.143 0.328 0.208 0.445 0.266 

1.5 
0.00 0.085 0.067 0.178 0.127 0.277 0.184 0.379 0.235 
0.02 0.084 0.061 0.180 0.118 0.281 0.171 0.386 0.220 
0.05 0.091 0.050 0.188 0.103 0.292 0.150 0.400 0.193 

2.0 
0.00 0.074 0.041 0.155 0.079 0.245 0.116 0.340 0.153 
0.02 0.074 0.047 0.159 0.093 0.251 0.135 0.347 0.173 
0.05 0.080 0.036 0.167 0.077 0.261 0.113 0.360 0.146 

Optimum displacements 
1.25β =  1.50 1.75 2.00 

1S  2S  1S  2S  1S  2S  1S  
2S  

7.109 
(0.00)

11.090 
* ( 0.00) 

3.200 
(0.00) 

7.196 
(0.00) 

1.942 
(0.00) 

5.936 
(0.00) 

1.362 
(0.00) 

5.332 
(0.00) 

5.904 
(0.00) 

8.569 
( 0.07) 

0.204 
(0.01) 

6.062 
(0.028) 

1.830 
(0.00) 

5.150 
(0.02) 

1.293 
(0.06) 

4.690 
(0.01) 

4.619 
(0.00) 

6.304 
(0.004) 

2.567 
(0.00) 

4.878 
(  0.02) 

1.679 
(0.00) 

4.283 
(0.00) 

1.206 
(0.29) 

3.965 
(0.01) 

8.878 
(0.00) 

9.255 
(0.00) 

3.999 
(0.00) 

5.998 
(0.00) 

2.424 
(0.00) 

4.948 
(0.00) 

1.666 
(0.00) 

4.444 
(0.00) 

6.925 
(0.09) 

7.609 
(0.01) 

3.533 
(0.01) 

5.277 
(0.01) 

2.237 
(0.01) 

4.453 
(0.06) 

1.572 
(0.01) 

4.042 
(0.06) 

5.123 
(0.01) 

5.930 
(  0.27) 

2.987 
(0.00) 

4.454 
(0.02) 

1.997 
(0.02) 

3.863 
(0.23) 

1.444 
(0.01) 

3.558 
(0.36) 

10.634 
(0.00) 

9.310 
(0.00) 

4.799 
(0.00) 

5.898 
(0.00) 

2.908 
(0.00) 

4.784 
(0.00) 

2.000 
(0.00) 

4.246 
(0.00) 

7.841 
( 0.09) 

7.501 
(3.84) 

4.111 
(0.00) 

5.318 
(5.11) 

2.631 
(0.00) 

4.463 
(4.63) 

1.859 
(0.01) 

4.013 
(3.73) 

5.545 
( 0.01) 

5.760 
(1.22) 

3.364 
(0.00) 

4.239 
(0.13) 

2.292 
(0.02) 

3.732 
(1.31) 

1.676 
(0.02) 

3.467 
(1.75) 

# 
1S  - Structure 1, 

2S  - Structure 2,*

TABLE  2 

 The value within the parenthesis indicates percentage error 

EFFECT OF DAMPING IN STRUCTURES ON OPTIMUM DAMPER DAMPING FOR MINIMUM ACCELERATIONS  

µ
 

Da
mp-
ing 

ratio 

Optimum normalized damping coefficient Optimum absolute accelerations 
1.25β =  1.50 1.75 2.00 1.25β =  1.50 1.75 2.00 

1S 2S#  1S  2S  1S  2S  1S  2S  1S  2S  1S  2S  1S  2S  1S  2S  

1.0 

0.00 0.09
0 

0.09
8 

0.17
9 

0.19
1 

0.24
9 

0.28
0 

0.30
6 

0.37
8 

8.111 
(0.00)

10.10
6 

* (0.00) 

4.200 
(0.00

) 

6.194 
(0.00

) 

2.955 
(0.00) 

4.936 
(0.00

) 

2.386 
(0.00

) 

4.331 
(0.00

) 

0.02 0.09
1 

0.09
1 

0.17
5 

0.18
5 

0.25
3 

0.27
7 

0.32
7 

0.36
7 

6.734 
(0.05) 

7.852 
(0.06) 

3.842 
(0.00

) 

5.264 
(0.03

) 

2.784 
(0.06) 

4.324 
(0.00

) 

2.288 
(1.34

) 

3.850 
(0.01

) 

0.05 0.08
6 

0.08
7 

0.17
2 

0.17
9 

0.25
4 

0.26
8 

0.33
4 

0.35
5 

5.283 
(0.00) 

5.846 
(0.05) 

3.392 
(0.00

) 

4.300 
(0.01

) 

2.571 
(0.00) 

3.654 
(0.01

) 

2.127 
(0.00

) 

3.312 
(0.02

) 

1.5 

0.00 0.07
7 

0.07
2 

0.15
6 

0.14
6 

0.23
0 

0.22
0 

0.30
2 

0.29
2 

9.885 
(0.00) 

8.257 
(0.00) 

4.999 
(0.00

) 

4.998 
(0.00

) 

3.424 
(0.00) 

3.948 
(0.00

) 

2.667 
(0.00

) 

3.444 
(0.00

) 

0.02 0.07
8 

0.06
8 

0.15
2 

0.14
1 

0.22
3 

0.21
4 

0.28
9 

0.28
6 

7.712 
(0.08) 

6.854 
(0.02) 

4.430 
(0.03

) 

4.449 
(0.01

) 

3.177 
(0..08

) 

3.596 
(0.01

) 

2.535 
(0.18

) 

3.172 
(0.01

) 

0.05 0.07
4 

0.06
4 

0.15
1 

0.13
5 

0.22
4 

0.20
5 

0.29
5 

0.27
5 

5.741 
(0.11) 

5.407 
(0.01) 

3.774 
(0.02

) 

3.816 
(0.00

) 

2.862 
(0.02) 

3.177 
(0.00

) 

2.352 
(0.01

) 

2.844 
(0.00

) 

2.0 

0.00 0.07
2 

0.05
0 

0.14
1 

0.11
6 

0.20
9 

0.17
9 

0.27
2 

0.24
1 

11.64
6 

(0.00) 

7.661 
(0.00) 

5.798 
(0.00

) 

4.402 
(0.00

) 

3.909 
(0.00) 

3.454 
(0.00

) 

3.000 
(0.00

) 

3.000 
(0.00

) 

0.02 0.06
9 

0.05
4 

0.13
6 

0.11
3 

0.19
9 

0.17
3 

0.26
0 

0.23
3 

8.594 
( 0.02) 

6.421 
(1.43) 

4.986 
(0.00

) 

4.016 
(0.00

) 

3.557 
(0.09) 

3.214 
(0.00

) 

2.812 
(0.18

) 

2.816 
(0.00

) 

0.05 0.06
5 

0.05
0 

0.13
3 

0.10
6 

0.20
0 

0.16
4 

0.26
6 

0.22
1 

6.117 
( 0.08) 

5.158 
( 0.02) 

4.116 
(0.07

) 

3.546 
(0.01

) 

3.130 
(0.01) 

2.913 
(0.00

) 

2.563 
(0.01

) 

2.586 
(0.02

) 
# 

1S  - Structure 1, 
2S  - Structure 2,* The value within the parenthesis indicates percentage error 
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 parametric study, and (ii) responses corresponding to the 
optimum damping that obtained using explicit equations for 
the connected structures with damping ratio

1 2ξ ξ ξ= = , 0.02 
and 0.05, respectively. From the results of Tables 3 and 4, it is 
observed that the maximum responses corresponding to the 
optimum damping obtained using explicit equations are very 
close to the maximum responses obtained from the parametric 
study. Thus, it can be concluded that the derived explicit 
expression for optimum damping of damper are well 
applicable to real time problems and hence, can readily be 
used for preliminary design of dampers for connecting 
adjacent structures in practice. However, for impulsive type 
earthquake like Kobe (1995), there is not good match of the 
maximum responses corresponding to optimum damping that 
obtained using explicit equations and maximum responses 
obtained from the parametric study. Hence, for the coupled 
structures subjected to impulsive type excitations specific 
study has to be carried out for optimum damping of damper.  

VIII. CONCLUSIONS    
The dynamic behavior of two SDOF structures coupled by 

viscous damper is investigated. The viscous damper is found 
to be very effective in mitigating the dynamic responses of the 
adjacent structures and there exists an optimum damping 
coefficient of damper for minimum responses.   The explicit 
expressions are obtained for optimum damping of damper to 
yield the minimum relative displacement and absolute 
accelerations under harmonic excitation and minimum mean 
square responses under stationary white-noise random 
excitation. The numerical studies shows, derived explicit 

expressions are in very good agreement with the actual values.  
The simulation study shows, that the derived explicit 
expression for optimum damping of damper are well 
applicable to real time problems and hence, can readily be 
used for preliminary design of dampers for connecting 
adjacent structures in practice.  

Fig. 7  Effect of frequency ration and structural damping on the optimum 
damping of damper 

TABLE  3  
APPLICABILITY OF EXPLICIT EXPRESISON TO ADJACENT 20 AND 10 STORY CONNECTED STRUCTURES UNDER EARTHQUAKE EXCITATIONS (DMAPINGRATIO IN 

STRUCTURE ( 1 2ξ ξ ξ= = = 0.02) 

Response opt
dξ  

Displacement and acceleration responses 

Imperial Valley, 1940 Kobe, 1995 Northridge, 1994 Loma Prieta, 1989 

I II I II I II I II 

1x (m) 0.413 0.1649 0.1658 0.2971 0.3078 0.7408 0.7431 0.7121 0.7882 

2x (m) 0.293 0.0791 0.0807 0.1883 0.3442 0.2807 0.2811 0.2503 0.2550 

1ax (m/s2 0.327 ) 4.4487 4.8400 11.9607 12.7735 14.1644 15.7917 10.8827 10.967 

2ax (m/s2 0.367 ) 6.1484 6.2782 14.7948 15.2708 14.6790 15.1379 10.7472 10.7939 

I – Minimum responses obtained from the parametric study 
II – Response corresponding to the optimum damping that obtained using explicit expressions 

TABLE 4  
APPLICABILITY OF EXPLICIT EXPRESSION TO ADJACENT 20 AND 10 STORY CONNECTED STRUCTURE UNDER EARTHQUAKE EXCITATIONS  DAMPING RATIO IN 

STRUCTURE ( 1 2ξ ξ ξ= = = 0.05) 

Response opt
dξ  

Displacement and acceleration responses 

Imperial Valley, 1940 Kobe, 1995 Northridge, 1994 Loma Prieta, 1989 
I II I II I II I II 

1x (m) 0.445 0.1518 0.1519 0.2656 0.2884 0.686 0.688 0.6429 0.7081 

2x (m) 0.226 0.0742 0.0764 0.2437 0.2951 0.2624 0.2639 0.2340 0.2350 

1ax (m/s2 0.334 ) 3.6282 3.6378 9.7683 10.9678 12.4414 13.6437 8.9063 9.1173 

2ax (m/s2 0.355 ) 4.9083 5.0306 11.8719 13.7659 13.3083 13.5934 8.7323 8.7410 

I – Minimum responses obtained from the parametric study 
II – Response corresponding to the optimum damping that obtained using explicit expressions 
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