One-pot Reaction of Mono and Dialdehydes with Unsymmetrical 1-methyl Barbituric Acid (1-MBA) and BrCN in the Presence of Triethylamine and L-(+)-tartaric Acid

Nader Noroozi Pesyan ${ }^{1}$, Mohammad Jalilzadeh ${ }^{2}$
${ }^{1,2}$ Department of Chemistry, Faculty of Science, Urmia University
Urmia, Iran
n.noroozi@urmia.ac.ir; pesyan@gmail.com

Abstract

One-pot reaction of unsymmetrical 1-methybarbituric acid (1-MBA), BrCN, mono- and dialdehydes in the presence of L-(+)-tartaric acid (L-(+)-TA) and/or triethylamine afforded diastereomeric mixtures of a series of stable heterocyclic monoand bis-spiro barbiturates and their sulfur analogues which are dimeric forms of barbiturate (uracil and thiouracil derivative) at the range of $0^{\circ} \mathrm{C}$ to room temperature. The reaction of symmetrical (thio)barbituric acids with dialdehydes were afforded bis-spiro barbiturates instead, 1-MBA was afforded diastereomeric mixture of bis-spiro barbiturates under the same condition. Diastereoselectively reaction products in the presence of $\mathrm{L}-(+)$-TA were also investigated. Structure elucidation is carried out by ${ }^{1} \mathrm{H}$ NMR, ${ }^{13} \mathrm{C}$ NMR, FT-IR and Mass analyses. Mechanism of the formation is discussed.

Keywords- Diastereoselective; Unsymmetrical Barbituric Acid; Spiro[furo[2;3-d] Pyrimidine; BrCN; Uracil; Thiouracil; L-(+)tartaric Acid

I. INTRODUCTION

Many of the heterocyclic furo [2, 3-d pyrimidines [1], spirobarbituric acids [2] and fused uracils [3, 4] are well known of their wide varieties of pharmaceutical and biological effects.

Barbituric acid reacted with BrCN in the presence of pyridine derivatives as König reaction. In this reaction, the pyridine derivative reacts with BrCN and is afterwards coupled with an active methylene to give a polymethine dye [5]. For example; determinations of niketamide [6] and niacinamide [7] by the reaction of barbituric acid and BrCN have been used.

Chiral tartaric acid (TA) and its derivatives have been used in several asymmetric synthesis such as Sharpless asymmetric epoxidation [8-10], asymmetric hydrogenation [11], as a suitable auxiliary in the Simmons-Smith cyclopropanation reaction [12-15], enantioselective oxidation of sulfides to chiral sulfoxides in the presence of titanium tetraisopropoxide [$\mathrm{Ti}(\mathrm{OiPr}) 4]$ [16-18], resolution of (\pm) - α-methylbenzylamine as resolving agent [19], enantioselective hydrogenation of methyl 4-(4-biphenylyl)-3-oxobutanoate over a tartaric acid-modified Raney nickel catalyst [20], enantioselective Diels-Alder reaction of o-quinodimethanes by utilizing tartaric acid ester as a chiral auxiliary [21], asymmetric dialkynylation reaction of α-dinitrone by utilizing tartaric acid ester as a chiral auxiliary [22] enantioseparation of amino acids [23], resolution of N -methylamphetamine enantiomers with tartaric acid derivatives by supercritical fluid extraction [24], resolution of racemic trans-1,2-cyclohexanediol with tartaric
acid [25], resolution of racemic trans-2benzylaminocyclohexanol with di-p-toluoyl-L-tartaric acid [26], and etc.

BrCN is a very useful reagent for the synthesis of cyanamides [27] cyanates [28], and also is utilized in a selective cleavage of the methionyl peptide bonds in ribonuclease [29], and etc. BrCN also is a useful brominating agent such as; the bromination and cyanation of imidazoles [30], free radical reaction with alkanes (bromination of alkanes) [31] and α-bromination of β-aminoenones [32].

Recently, we have reported the synthesis of 5-aryl-1H,1'H-spiro[furo[2,3- d]pyrimidine-6,5'pyrimidine] $2,2^{\prime}, 4,4^{\prime}, 6^{\prime}\left(3 H, 3^{\prime} H, 5 H\right)$-pentaones and their sulfur analogues derived from the reaction of symmetrical (thio)barbituric acids with aliphatic and aromatic aldehydes [33] and ketones $[34,35]$ in the presence of BrCN and triethylamine and also in the reaction with aromatic aldehydes and BrCN in the presence of L-(+)-TA [36]. More recently, we also have reported the reaction of 1-methyl barbituric acid as an unsymmetrical barbituric acid with aromatic monoaldehydes and BrCN in the presence of triethylamine and/or pyridine [37]. Based on these concepts, in continuation, herein we report the one-pot reaction of aromatic mono- and dialdehydes with unsymmetrical 1-MBA with BrCN in the presence of $\mathrm{L}-(+)$-TA and comparison with the diastereomeric products derived in the presence of triethylamine.

II. RESULTS AND DISCUSSION

This article describes the one-pot reaction of 1-MBA, BrCN and aromatic mono- and dialdehydes in the presence of L-(+)-TA to afford diastereoselectively a class of stable heterocyclic mono- and bis-spiro barbiturate compounds and comparison of its reaction products in both acidic (L-(+)-TA) and basic (triethylamine) conditions. Representatively, we have reported the reaction of barbituric (BA, 1a'), 1,3dimethyl barbituric acid (DMBA, 1b') and thiobarbituric acid TBA (1c') with BrCN and benzaldehyde (2a) in the presence of L-(+)-TA in methanol that afforded a series of stable heterocyclic compounds 5-phenyl-1H,1'H-spiro[furo[2,3-d]pyrimidine-6,5'-pyrimidine]2,2',4,4',6'(3H,3'H,5H)-pentaone (4aa'), 5-phenyl-1,1',3,3'-tetramethyl-1H,1'H-spiro[furo[2,3-d]pyrimidine-6,5'-pyrimidine] $2,2^{\prime}, 4,4^{\prime}, 6^{\prime}(3 H, 3 ' H, 5 H)$-pentaone (4ab') and 5-phenyl-2,2'-dithioxo-2,2',3,3'-tetrahydro-1H,1'H-spiro[furo[2,3-d]pyrimidine-6,5'-pyrimidine]-4,4',6'(5H)-trione (4ac'), respectively in good yields (Scheme 1, path a) [36].

However, these spiro compounds and the salts of 3a'-3c' were also obtained in the presence of triethylamine (Scheme 1, path b) [33].

Representatively, the one-pot reaction of 1-MBA (1e'), BrCN and benzaldehyde (2a) in the presence of triethylamine in methanol afforded diastereomeric mixtures of maximum four class of heterocyclic stable compounds (5S,5'S)-1,1'-dimethyl- (7ae'), (5S,5'R)-1,1'-dimethyl- (8ae'), (5S,5'S)-1',3-dimethyl- (9ae') and (5S,5'R)-1',3-dimethyl-5-phenyl-1H,1'H-spiro[furo[2,3- d]pyrimidine-6,5'-pyrimidine]-
2,2',4,4',6'(3H,3'H,5H)-pentaone (10ae') in good yield, respectively (and also their corresponding four enantiomers) (Fig. 1, Scheme 1, path c) [37].

Ar: $\mathrm{C}_{6} \mathrm{H}_{5}$ (a) $; p-\mathrm{O}_{2} \mathrm{~N}-\mathrm{C}_{6} \mathrm{H}_{4}$ (b); $m-\mathrm{O}_{2} \mathrm{~N}-\mathrm{C}_{6} \mathrm{H}_{4}$ (c); $o-\mathrm{O}_{2} \mathrm{~N}-\mathrm{C}_{6} \mathrm{H}_{4}$ (d); $p-\mathrm{NC}-\mathrm{C}_{6} \mathrm{H}_{4}$ (e); $p-$ $\mathrm{Br}^{2} \mathrm{C}_{6} \mathrm{H}_{4}(\mathrm{f}) ; p-\mathrm{OH}-\mathrm{C}_{6} \mathrm{H}_{4}(\mathrm{~g}) ; m-\mathrm{OH}-\mathrm{C}_{6} \mathrm{H}_{4}(\mathrm{~h}) ; 0-\mathrm{OH}-\mathrm{C}_{6} \mathrm{H}_{4}$ (i): $0-\mathrm{Cl}_{2}-\mathrm{C}_{6} \mathrm{H}_{4}(\mathrm{j}): 2,4-\mathrm{di}-\mathrm{Cl}$ $\mathrm{C}_{6} \mathrm{H}_{4}(\mathbf{k}): 4-\mathrm{OH}-3-\mathrm{CH}_{3} \mathrm{O}-\mathrm{C}_{6} \mathrm{H}_{3}(\mathbf{l}) ; 3-\mathrm{OH}-4-\mathrm{CH}_{3} \mathrm{O}-\mathrm{C}_{6} \mathrm{H}_{3}(\mathrm{~m}) ; 3,4,5-\mathrm{tri}^{-\mathrm{CH}_{3} \mathrm{O}-\mathrm{C}_{6} \mathrm{H}_{2}}$ (n); p-CH3O-CeH4 (o); 1-Naphthyl (p); 2-Furyl (q); p-Me $\mathrm{Ce}_{2} \mathrm{~N}-\mathrm{C}_{8} \mathrm{H}_{4}$ (r); 9-Anthranyl (s)

Scheme 1 Reaction of aromatic mono aldehydes 2 with symmetrical (thio)barbituric acids (1a'-d') and BrCN in the presence of L-(+)-TA (path a) [36], triethylamine (path b) [33]. The reaction of $\mathbf{2}$ with 1-MBA (1e') and BrCN in the presence of triethylamine (path c) [37] and L-(+)-TA (path d)

Fig. 1 Possible four diastereomers (eight stereoisomers) of 7-10 derived from reaction between $\mathbf{1 e}$ ' and $\mathbf{2}$ in the presence of BrCN and triethylamine and/or pyridine
The reaction of $\mathbf{1 e}$ ' with BrCN and $\mathbf{2}$ was also afforded the salt of triethylammonium-5-bromo-2, 4, 6-trioxohexahydro-1-methylpyrimidin-5-ide (3e') in the presence of triethylamine in methanol.

In continuation of these researches, we have performed and report the diastereoselectively one-pot reaction of 1-MBA $\mathbf{1 e}$ ' as an unsymmetrical barbituric acid with BrCN and aromatic monoaldehydes in the presence of L-(+)-TA (Scheme 1 , path d). In this research, the reaction of $\mathbf{1 e}$ ' with aromatic dialdehydes such as phthalaldehyde (11a''), isophthalaldehyde (11b') and terphthalaldehyde (11c' $)$ in the presence of BrCN and triethylamine and L-(+)-TA was also performed (see later).

We have reported that the salts of $\mathbf{3 a} \mathbf{\prime}-\mathbf{3 c}$ ' and $\mathbf{3 e}$ ' plays a major role for the synthesis of $\mathbf{4}$ and $\mathbf{7 - 1 0}$ in the reaction with symmetrical 1a'-1c' and unsymmetrical barbituric acid $\mathbf{1 e}$ ', respectively (Scheme 1, paths b and c) [33, 37]. The mechanism for the formation of $3 \mathbf{e}^{\prime}$ is shown in Scheme 2 [37].

Scheme 2 Proposed mechanism for the preparation of $3 \mathbf{e}^{\prime}$
The enol form of $\mathbf{1 e}$ ' reacts directly with BrCN to form intermediate \mathbf{X}. Intramolecular rearrangement of this intermediate produces 5-bromo-1-methylpyrimidine-2, 4, $6(1 H, 3 H, 5 H)$-trione (5-bromo-1-MBA 40e') followed by loss of HCN to form the salt of triethylammonium-5-bromo-2, 4, 6-trioxohexahydro-1-methylpyrimidin-5-ide 3e'. The salt of triethylammonium hydrobromide was also observed. Unfortunately, all attempts failed to separate or characterize \mathbf{X}, 40e' and $3 \mathbf{e}^{\prime}$. In contrast, we trapped, isolated and characterized the structures of pyridinium 1-methyl-2, 4, 6-trioxohexahydropyrimidin-5-ide (41e') (Fig. 2) [37] and 3a'3c' salts [33].

Fig. 2 Formula structure of pyridinium 1-methyl-2, 4, 6-trioxohexahydropyrimidin-5-ide 41e' [37]

There are maximum eight possible spiro stereoisomers (four or less than four diastereomers) were synthesized from the reaction of $\mathbf{1 e} \mathbf{e}^{\prime}$ with $\mathbf{2 a} \mathbf{- q}$ in the presence of BrCN and triethylamine (Fig. 1). Representatively, the reaction of $\mathbf{1 e} \mathbf{e}^{\prime}$ with $2 n$ was obtained at least four diastereomers (Fig. 3a). Instead, in this reaction (reaction of $\mathbf{1 e}$ ' with $\mathbf{2 n}$) in the presence of BrCN and $\mathrm{L}-(+)-\mathrm{TA}$ was afforded only two diastereomers under the same condition (Fig. 3b).

Fig. 3 Expanded C5-H proton's peaks of an equilibrium mixture of lactam and lactim forms of diastereomeric mixture of 7ne', 8ne', 9ne' and 10ne' derived from the one-pot reaction of $\mathbf{1 e}$ ' with $\mathbf{2 n}$ in the presence of BrCN and triethylamine (a) and diastereoselective formation of $\mathbf{7 n e}$ and $\mathbf{8 n e}$ (and/or 9ne' and 10ne') in the presence of L-(+)-TA (b) (The NMR solvent was DMSO- d_{6})
These observations indicated that L-(+)-TA as a chiral auxiliary controlled the reaction stereoselectivity (see later). The existence of seven overlapped singlets for C5-H proton of diastereomeric mixture of 7ne'-10ne' revealed that there is presumably an equilibrium mixture of lactam and lactim forms (each diastereomer consists of an equilibrium mixture of lactam and lactim forms). Instead, in the presence of L-(+)-TA, two diastereomers only were obtained and indicated that each diastereomer has both lactam and lactim forms (Scheme 3).

Scheme 3 Representatively, an equilibrium mixture of lactam (10[I]) and lactim forms $\mathbf{1 0}[\mathbf{I I I}]$) of $\mathbf{1 0}$ (see Scheme 1)
For instance, ${ }^{1} \mathrm{H}$ and ${ }^{13} \mathrm{C}$ NMR spectrum of the reaction between 1e' and 2c shows exclusively one product of among 7ce'-10ce'. ${ }^{1} \mathrm{H}$ NMR spectrum of product shows a singlet for $\mathrm{C} 5-\mathrm{H}$ at $\delta 5.26 \mathrm{ppm} .{ }^{13} \mathrm{C}$ NMR spectrum shows fifteen distinct peaks (two distinct peaks for $\mathrm{N}-\mathrm{CH}_{3}$ carbon atoms). These
data shows the diastereoselectivity of the reaction in the presence of L-(+)-TA. In contrast, 2c gives four mixtures of diastereomers (7ce'-10ce') in the presence of triethylamine and/or pyridine [37]. Four possible diastereomers were also obtained in the reaction of $1 \mathbf{1 a}^{\prime}$ and $\mathbf{2 n}$ (as a representative) in the presence of BrCN and triehylamine (basic condition) [37].

Another evidence for the diastereoselective formation of $\mathbf{7 - 1 0}$ in the reaction of $\mathbf{1 e}$ with $\mathbf{2}$ and BrCN in the presence of L- $(+)$-TA is shown in Fig. 4. For instance, there are four different chemical shifts for $\mathrm{N}^{-\mathrm{CH}_{3}}$ in $\mathbf{4 n} \mathbf{b}$ ' (derived from the reaction between 1b' and $\mathbf{2 n}$) (Fig. 4a) while there are two different chemical shift environments for $\mathrm{N}-\mathrm{CH}_{3}$ of spiro compound derived from the reaction between $\mathbf{1 e}$ ' and $\mathbf{2 n}$ in the presence of L-(+)-TA (Fig. 4b). These observations indicate the diastereoselective formation two diastereomers among of 7ne'-10ne'. Number of diastereomers derived from some mono- and dialdehydes in the reaction with $\mathbf{1 e}$ ' and BrCN in the presence of L-(+)-TA and the percent of each diastereomer was summarized in Table I .

TABLE I NUMBER OF DIASTEREOMER(S) WERE OBTAINED IN THE REACTION OF $1 \mathbf{e}$ ' WITH ALDEHYDES AND BRCN IN THE PRESENCE OF L-(+)-TA

Entry	Aldehyde	Number of diastereomer(s)	Percent of each diastereomer (\%)
1	2 c	1	100
2	2 e	2	$36.9,63.1$
3	2 f	3	$55.8,38.9,5.3$
4	2 m	1	100
5	2 n	2	50,50
6	$11 \mathrm{a} "$	2	40,60
7	11 c "	2	$45,50,5^{\mathrm{a}}$

Fig. 4 Comparison of the expanded ${ }^{13} \mathrm{C}$ NMR spectra of $\mathrm{N}-\mathrm{CH}_{3}$ aliphatic regions of 4nb' (a) [33] in CDCl_{3} and two diastereomeric mixture of $7 \mathbf{n e}$ ' and 8ne' (and/or 9ne' and 10ne') in the presence of L-(+)-TA (b) in DMSO- d_{6}

As to the proximate percent of each diastereomer due to C-H peaks overlapping, the new one-pot reaction of $\mathbf{1 e}$ ' with BrCN and 11a' ${ }^{\prime}$-11c' in the presence of triethylamine afforded diastereomeric mixtures of new class of stable heterocyclic spiro mono- and bis-barbiturates (Scheme 4). Owing to the hindrance effect in the reaction of 11a', only one of its aldehyde group was reacted and formed diastereomeric mixture of 2-((5R,5'R)-1',3-dimethyl- (12e'a''), 2-((5R,5'S)-1',3-dimethyl- (13e'a' $), 2-\left(\left(5 R, 5^{\prime} R\right)-1,1\right.$ '-dimethyl(14e'a'') and 2-((5R,5'S)-1, 1'-dimethyl-2, 2', 4, 4', 6'-pentaoxo-2, 2', 3, 3', 4, 4', 5, 6'-octahydro-1H, 1'H-spiro[furo[2,3-d] pyrimidine-6,5'-pyrimidin]-5yl)benzaldehyde ($\mathbf{1 5 e} \mathbf{e}^{\prime} \mathbf{a}^{\prime}$) (Scheme 4). The reaction of $\mathbf{1 e}$ ' with 11b' and 11c' were afforded diastereomeric mixture of $\mathbf{1 6 - 2 7} \mathbf{e}^{\prime} \mathbf{b}^{\prime \prime}$ and 28 $39 \mathbf{e}^{\prime} \mathbf{c}^{\prime \prime}$, respectively in the presence of BrCN and triethylamine (Scheme 4). The separation of these diastereomers was unsuccessful due to their equal polarity.

Scheme 4 Reaction of $\mathbf{1 e}$ ' with $\mathbf{1 1 a} \mathbf{a}^{\prime}$ '-c' and BrCN in the presence of triethylamine
Representatively, the proposed mechanism of the formation of four diastereomers 12e'a'-15e'a'" under basic condition is shown in Scheme 5.

First, the Knoevenagel condensation of $\mathbf{1 e}$ ' with phthalaldehyde 11a' as representative afforded two geometric: E - (I) and Z-isomers (J) of $5 \mathbf{e}^{\prime}$. Michael addition of $3 \mathbf{e}^{\prime}$ to \mathbf{I} and \mathbf{J} obtained intermediates A-D, respectively. Unfortunately, all attempts failed to separate or characterize these intermediates (A-D). Finally, intramolecular nucleophilic attack of oxygen anion to the carbon atom (O-attack) afforded 12e'a'-15e'a' in good yield and also triethylammonium hydrobromide salt (Scheme 5). Similarly, as mentioned above, $3 \mathbf{e}^{\prime}$ also has major role in the reaction with 11a' $\mathbf{~ - 1 1 c ' ~ f o r ~ t h e ~}$ synthesis of possible distereomeric mixture of bis-spiro barbiturates (12-39) under the same condition (Scheme 5).

Scheme 5 Proposed mechanism for the preparation of possible four diastereomers of 12e'a'-15e'a' in the presence of triethylamine
Similar to role of $3 \mathbf{e}^{\mathbf{e}}$, the 5 -bromo-1-methyl BA (40e') also plays a major role (act either as nucleophile or as electrophile) for the synthesis of mono- and bis-spiro compounds from the one-pot reaction of mono- and dialdehydes with $\mathbf{1 a} \mathbf{a}-\mathbf{1 e}$ ' and BrCN in the presence of $\mathrm{L}-(+)-$ TA. A proposed mechanism for the formation of 40e' is shown in Scheme 6.

Scheme 6 Proposed mechanism for the preparation of $5 \mathbf{e}^{\prime}$ and $\mathbf{4 0 e}$
It is reasonable to assume that the enolic form of $\mathbf{1 e} \mathbf{e}^{\prime}$ reacted with BrCN formed an intermediate (\mathbf{X}). Intramolecular rearrangement of \mathbf{X} [36] afforded 40e' followed by loss of HCN (path a). No 40e' was isolated in the reaction mixture. For this reason, we also performed the reaction of $\mathbf{1 a} \mathbf{a}-\mathbf{1} \mathbf{e}^{\mathbf{\prime}}$ with BrCN in the absence of aldehyde 2 in the presence of $\mathrm{L}-(+)-$ TA. The 40a'-e' was obtained in good yield. In parallel, as a competition reaction, the Knoevenagel condensation of $\mathbf{1 e} \mathbf{'}^{\prime}$
with 2 and/or 11 was also occurred (path c). No 1-methyl-2, 4, 6-trioxohexahydropyrimidine-5-carbonitrile (6e') was observed in these reactions (in the presence of both triethylamine and/or L-(+)-TA) so we concluded that no path b was occurred (Scheme 6).

Representatively, the proposed mechanism of the formation of 12e'a'-15e'a' is shown in Scheme 7 under acidic condition (L-(+)-TA).

Scheme 7 Representatively, proposed mechanism for the preparation of 12e'a'-15e'a' in the presence of L-(+)-TA
First, the Knoevenagel condensation of $\mathbf{1 e}$ with phthalaldehyde (11a'') afforded the mixture of E - and Zisomers (\mathbf{I} and \mathbf{J} forms, respectively) then Michael addition of 40e' to β-carbon position of \mathbf{I} and/or \mathbf{J} as an α, β-unsaturated carbonyl compound gave intermediates E-H. Unfortunately, all attempts failed to separate or characterize E-H. Finally, intramolecular nucleophilic attack of OH group to the carbon atom (pushing the bromide ion out) produced 12e'a'-15e'a" in good yield (Scheme 7). For instance, 5-bromo-1, 3-dimethyl BA (40b') was reported to react with another unsaturated carbon-carbon double bond to form 5-spirobarbiturate system under basic condition [38, 39]. Recently, Elinson et al has also been reported the structures of $\mathbf{4 b}$ ' in the reaction of DMBA $\mathbf{1 b}$ ' with aldehydes in the presence of bromine under basic condition (EtONa/EtOH) [40].

The reaction of aromatic aldehydes possessing strong electron donor and bulky hindered substituents such as 4 dimethylamino benzaldehyde (2r) and 9-antharene carbaldehyde (2s) exclusively were afforded Knoevenagel
adducts, respectively in the reaction with $1-\mathrm{MBA} 1 \mathbf{e}^{\prime}$ and BrCN in the presence of triethylamine and/or L-(+)-TA ($E-$ and Z-isomers of 5 re' and 5 se', respectively).

III. EXPERIMENTAL: THE GENERAL PROCEDURES

The drawing and nomenclature of compounds were done by ChemBioDraw Ultra 12.0 version software. Melting points were measured with an Electrothermal digital apparatus and were uncorrected. IR spectra were determined on a NEXUS 670 FT IR spectrometer by preparing KBr pellets. The ${ }^{1} \mathrm{H}$ and ${ }^{13} \mathrm{C}$ NMR spectra were recorded on Bruker 300 FT-NMR at 300 and 75 MHz , respectively (Urmia University, Urmia, Iran) ${ }^{1} \mathrm{H}$ and ${ }^{13} \mathrm{C}$ NMR spectra were obtained on solution in DMSOd_{6} and/or in CDCl_{3} as solvents using TMS as internal standard. The data are reported as ($\mathrm{s}=$ singlet, $\mathrm{d}=$ doublet, $\mathrm{t}=$ triplet, $\mathrm{q}=$ quartet, $\mathrm{m}=$ multiplet or unresolved, bs=broad singlet, coupling constant(s) in Hz , integration). All reactions were monitored by TLC with silica gel-coated plates (AcOEt:AcOH/ 80:20/ v:v). The mass analysis performed using mass spectrometer (Agilent Technology (HP) type, MS Model: 5973 network Mass selective detector Electron Impact (EI) 70 eV), ion source temperature was $230{ }^{\circ} \mathrm{C}$ (Tehran University, Tehran, Iran). The compounds $\mathbf{1 e}$ ' was synthesized and purified in our laboratory as described in the literature previously [19]. The BrCN was synthesized based on reported references [41]. Compounds 1a'-1d', L-(+)-TA and used solvents purchased from Merck without further purification.

General procedures for the preparation of $\mathbf{3 e}^{\mathbf{e}}$, $5 \mathbf{r e}^{\mathbf{\prime}}$, $5 \mathbf{s e} \mathbf{e}^{\prime}$, 7ae'-7qe' through 10ae'-10qe', 12e'a"-15e'a' and 11e'b'11e'c'.

The physical and spectral data of the selected compounds from 3e', 5re', 5se', 7ae'-7qe' through 10ae'-10qe', 40e', $\mathbf{1 2 e} \mathbf{e} \mathbf{a '} \mathbf{- 1 5 e ' a ' ~ a n d ~} \mathbf{1 1 e} \mathbf{e} \mathbf{c}$ ' are the following as representatives.

In a 10 mL with Teflon-faced screw cap tube equipped by a magnetically stirrer, dissolved $0.136 \mathrm{~g}(0.96 \mathrm{mmol}) 1$ 1methyl barbituric acid, $0.072 \mathrm{~g} \quad(0.48 \mathrm{mmol})$ 3nitrobenzaldehyde and 0.8 g L-(+)-tartaric acid in 10 mL methanol and then $0.06 \mathrm{~g}(0.48 \mathrm{mmol}) \mathrm{BrCN}$ was added into solution at $0^{\circ} \mathrm{C}$. The reaction mixture was stirred for 2 h at $0{ }^{\circ} \mathrm{C}$ to room temperature. The Teflon-faced screw cap tube prevented the vaporization of BrCN during the reaction time. The progression of reaction was monitored by thin layer chromatography (AcOEt:AcOH/ 80:20/ v:v). After a few minutes, the crystalline white solid precipitate, filtered off, washed with few mL methanol and dried. ($0.05 \mathrm{~g}, 55 \%$ yield).

1-Methylpyrimidine-($\mathbf{1 H}, \mathbf{3 H}, \mathbf{5 H}$)-2, 4, 6-trione ($1 \mathrm{e}^{\prime}$) [37]: White solid; m.p. $132{ }^{\circ} \mathrm{C}$; FT-IR (KBr) 3423, 3194, 3084, 2922, 2850, 1759, 1687, 1455, 1376, 1356, $1281 \mathrm{~cm}^{-1} ;{ }^{1} \mathrm{H}$ NMR (DMSO- $\left.d_{6}, 300 \mathrm{MHz}\right) \delta 3.03$ (s, 3H), 2.57 (s, 2H), $11.30(\mathrm{~s}, 1 \mathrm{H}) ;{ }^{13} \mathrm{C}$ NMR (DMSO- $\left.\mathrm{d}_{6}, 75 \mathrm{MHz}\right) \delta 167.4,166.9$, 152.3, 77.7, 27.3.

Triethylammonium-5-bromo-2,4,6-
trioxohexahydropyrimidin-5-ide (3a') [33, 34]: White solid (50\%); mp $=155-158{ }^{\circ} \mathrm{C}$ (decomps.); FT-IR (KBr) 3130, 2985, 2816, 1658, 603, $524 \mathrm{~cm}^{-1} ;{ }^{1} \mathrm{H}$ NMR (DMSO-d $\left.{ }_{6}, 300 \mathrm{MHz}\right) \delta$ $1.16(\mathrm{t}, 9 \mathrm{H}), 3.08(\mathrm{q}, 6 \mathrm{H}), 8.93(\mathrm{bs}, 1 \mathrm{H}), 9.38(\mathrm{~s}, 2 \mathrm{H}) ;{ }^{13} \mathrm{C}$ NMR (DMSO- $\left.d_{6}, 75 \mathrm{MHz}\right) \delta 161.3,152.0,72.3,46.2,9.1 ;$ Anal. Calcd. for $\mathrm{C}_{10} \mathrm{H}_{18} \mathrm{~N}_{3} \mathrm{O}_{3} \mathrm{Br}$: C, 38.9; N, 13.63; H, 5.84. Found: C, 39.04; N, 13.66; H, 5.92 \%. MS, m/z 308 (M ${ }^{+}, 0$), 154 (7), 128 (base peak, 100), 101 (15), 86 (60), 72 (5), 58 (16), 42 (98).

Triethylammonium-5-bromo-4,6-dioxo-2-thioxohexahydropyrimidin-5-ide (3c') [33,34]: White solid (50\%); mp $=159-161{ }^{\circ} \mathrm{C}$; FT-IR (KBr) 3408, 3070, 2975, 2937, 2677, 1648, 1612, 590, $526 \mathrm{~cm}^{-1} ;{ }^{1} \mathrm{H}$ NMR (DMSO-d ${ }_{6}$, $300 \mathrm{MHz}) \delta 1.16$ (t, 9H), 3.07 (q, 6H), 10.17 (bs, 1H), 10.35 (bs, 2H); ${ }^{13} \mathrm{C}$ NMR (DMSO- $\mathrm{d}_{6}, 75 \mathrm{MHz}$) $\delta 174.7,164.3,79.7$, 46.2, 9.1; Anal. Calcd. for $\mathrm{C}_{10} \mathrm{H}_{18} \mathrm{~N}_{3} \mathrm{O}_{2} \mathrm{SBr}$: C, 37.05; $\mathrm{N}, 12.97$; H, 5.56. Found: C, 37.10 ; N, 13.05; H, 5.51 \%.

1,1'-Dimethyl-5-(3-nitrophenyl)-1H,1'H-spiro[furo[2,3-d]pyrimidine-6,5'-pyrimidine]-2,2',4,4',6'(3H,3'H,5H)-pentaone (One distinct diastereomer among 7ce'-10ce'): White solid; FT-IR (KBr) 3428, 3024, 2027, 2856, 2814, 1736, 1707, 1655, 1528, 1356 cm^{-1}; ${ }^{1} \mathrm{H}$ NMR (DMSO- $\left.\mathrm{d}_{6}, 300 \mathrm{MHz}\right) \delta 2.35$ (3, 3H), 3.05 (s, 3H), 5.26 (s, 1H), 7.61 (m, 2H), 8.07 (s, 1H), $8.15(\mathrm{~m}, 1 \mathrm{H})$, $11.18(\mathrm{~s}, 1 \mathrm{H}), 11.97(\mathrm{~s}, 1 \mathrm{H}) ;{ }^{13} \mathrm{C}$ NMR (DMSO-d $\left.{ }_{6}, 75 \mathrm{MHz}\right) \delta$ 165.7, 164.8, 164.1, 159.2, 151.0, 149.8, 147.9, 137.6, 136.0, 130.1, 124.0, 123.7, 90.0, 85.9, 54.8, 29.3, 27.4.

4-(1,1'-Dimethyl-2,2',4,4',6'-pentaoxo-

2,2',3,3',4,4',5,6'-octahydro-1H,1'H-spiro[furo[2,3-d]pyrimidine-6,5'-pyrimidin]-5-yl)benzonitrile (Mixture of two diastereomers among 7ee'-10ee'): White solid; m.p. $264{ }^{\circ} \mathrm{C}$ (decomps.); FT-IR (KBr) 3433, 3050, 2229, 1702, 1630, $1465 \mathrm{~cm}^{-1}$; ${ }^{1} \mathrm{H}$ NMR (DMSO-d $\left.{ }_{6}, 300 \mathrm{MHz}\right) \delta 2.38(\mathrm{~s}$, $3 \mathrm{H}), 3.08(\mathrm{~s}, 3 \mathrm{H}), 5.08,5.12(2 \mathrm{~s}, 1 \mathrm{H}), 7.37(\mathrm{~m}, 2 \mathrm{H}), 7.38(\mathrm{~d}$, $2 \mathrm{H}, J=8.1 \mathrm{~Hz}$), 7.78 (d, 2H, $J=8.1 \mathrm{~Hz}$), 11.18, (s, 1H), 11.95 (s, 1H); ${ }^{13} \mathrm{C}$ NMR (DMSO- $d_{6}, 75 \mathrm{MHz}$) $\delta 165.9,165.8,164.7$, 164.1, 163.9, 163.5, 159.1, 151.2, 151.0, 149.8, 140.8, 132.4, $130.4,130.3,118.9,111.7,90.0,89.8,86.0,84.9,55.5,29.3$, 27.4, 27.3.

5-(4-Bromophenyl)-1,1'-dimethyl-1H,1'H-spiro[furo[2,3-d]pyrimidine-6,5'-pyrimidine]-
2,2',4,4',6'(3H,3'H,5H)-pentaone (Mixture of three diastereomers among 7fe'-10fe'): White solid; m.p. $251{ }^{\circ} \mathrm{C}$ (decomps.); FT-IR (KBr) 3406, 3051, 2868, 2816, 1736, 1706, 1658, 1589, 1526, 1459, $1375 \mathrm{~cm}^{-1}$; ${ }^{1}$ H NMR (DMSO- $d_{6}, 300$ $\mathrm{MHz}) \delta 2.47(\mathrm{~s}, 3 \mathrm{H}), 3.04(\mathrm{~s}, 3 \mathrm{H}), 4.93,4.98,5.01(3 \mathrm{~s}, 1 \mathrm{H})$, 7.10 (d, 2H, $J=8.4 \mathrm{~Hz}$), 7.49 (d, 2H, $J=8.4 \mathrm{~Hz}$), 11.16, 11.92, 13.0 (3s, 2H); ${ }^{13} \mathrm{C}$ NMR (DMSO-d $\left.{ }_{6}, 75 \mathrm{MHz}\right) \delta$ 155.2, 166.0, 164.5, 164.1, 159.1, 151.0, 150.0, 149.9, 134.5, 131.4, 131.3, 122.3, 122.2, 90.2, 86.2, 55.6, 29.3, 27.4, 27.3.

5-(3-Hydroxy-4-methoxyphenyl)-1,1'-dimethyl-1H,1'H-spiro[furo[2,3-d]pyrimidine-6,5'-pyrimidine]-2,2',4,4',6'(3H,3'H,5H)-pentaone (One distinct diastereomer among $7 \mathrm{me}^{\prime}-10 \mathrm{me}$ '): Yellow solid; m.p. $210{ }^{\circ} \mathrm{C}$ (decomps.); FT-IR (KBr) 3600, 3446, 3206, 3016, 2819, 1707, 1654, 1516, 1445, $1379 \mathrm{~cm}^{-1} ;{ }^{1} \mathrm{H}$ NMR (DMSO$\left.d_{6}, 300 \mathrm{MHz}\right) \delta 2.43(\mathrm{~s}, 3 \mathrm{H}), 2.47$ (s, 3 H), 3.71 ($\left.\mathrm{s}, 3 \mathrm{H}\right), 4.74$ (s , $1 \mathrm{H}), 6.47(\mathrm{~s}, 2 \mathrm{H}), 6.78(\mathrm{~s}, 1 \mathrm{H}), 8.96(\mathrm{~s}, 1 \mathrm{H}), 11.15(\mathrm{~s}, 1 \mathrm{H})$, $11.85(\mathrm{~s}, 1 \mathrm{H}) ;{ }^{13} \mathrm{C}$ NMR (DMSO- $\left.\mathrm{d}_{6}, 75 \mathrm{MHz}\right) \delta 166.4,164.3$, 164.1, 159.1, 151.0, 150.0, 148.3, 146.6, 127.0, 119.9, 115.9, 112.0, 90.6, 86.5, 56.6, 56.1, 29.2, 27.5.

1,1'-Dimethyl-5-(3,4,5-trimethoxyphenyl)-1H,1'H-

 spiro[furo[2,3-d]pyrimidine-6,5'-pyrimidine]2,2',4,4', $\mathbf{6}^{\prime}\left(3 H, 3^{\prime} H, 5 H\right)$-pentaone (Mixture of two diastereomers among 7ne'-10ne'): White solid; m.p. $294{ }^{\circ} \mathrm{C}$ (decomps.); FT-IR (KBr) 3432, 3009 (CH-ar.), 2841, 1706, 1653, $1124 \mathrm{~cm}^{-1}$; ${ }^{1} \mathrm{H}$ NMR (DMSO- $\left.\mathrm{d}_{6}, 300 \mathrm{MHz}\right) \delta 2.39$ (s, 3 H), 3.06 ($\mathrm{s}, 3 \mathrm{H}$), 3.14 ($\mathrm{s}, 3 \mathrm{H}$), 3.61 ($\mathrm{s}, 3 \mathrm{H}$), 3.67 (s, 6H), 4.83, 4.86, 4.88, 4.91 (4s, 1H, 4CH-aliph.), 6.44, 6.47 (s, 2H, Ph), 11.13, 11.32, 11.35, 11.87, 11.90, 12.95 (6s, 2H, 2NH); ${ }^{13} \mathrm{C}$ NMR (DMSO- $\left.d_{6}, 75 \mathrm{MHz}\right) \delta 167.0,166.9,166.2,166.1$,164.4, 163.7, 163.6, 163.1, 159.7, 159.1, 153.0, 152.9, 151.3, 151.1, 150.3, 150.2, 150.1, 138.1, 130.4, 130.3, 130.2, 107.0, 106.7, 90.6, 85.8, 60.5, 60.4, 57.2, 57.1, 56.4, 29.2, 28.7, 27.5, 27.3.

1,1',3,3'-Tetramethyl-5-(3,4,5-trimethoxyphenyl)-1H,1'H-spiro[furo[2,3-d]pyrimidine-6,5'-pyrimidine]-2,2',4,4',6'(3H,3'H,5H)-pentaone (5nb') [36]: White solid (60\%); mp = 205-207 ${ }^{\circ} \mathrm{C}$; FT-IR (KBr) 3425, 3050, 2926, 2848, 1712, 1687, 1666, $1382 \mathrm{~cm}^{-1}$; ${ }^{1} \mathrm{H}$ NMR $\left(\mathrm{CDCl}_{3}, 300\right.$ $\mathrm{MHz}) \delta 2.67$ (s, 3H), 3.32 (s, 6H), 3.42 (s, 3H), 3.53 (s, 3H), 3.79 (s, 3H), 3.81 (s, 3H), 4.84 (s, 1H), 6.25 (s, 2H.); ${ }^{13} \mathrm{C}$ NMR ($\left.\mathrm{CDCl}_{3}, 75 \mathrm{MHz}\right) \delta 165.4,163.1,162.7,158.6,153.5$, 151.2, 149.7, 138.9, 128.1, 105.3, 90.4, 85.3, 60.8, 59.8, 56.2, 30.0, 29.4, 28.7, 28.2; MS, m/z 488 ($\mathrm{M}^{+}, 60 \%$), 457 (10), 441 (6), 416 (12), 359 (12), 333 (100), 305 (18), 276 (10), 248 (10), 232 (5), 219 (6), 200 (10), 187 (8), 168 (6), 116 (7), 101 (6), 69 (5), 58 (12).

5-(4-(1',3-Dimethyl-2,2',4,4',6'-pentaoxo-

 2,2',3,3',4,4',5,6'-octahydro-1H,1'H-spiro[furo[2,3-d]pyrimidine-6,5'-pyrimidin]-5-yl)phenyl)-1,1'-dimethyl-1H,1'H-spiro[furo[2,3-d]pyrimidine-6,5'-pyrimidine]-2,2',4,4',6'(3H,3'H,5H)-pentaone (Mixture of three diastereomers among 28e'c'-39e'c' ${ }^{\prime}$): White solid; m.p. $232{ }^{\circ} \mathrm{C}$ (decomps.); FT-IR (KBr) 3470, 3047, 2825, 1706, 1650, 1550, 1513, 1441, 1378, 1022, 757, $567 \mathrm{~cm}^{-1}$; ${ }^{1} \mathrm{H}$ NMR (DMSO-d $\left.{ }_{6}, 300 \mathrm{MHz}\right) \delta 2.32$ (s, 3H), 3.03 (s, 3H), 3.05 (s, $3 \mathrm{H}), 3.29(\mathrm{~s}, 3 \mathrm{H}), 4.84,4.89,4.93(\mathrm{~s}, 2 \mathrm{H}$, mixture of at least three diastereomers and equilibrium mixtures of tautomers), 7.00 (m, 4H), 10.76, 11.43 (bs, 1H), 11.13 (s, 1H), 11.82 (bs, 1 H), 12.98 (bs, 1 H); ${ }^{13} \mathrm{C}$ NMR (DMSO- $d_{6}, 75 \mathrm{MHz}$) 167.2, 165.1, 164.4, 163.3, 159.6, 159.1151.4, 151.0, 150.0, 135.0, 129.0, 128.8, 90.0, 49.0, 46.1, 29.2, 28.7, 27.27, 27.26.5-(2-Formylphenyl)-1H,1' H -spiro[furo[2,3-d]pyrimidine-6,5'-pyrimidine]2,2',4,4',6'(3H,3'H,5H)pentaone (11a'a''): White solid; m.p. $=287^{\circ} \mathrm{C}$ (decomps.); FT-IR (KBr) 3224, 2991, 2787 (COH), 2687 (COH), 1736, 1688, $1587 \mathrm{~cm}^{-1}$; ${ }^{1} \mathrm{H}$ NMR (DMSO-d $\left.{ }_{6}, 300 \mathrm{MHz}\right) \delta 5.88$ (s, 1H), 7.31 (d, 1H, J=5.7 Hz), 7.59 (m, 2H), 7.95 (d, 1H, J=6.3 $\mathrm{Hz}), 10.06$ (s, 1H), 10.88 (s, 1H), 11.10 (s, 1H), 11.74 (s, 1H), 12.66 (bs, 1H).

5-(2-Formylphenyl)-1,1',3,3'-tetramethyl-1H,1'H-

 spiro[furo[2,3-d]pyrimidine-6,5'-pyrimidine]2,2',4,4',6'(3H,3'H,5H)-pentaone (11b'a' '): White solid; m.p. $=388{ }^{\circ} \mathrm{C}$ (decomps.); FT-IR (KBr) 3050, 2926, 2854, 2738, 1691, 1518, 1438, $1382 \mathrm{~cm}^{-1} ;{ }^{1} \mathrm{H}$ NMR $\left(\mathrm{CDCl}_{3}, 300 \mathrm{MHz}\right) \delta 2.64(\mathrm{~s}, 3 \mathrm{H}), 3.31(\mathrm{~s}, 3 \mathrm{H}), 3.46(\mathrm{~s}, 3 \mathrm{H})$, 3.50 (s, 3H), 6.10 (s, 1H), 7.39 (d, 1H, J = 7.2 Hz), 7.60 (m, $2 \mathrm{H}), 7.77$ (d, $1 \mathrm{H}, \mathrm{J}=6.9 \mathrm{~Hz}$), $9.94(\mathrm{~s}, 1 \mathrm{H}, \mathrm{COH}) ;{ }^{13} \mathrm{C}$ NMR $\left(\mathrm{CDCl}_{3}, 75 \mathrm{MHz}\right) \delta 194.4,165.6,163.4,162.6,158.6,151.2$, 149.8, 136.0, 134.4, 134.2, 133.6, 131.5, 129.4, 88.6, 86.8, 52.3, 29.9, 29.5, 28.2, 28.2. MS ($\mathrm{m} / \mathrm{z}, \%$) $426\left(\mathrm{M}^{+}, 6\right), 397$ (4), 310 (90), 280 (6), 253 (65), 222 (100, base peak), 197 (30), 183 (50),m 156 (15), 138 (16), 111 (10), 83 (18), 69 (80), 58 (60), 53 (28), 43 (28).

2-(1,1',3,3'-Tetraethyl-4,4',6'-trioxo-2,2'-dithioxo-2,2',3,3',4,4',5,6'-octahydro-1H,1'H-spiro[furo[2,3-d]pyrimidine-6,5'-pyrimidine]-5-yl)benzaldehyde (11d'a' ${ }^{\prime}$):

White solid; m.p. $=212^{\circ} \mathrm{C}$ (decomps.); FT-IR (KBr) 3050, 2979, 2930, 2856, 2748, 1738, 1696, 1666, 1493, 1401, 1111 cm^{-1}; ${ }^{1} \mathrm{H}$ NMR (DMSO- $\left.d_{6}, 300 \mathrm{MHz}\right) \delta 0.68(\mathrm{t}, 3 \mathrm{H}, J=6.9$ $\mathrm{Hz}), 1.27(\mathrm{t}, 3 \mathrm{H}, \mathrm{J}=6.9 \mathrm{~Hz}), 1.37(\mathrm{t}, 3 \mathrm{H}, \mathrm{J}=6.9 \mathrm{~Hz}), 1.47(\mathrm{t}$, $3 \mathrm{H}, J=6.9 \mathrm{~Hz}), 3.49(\mathrm{~m}, 1 \mathrm{H}), 3.85$ (sextet, $1 \mathrm{H}, J=6.9 \mathrm{~Hz}$),
4.43-4.67 (m, 6H), 6.34 (s, 1H), 7.36 (d, 1H, $J=7.2 \mathrm{~Hz}$), 7.55$7.64(\mathrm{~m}, 2 \mathrm{H}), 7.73(\mathrm{~d}, 1 \mathrm{H}, J=6.6 \mathrm{~Hz}), 9.92(\mathrm{~s}, 1 \mathrm{H}) ;{ }^{13} \mathrm{C}$ NMR (DMSO- $\left.d_{6}, 75 \mathrm{MHz}\right) \delta$ 193.7, 177.2, 175.8, 163.8, 162.0, 161.6, 157.0, 136.2, 134.1, 133.8, 133.6, 131.4, 129.4, 91.5, 88.5, 51.9, 45.1, 44.8, 43.7, 43.6, 12.5, 12.1, 11.7, 11.5 .

1,3-Bis\{[1H,1'H-Spiro[furo[2,3-d]pyrimidine-6,5'pyrimidine] $2,2^{\prime}, 4,4^{\prime}, 6^{\prime}\left(3 H, 3^{\prime} H, 5 H\right)$-pentaone]-5-yl\}benzene (11a'b' '): White solid; m.p. $320^{\circ} \mathrm{C}$ (decomps.); FT-IR (KBr) 3470, 3047, 2825, 1706, 1441, $1378 \mathrm{~cm}^{-1}$; ${ }^{1} \mathrm{H}$ NMR (CDCl_{3}, $300 \mathrm{MHz}) \delta 4.64,4.67,4.70(\mathrm{~s}, 2 \mathrm{H}), 6.94(\mathrm{~s}, 1 \mathrm{H}), 7.03(\mathrm{~m}$, 2H), 7.17 (m, 1H), 10.31 (bs, 1H (a shoulder at the peak's left side), $10.76,10.80,10.84(1 \mathrm{H}), 11.56,11.59(1 \mathrm{H}), 12.66$ (bs, 1 H) (mixture of 3 rotamers); ${ }^{13} \mathrm{C}$ NMR $\left(\mathrm{CDCl}_{3}, 75 \mathrm{MHz}\right) \delta$ 167.2, 165.0, 164.8, 163.7, 160.7, 160.6, 160.3, 151.2, 151.1, 149.2, 135.4, 129.8, 129.7, 128.4, 89.5, 89.4, 86.8, 86.6, 86.5, 55.8, 55.5. MS ($\mathrm{m} / \mathrm{z}, \%$) 606 ($\mathrm{M}^{+}, 1$), 493 (6), 438 (12), 294 (6), 279 (10), 246 (15), 203 (50), 190 (18), 177 (20), 164 (12), 149 (24), 85 (16), 71 (32), 57 (66), 43 (100, base peak).

1,3-Bis\{[1,1',3,3'-Tetramethyl-1H,1'H-spiro[furo[2,3-d]pyrimidine-6,5'-pyrimidine] $2,2^{\prime}, 4,4^{\prime}, 6^{\prime}(3 H, 3 ' H, 5 H)-$ pentaone]-5-yl\}benzene (11b'b''): White solid; m.p. $251{ }^{\circ} \mathrm{C}$ (decomps.); FT-IR (KBr) 3050, 2954, 2926, 2856, 1691, 1515, 1440, 1378, 1041, $753 \mathrm{~cm}^{-1} ;{ }^{1} \mathrm{H}$ NMR $\left(\mathrm{CDCl}_{3}, 300 \mathrm{MHz}\right) \delta$ 2.72 (s, 3H), 3.32 (s, 3H), 3.38 (s, 3H), 3.52 (s, 3H), 4.77 (s, $1 \mathrm{H}), 4.85(\mathrm{~s}, 1 \mathrm{H}), 6.84(\mathrm{~s}, 1 \mathrm{H}), 7.10(\mathrm{~d}, 2 \mathrm{H}, \mathrm{J}=7.5 \mathrm{~Hz}), 7.32(\mathrm{t}$, $1 \mathrm{H}, J=7.5 \mathrm{~Hz}) ;{ }^{13} \mathrm{C}$ NMR $\left(\mathrm{CDCl}_{3}, 75 \mathrm{MHz}\right) \delta 165.4,162.9$, 162.6, 158.2, 151.2, 149.2, 134.6, 134.3, 129.8, 129.3, 129.0, 128.6, 128.2, 89.9, 85.9, 58.5, 30.0, 29.5, 28.9, 28.2.

1,3-Bis $\{[1,1$ ',3,3'-tetraethyl-2,2'-dithioxo-2,2',3,3'-tetrahydro-1H,1' H -spiro[furo[2,3- d]pyrimidine-6,5'-pyrimidine]-4,4',6'(5H)-trione]-5-yl\}benzene (11d'b' '): White solid; m.p. $342{ }^{\circ} \mathrm{C}$; FT-IR (KBr) 2980, 1741, 1698, 1620), 1491, 1437, $1385 \mathrm{~cm}^{-1} ;{ }^{1} \mathrm{H}$ NMR $\left(\mathrm{CDCl}_{3}, 300 \mathrm{MHz}\right) \delta$ 1.19-1.50 (m, 12H), 4.54-4.71 (m, 8H), $4.83(\mathrm{~s}, 1 \mathrm{H}), 6.85(\mathrm{~s}$, $1 \mathrm{H}), 7.12(\mathrm{~d}, 2 \mathrm{H}, J=7.8 \mathrm{~Hz}), 7.29(\mathrm{t}, 1 \mathrm{H}, J=7.8 \mathrm{~Hz}) ;{ }^{13} \mathrm{C}$ NMR (DMSO-d $\left.d_{6}, 75 \mathrm{MHz}\right) \delta: 177.5,174.6,163.7,162.1$, 162.0, 161.0, 132.3, 129.3, 127.7, 126.7, 126.6, 124.3, 59.0, 44.6, 44.0, 43.9, 43.6, 12.5, 12.4, 11.8, 11.5.

1,4-Bis $\{[1 H, 1$ ' H-spiro[furo[2,3-d]pyrimidine-6,5'-pyrimidine]2,2',4,4',6'(3H,3'H,5H)-pentaone]-5-yl\}benzene (11a'c' $)$: White solid; m.p. $386{ }^{\circ} \mathrm{C}$ (decomps.); FT-IR (KBr) 3448, 3209, 3064, 2833, 1719, 1674, 1411, $1357 \mathrm{~cm}^{-1} ;{ }^{1} \mathrm{H}$ NMR (DMSO- $\left.d_{6}, 300 \mathrm{MHz}\right) \delta 4.68,4.71,4.74$ (3s, 2H), 6.95, 6.99, 7.01 (3s, 4H), 10.54 (bs, 2H), 10.74, 10.77, 10.80 (3s, 2 H), 11.58 (s, 2H), 12.58 (bs, 2H); ${ }^{13} \mathrm{C}$ NMR (DMSO- $\mathrm{d}_{6}, 75$ $\mathrm{MHz}) \delta: 167.34,164.8,163.7,160.2,151.2,149.6,135.4$, 128.9, 89.4, 86.2, 55.4.

1,4-Bis\{[1,1',3,3'-Tetramethyl-1H,1'H-spiro[furo[2,3-d]pyrimidine-6,5'-pyrimidine] $2,2^{\prime}, 4,4^{\prime}, 6^{\prime}(3 H, 3 ' H, 5 H)$ -pentaone]-5-yl\}benzene (11b'c' '): White solid; m.p. $364{ }^{\circ} \mathrm{C}$ (decomps.); FT-IR (KBr) 3050, 2965, 1712, 1691, 1662, 1517, 1437, $1374 \mathrm{~cm}^{-1}$; ${ }^{1} \mathrm{H}$ NMR ($\left.\mathrm{CDCl}_{3}, 300 \mathrm{MHz}\right) \delta 2.59(\mathrm{~s}, 3 \mathrm{H})$, 2.66 (s, 3H), 3.29 (s, 3H), 3.30 (s, 3H), 3.41 (s, 3H), 3.52 (s, 3H), 4.87 (s, 1H), $4.90(\mathrm{~s}, 1 \mathrm{H}), 7.045(\mathrm{~s}, 2 \mathrm{H}), 7.054(\mathrm{~s}, 2 \mathrm{H})$ (Mixture of two rotamers $\mathbf{3 f A}$ and $\mathbf{3 f B}$); ${ }^{13} \mathrm{C}$ NMR ($\mathrm{CDCl}_{3}, 75$ $\mathrm{MHz}) \delta 165.4,162.8,158.3,151.2,149.5,134.6,128.8,89.9$, 85.1, 58.5, 30.0, 29.5, 28.7, 28.5.

5-(4-(1',3-Dimethyl-2,2',4,4',6'-pentaoxo-

 2,2',3,3',4,4',5,6'-octahydro-1H,1'H-spiro[furo[2,3-d]pyrimidine-6,5'-pyrimidin]-5-yl)phenyl)-1,1'-dimethyl-1H,1'H-spiro[furo[2,3-d]pyrimidine-6,5'-pyrimidine]2,2',4,4', $\mathbf{6}^{\prime}\left(\mathbf{3 H}, \mathbf{3}^{\prime} \boldsymbol{H}, 5 H\right)$-pentaone (11e'c' $)$: White solid; m.p.$232{ }^{\circ} \mathrm{C}$ (decomps.); FT-IR (KBr) 3470, 3047, 2825, 1706, 1650, 1550, 1513, 1441, 1378, 1022, 757, $567 \mathrm{~cm}^{-1}$; ${ }^{1} \mathrm{H}$ NMR (DMSO- $\left.d_{6}, 300 \mathrm{MHz}\right) \delta 2.32$ (s, 3H), 3.03 (s, 3H), 3.05 (s, $3 \mathrm{H}), 3.29(\mathrm{~s}, 3 \mathrm{H}), 4.84,4.89,4.93(\mathrm{~s}, 2 \mathrm{H}$, mixture of at least three diastereomers and equilibrium mixtures of tautomers), 7.00 (m, 4H), 10.76, 11.43 (bs, 1H), 11.13 (s, 1H), 11.82 (bs, 1 H), 12.98 (bs, 1H); ${ }^{13} \mathrm{C}$ NMR (DMSO- $\left.d_{6}, 75 \mathrm{MHz}\right) \delta 167.2$, 165.1, 164.4, 163.3, 159.6, 159.1151.4, 151.0, 150.0, 135.0, 129.0, 128.8, 90.0, 49.0, 46.1, 29.2, 28.7, 27.27, 27.26.

(E and Z)-5-(Anthracen-9-ylmethylene)-1-

 methylpyrimidine-2,4,6(1H,3H,5H)-trione (5se'): Red solid; FT-IR (KBr) 3421, 3188, 3056, 2857, 1706, 1675, 1582, 1444, 1379, $736 \mathrm{~cm}^{-1}$; ${ }^{1} \mathrm{H}$ NMR (DMSO- $\left.d_{6}, 300 \mathrm{MHz}\right) \delta 2.89(\mathrm{~s}, 3 \mathrm{H})$, 3.26 (s, 3H), 7.50 (m, 8H), 7.92 (m, 4H), 8.12 (d, 4H, J = 8.1 ${ }^{13} \mathrm{~Hz}$), 8.64 (s, 2H), $9.01(2 \mathrm{~s}, 2 \mathrm{H}), 11.29$ (s, 1H), 11.74 (s, 1H); ${ }^{13}$ C NMR (DMSO- $d_{6}, 75 \mathrm{MHz}$) $\delta 162.6,161.7,160.6,160.0$, 152.4, 152.3, 151.32, 151.27, 131.0, 130.1, 129.9, 129.1, 128.3, 128.1, 128.0, 126.7, 126.0, 125.7, 28.1, 27.3.
VI. CONCLUSION

In summary, the one-pot reaction of 1-methyl BA as an unsymmetrical barbituric acid with mono- and dialdehydes in the presence of BrCN and triethylamine and/or L-(+)-TA was used to develop an efficient synthetic procedure to prepare diastereomeric mixture of stable mono- and bis-spiro barbiturates. We also concluded that this reaction diastereoselectively was performed in the presence of L-(+)TA and the number of diastereomers was reduced. Phthalaldehyde was formed mono spiro barbiturate but isophthalaldehyde and terphthalaldehyde were formed bisspiro barbiturate. The aromatic aldehydes possessing strong electron donor and bulky hindered substituents exclusively were afforded Knoevenagel adducts.

ACKNOWLEDGEMENT

We gratefully acknowledge the financial support provided by the Research Council of Urmia University (Grant Research NO. \#10925).

SUPPLEMENTARY MATERIAL

Full characterization data of $\mathbf{1 e}$ ' and compounds derived from one pot reaction of $1 \mathbf{e}^{\prime}$ with aldehydes $\mathbf{2 c}, \mathbf{2 e}, \mathbf{2 f}, 2 \mathrm{~m}, 2 \mathbf{n}$, 11a', 11b' and 11c' are available.

REFERENCES

[1]. E. Campaigne, R. L. Ellis, M. Bradford, and J. Ho, J. Med. Chem., vol. 12, pp. 339-342, 1969.
[2]. S. Kotha, A. C. Deb, and R. V. Kumar, Bioorg. Med. Chem. Lett., vol. 15, pp. 1039-1043, 2005.
[3]. D. J. Brown, "Comprehensive heterocyclic chemistry", vol III, A. R. Katritzky, C. W. Rees, Eds. Oxford: Pergamon, 1984.
[4]. S. I. Naya, H. Miyama, K. Yasu, T. Takayasu, and M. Nitta, Tetrahedron, vol. 59, pp. 1811-1821, 2003.
[5]. M.-E. Capella-Peiró, S. Carda-Broch, L. Monferrer-Pons, and J. EsteveRomero, Anal. Chim. Acta, vol. 517, pp. 81-87, 2004.
[6]. O. Pelletier, and J. A. Campbell, J. Pharm. Sci., vol. 51, pp. 594-595, 1962.
[7]. O. Pelletier, and J. A. Campbell, J. Pharm. Sci., vol. 50, pp. 926-928, 1961.
[8]. M. B. Smith, Organic Sythesis, 2rd ed., New York: Mc Graw-Hill, 2002.
[9]. C. J. Burns, C. A. Martin, and K. B. Sharpless, J. Org. Chem., vol. 54, pp. 2826, 1989.
[10]. T. Katsuki, A. W. M. Lee, P. Ma, V. S. Martin, S. Masamune, K. B Sharpless, D. Tuddenham, and F. J. Walker, J. Org. Chem., vol. 47, pp. 1373, 1982.
[11]. Y. Nakamura, J. Chem. Soc., Jpn., vol. 61, p. 1051, 1940 [Chem. Abstr. , 37: 377², 1943].
[12]. I. Arai, A. Mori, and H. Yamamoto, J. Am. Chem. Soc., vol. 107, pp. 8254, 1985.
[13]. A. Mori, I. Arai, and H. Yamamoto, Tetrahedron, vol. 42, pp. 6447, 1986.
[14]. E. A. Mash, and K. A. Nelson, Ibid., vol. 43, p. 679, 1987.
[15]. E. A. Mash, and K. A. Nelson, Tetrahedron Lett., vol. 27, p. 1441, 1986.
[16]. P. Pitchen, E. Duñach, M. M. Deshmukh, and H. B. Kagan, J. Am. Chem. Soc., vol. 106, pp. 8188-8193, 1984.
[17]. P. Pitchen, and H. B. Kagan, Tetrahedron Lett., vol. 25, pp. 1049-1052, 1984.
[18]. F. DiFuria, G. Modena, and R. Seraglia, Synthesis, pp. 325-326, 1984.
[19]. A. Vogel, Textbook of Practical Organic Chemistry, (VOGEL'S). 4rd, ed., New York: Longman, 1978.
[20]. T. Sugimura, T. Matsuda, and T. Osawa, Tetrahedron: Asymmetry, vol. 20, pp. 1877-1880, 2009.
[21]. M. Takinami, Y. Ukaji, and K. Inomata, Tetrahedron: Asymmetry, vol. 17, pp. 1554-1560, 2006
[22]. M. Serizawa, S. Fujinami, Y. Ukaji, and K. Inomata, Tetrahedron: Asymmetry, vol. 19, pp. 921-931, 2008.
[23]. B. Tan, G. Luo, and J. Wang, Tetrahedron: Asymmetry, vol. 17, pp. 883-891, 2006.
[24]. I. Kmecz, B. Simándi, E. Székely, and E. Fogassy, Tetrahedron: Asymmetry, vol. 15, pp. 1841-1845, 2004.
[25]. P. Molnár, P. Thorey, G. Bánsághi, E. Székely, L. Poppe, A. Tomin, S Kemény, E. Fogassy, and B. Simándi, Tetrahedron: Asymmetry, vol. 19, pp. 1587-1592, 2008.
[26]. R. Ogawa, T. Fujino, N. Hirayama, and K. Sakai, Tetrahedron: Asymmetry, vol. 19, pp. 2458-2461, 2008.
[27]. V. Kumar, Synlett, vol. 10, p. 1638, 2005.
[28]. D. Martin, and M. Bauer, Org. Synth. Coll., vol. 7, London: John Wiley \& Sons, 1990, p 435.
[29]. E. Gross, and B. Witkop, J. Am. Chem. Soc., vol. 83, pp. 1510-1511, 1961.
[30]. P. B. W. McCallum, M. R. Grimmett, A. G. Blackman, and R. T. Weavers, Aust. J. Chem., vol. 52, pp. 159-166, 1999.
[31]. D. D. Tanner, G. Lycan, and N. J. Bunce, Can. J. Chem., vol. 48, pp. 1492-1497, 1970.
[32]. A. Alberola, C. Andres, A. G. Ortega, R. Pedrosa, and M. Vicente, Synthetic Commun., vol. 16, pp. 1161-1165, 1986.
[33]. M. Jalilzadeh, N. Noroozi Pesyan, F. Rezaee, S. Rastgar, Y. Hosseini, and E. Şahin, Mol. Divers., vol. 15, pp. 721-731, 2011.
[34]. Y. Hosseini, S. Rastgar, Z. Heren, O. Büyükgüngör, and N. Noroozi Pesyan, J. Chin. Chem. Soc., vol. 58, pp. 309-318, 2011.
[35]. N. Noroozi Pesyan, S. Rastgar, and Y. Hosseini, Acta Cryst. Sect. E., vol. 65, p. o1444, 2009.
[36]. M. Jalilzadeh, and N. Noroozi Pesyan, Bull. Korean Chem. Soc., vol. 32, pp. 3382-3388, 2011.
[37]. M. Jalilzadeh, and N. Noroozi Pesyan, J. Korean Chem. Soc., vol. 55, pp. 940-951, 2011.
[38]. N. D. McClenaghan, C. Absalon, and D. M. Bassani, J. Am. Chem. Soc., vol. 125, pp. 13004-13005, 2003.
[39]. C.-H. Huang, N. D. McClenaghan, A. Kuhn, G. Bravic, and D. M. Bassani, Tetrahedron, vol. 62, pp. 2050-2059, 2006.
[40]. M. N. Elinson, A. N. Vereshchagin, N. O. Stepanov, P. A. Belyakov, and G. I. Nikishin, Tetrahedron Lett., vol. 51, pp. 6598-6601, 2010.
[41]. W. W. Hartman, and E. E. Dreger. Org. Synth. Coll., vol. 2, p. 150, 1943.

Nader Noroozi Pesyan was born in Pesyan village in the suburb of Adjabshir
 city in East Azerbayjan province in the capital of Tabriz city, the north east of Iran, in 1968. He studied applied chemistry at the Sistan and Baluchistan University (Zahedan), and obtained his B.Sc. degree in 1993 and obtained his M.Sc. in Azad University of Yazd (Yazd) in 1996 and his Ph.D. of Organic chemistry from Isfahan University of Technology (IUT) in 2004 in the group of Professor H. A. Dabbagh at IUT (Isfahan).

