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Abstract- This paper presents a game-theoretical framework for 
network capacity planning strategies in competitive business 
environments. For this purpose, two operators are assumed to 
provide communication channels to a large population of users 
for the same price. Users will then play a game in which they try 
to forward their requests to the operator that will give them the 
lowest blocking probability. The paper discusses the equilibria 
resulting from some distinct user strategies. The traffic partition 
resulting from the user’s game is an input to the operators game, 
in which operators try do dimension their network capacities in 
order to maximize their profits. In the presence of asymmetries 
between the channel deployment costs of both operators, we 
show that the operator’s game will not lead to an equilibrium 
between pure dimensioning strategies, resulting in looping 
instabilities in settings where the players alternate their profit-
maximizing moves. In this case, the model provides the cost 
asymmetry needed for an entrant to challenge the market 
dominance of an incumbent operator. 
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I. INTRODUCTION 

Competition in telecommunication networks raises the 
need to devise pricing and dimensioning strategies with the 
aim of enhancing profitability in uncertain environments [1]. 
Such questions were ignored in the classical approach to 
dimension a network, which consisted of deploying a barely 
sufficient number of channels to assure a small enough 
probability of a call being blocked [2] in old telephone 
networks.  

Clearly, the classic approach assumed that a single 
channel provider (operator) was allowed to operate, thus 
precluding any competition. If more than one operator were 
allowed to operate, no single operator could be held 
responsible for the probability of a user being blocked by all 
operators, hereby called the hard blocking probability. If users 
are free to request a channel from any operator, then both the 
hard blocking probability and the blocking probabilities of 
each operator would depend only on the numbers of channels 
made available to the users by all operators. 

Given the competitive business environment of current 
networks, a new approach is now needed to discuss the 
dimensioning of networks that share a physical infrastructure 
but compete for customers in the provisioning of bandwidth to 
a user population under uniform pricing. In this paper, we 
propose a game-theoretical approach to this problem. The 
underlying games are played by users that wish to minimize 
their blocking probabilities and operators that wish to 
maximize their profits.  

In [3], we have shown that profit maximization may be 
compatible with acceptable blocking performance for high 

enough traffic intensities, even under a monopolistic setting. 
We now discuss a situation in which two operators provide 
channels on the same link to a large population of users. Any 
new request for a channel will always be submitted by the 
user to its primary operator. Whenever such request is 
blocked by the primary operator, it will then be submitted by 
the user to another (secondary) operator. For this reason, 
blocking of a request by a primary operator is hereby called 
soft blocking. 

Given the total traffic generated by the user population, 
the hard blocking probability depends only on the sum of the 
channels provided by all operators. Therefore, all other 
service attributes (e.g. pricing) being the same, users are 
likely to choose a primary operator with minimal soft 
blocking probability. We assume that users play a game in 
which they occasionally switch their primary operator in 
search of lower blocking probabilities of their future requests. 

In Section II, we introduce a Markovian model that yields 
the soft blocking probabilities of two operators of a duopoly, 
given their numbers of deployed channels and the intensities 
of the primary traffic bound to each one. In Section III, we let 
the primary traffic intensities float under a users game until 
they reach equilibrium, thus obtaining the primary traffic 
partition between the operators under such game. Two distinct 
strategies are considered for the users, yielding two distinct 
equilibria. Based on the resulting traffic partitions, Section IV 
analyzes a channel capacity dimensioning game between two 
profit-seeking operators and variations thereof that may arise 
from a motivation to stabilize the operators game. Finally, 
Section V ends the paper with concluding remarks. 

II. A SOFT BLOCKING MODEL 

In [5], we have proposed a Markovian model that captures 
the behaviors described above and yields the resulting soft 
blocking probabilities of each operator when the intensities of 
the primary traffic bound to each one are given. Let us 
consider the case of a duopoly run by Operators 1 and 2. Let 
 ௠ be the traffic intensity of the primary requests addressed toߥ
operator m and let Cm be the number of channels deployed by 
operator m. In a duopoly, ݉ א ሼ1,2ሽ , so the total traffic 
intensity generated by the users is given by: 

ߥ ൌ ଵߥ ൅  ଶ      ,         (1)ߥ
and the total number of channels made available by all 
operators is: 

ܥ ൌ ଵܥ ൅  ଶ.     (2)ܥ
Fig. 1 illustrates the proposed Markov chain for a duopoly 

when ሺܥଵ, ଶሻܥ ൌ ሺ3,2ሻ . The system is in state ሺ݅, ݆ሻ  when 
Operator 1 has ݅ ൑ ଵܥ  active channels and Operator 2 has 
݆ ൑ ଶܥ  active channels. Notice that the transition rate from 
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state ሺ݅, ݆ሻ  to state ሺ݅ ൅ 1, ݆ሻ  is given by ߥଵ  only when 
Operator 2 is not in a blocking state ሺ݆ ൏ ൌ ߥ  ଶሻ, and byܥ
ଵߥ  ൅ ߥଶ when Operator 2 is in a blocking state ሺ݆ ൌ  ଶሻ , soܥ
that its primary traffic ߥଶ  is forwarded to Operator 1. 
Analogously, the transition rate from state ሺ݅, ݆ሻ  to state 
ሺ݅, ݆ ൅ 1ሻ is given by ߥଶ when Operator 1 is not in a blocking 
state ሺ݅ ൏  when Operator 1 is in a blocking state ߥ ଵሻ and byܥ
ሺ݅ ൌ ଵሻܥ . The downward transition rate from ሺ݅, ݆ሻ  to ሺ݅ െ
1, ݆ሻ  is given by i for  any positive i, and from ሺ݅, ݆ሻ  to 
ሺ݅, ݆ െ 1ሻ  by j for any positive j, reflecting the standard 
assumption that all services are independent, exponentially 
distributed processes with unit mean, so that traffic rates are 
expressed in Erlang. All remaining transition rates are zero 
because all requests are assumed to demand single channels. 

 
Fig. 1 Markov blocking model for a duopoly, and classical blocking model 

The steady-state probability ݌௜,௝ of each state ሺ݅, ݆ሻ of the 
system may then be obtained from standard Markovian 
analysis [4]. If ௕ܲ௜ is the soft blocking probability of operator i, 
the soft blocking probabilities of Operators 1 and 2 may be 
expressed as: 

 ௕ܲଵ ൌ ∑ ஼భ,௝݌
஼మ
௝ୀ଴        (3) 

 ௕ܲଶ ൌ ∑ ௜,஼మ݌
஼భ
௜ୀ଴        (4) 

Hard blocking will occur whenever a request finds the 
system in state ሺܥଵ, ଶሻܥ . Therefore, the hard blocking 
probability is given by: 

 ௕ܲ ൌ  ஼భ,஼మ    (5)݌

Let ܷ௞ be the set of all states where ݅ ൅ ݆ ൌ ݇. Then, it can 
be seen from Fig. 1 that the sum of all transition rates from 
any state in ܷ௞ to all states of ܷ௞ାଵ is ߥ, and the sum of all 
rates from any state in ܷ௞ to all states of ܷ௞ିଵ is k. Therefore, 
a Markov process is obtained when all states in each set ܷ௞ 
are lumped into one state as shown in the classical model on 
Fig. 1.  

This process yields the hard blocking probability in the 
form of the classical Erlang-B equation: 

௕ܲ ൌ ሺܾ݇݋ݎ݌ ൌ ሻܥ ൌ ஼భ,஼మ݌ ൌ
ఔ಴

஼!ൗ

∑ ఔೖ
௞!ൗ಴

ೖసబ

       (6). 

III. USERS GAMES 

Section II may describe a situation in which the operators 
are allocated to the users by a third party such as a broker. 

However, if users are free to choose their primary operators, 
the primary traffic partition ሺߥଵ, ଶሻߥ  will result from the 
outcome of a game played by them. Hypothetically, let us 
assume that users have somehow access to information about 
the soft blocking probability of each operator or are willing to 
estimate its value by occasionally testing their secondary 
operator. Reliable estimates may require many requests, and 
thus a long time to be obtained, especially if the target 
blocking probability is low. After looking up this information 
or performing this test, the user will switch his primary 
operator if and only if he finds that the other (secondary) 
operator has a lower soft blocking probability. 

In Subsections III.1 and III.2, we discuss equilibrium 
conditions generated by two non-cooperative games, in which 
each user decides independently to remain with his current 
primary operator or switch to another one. In each case, a 
specified uniform user strategy is assumed for all users. In 
Subsection III.3, we discuss a hypothetical situation in which 
all users cooperate to minimize the global rate of soft 
blockings. 

A. A Nash Equilibrium. 

 Using the model introduced in Section II, the soft 
blocking probabilities of the two operators were calculated as 
a function of νଵ  when ሺCଵ, Cଶሻ ൌ ሺ5,3ሻ  and ν ൌ 8 , and are 
shown on Fig. 2. Notice that the two curves cross at a point 
where Pୠଵ ൌ Pୠଶ . At the left of this point, Pୠଵ ൏ Pୠଶ , so a 
primary customer of Operator 2, when testing Operator 1, 
would find a lower soft blocking probability and would switch 
his primary operator. This move would increase the primary 
traffic νଵ bound to Operator 1, so the system operating point 
would move slightly to the right, thus approaching the 
crossing point. Analogously, customers of Operator 1 would 
switch to operator 2 whenever the system operates at the right 
of the crossing point, thus moving the operating point 
leftwards and closer to the crossing point. We conclude that 
the crossing point yields an algorithmic equilibrium where 
Pୠଵ ൌ Pୠଶ, so that no user would be motivated to switch his 
primary operator for the purpose of minimizing his soft 
blocking probability. In game-theory parlance, this situation 
defines Nash equilibrium. 

 
Fig. 2 Soft blocking probabilities when ሺCଵ, Cଶሻ ൌ ሺ5,3ሻ. 

Fig. 3 shows the soft blocking probabilities of the two 
operators as a function of ߥଵ when ሺܥଵ, ଶሻܥ ൌ ሺ7,1ሻ and ߥ ൌ 8. 
In this case, the two curves do not cross within the feasible 
range of partitions. For any ଵߥ א ሾ0,8ሻ , primary users of 
Operator 2 would switch to Operator 1 whenever testing their 
soft blocking probabilities. Therefore, Nash equilibrium 
occurs for ሺߥଵ, ଶሻߥ ൌ ሺ8,0ሻ, with ௕ܲଵ ൏ ௕ܲଶ. 
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Fig. 3 Soft blocking probabilities when ሺܥଵ, ଶሻܥ ൌ ሺ7,1ሻ. 

B. An Equilibrium Generated by Impatient User Behavior 

Information about the soft blocking probabilities of the 
operators is not likely to be available for consultation. 
Moreover, reliable estimation of these parameters may take a 
long time, prompting the users to switch operators on the 
basis of partial information. Taking an extreme behavior for 
comparison, let us consider the case of the impatient user, 
who switches operators whenever having a request blocked by 
his current primary operator and accommodated by the other 
operator, which then becomes the new primary operator. If all 
users are impatient, then the rate of user switching events 
from Operator 1 to 2 is given by ߪଵ ൌ ଵሺߥ ௕ܲଵ െ ௕ܲሻ, while the 
rate of user switching events from Operator 2 to 1 is given by 
ଶߪ ൌ ଶሺߥ ௕ܲଶ െ ௕ܲሻ. Equilibrium will emerge when ߪଵ ൌ ଶߪ , 
or: 

ଵሺߥ  ௕ܲଵ െ ௕ܲሻ ൌ ଶሺߥ ௕ܲଶ െ ௕ܲሻ  (7) 

Figs. 4 and 5 show the variations of ߪଵand ߪଶ with ߥଵ for 
the same two cases discussed for Nash equilibrium in 
subsection III.1. Notice that the two curves will always cross 
now, and the crossing point defines the equilibrium generated 
by impatient users. This means that the operator with the 
smaller number of channels will always capture some primary 
traffic, but will offer a higher soft blocking probability. The 
new equilibrium is not fair in the short term because some 
users will feel a higher soft blocking probability than others 
even in cases where Nash equilibrium would make all users 
have the same soft blocking probability. However, user 
impatience would still be fair in the long term, since all users 
would stay with each operator for some time, with the same 
mean sojourn time at each one for all users.  

 
Fig. 4 Rates of impatient user switching events when ሺCଵ, Cଶሻ ൌ ሺ5,3ሻ. 

 
Fig. 5 Rates of impatient user switching events when ሺܥଵ, ଶሻܥ ൌ ሺ7,1ሻ. 

C. Cooperative Welfare Maximization. 

The users might also be collectively interested in 
cooperating to produce an “efficient” traffic partition with 
minimal aggregate rate of soft blockings. The total rate of soft 
blockings is: 

ߪ  ൌ ଵߪ ൅ ଶߪ ൌ ଵߥ ௕ܲଵ ൅ ଶߥ ௕ܲଶ െ ߥ ௕ܲ (8) 

Given the total traffic ߥ generated by all users, the total 
rate of hard blockings ߥ ௕ܲ  is invariant with respect to ߥଵ . 
Therefore, efficiency is produced by the minimization of the 
total rate of primary blockings: 

ߨ ൌ ଵߥ ௕ܲଵ ൅ ଶߥ ௕ܲଶ                              (9) 

Figs. 6 and 7 plots the variations of ߨ with ߥଵ for the same 
two cases discussed in Subsections III.1 and III.2. The 
minimal value of ߨ  is marked with a full dot. Empty dots 
mark the operation points of the equilibria generated by the 
two non-cooperative games discussed in previous subsections. 
When ሺܥଵ, ଶሻܥ ൌ ሺ7,1ሻ , Nash equilibrium is efficient and 
impatient user behavior is not. If  ሺܥଵ, ଶሻܥ ൌ ሺ5,3ሻ , however, 
the most efficient partition is somewhere in between the 
partitions generated by the two user behaviors discussed 
above. This suggests that there might be some moderately 
impatient user behavior resulting in the efficient partition in 
this case. Alternatively, efficiency may be obtained by 
enforcing the efficient partition. This could be done by 
submitting all requests to a regulating broker, who would 
assign each request independently to Operator 1 with 
probability ሺ

ఔభ೐೑೑

ఔ
ሻ  and to Operator 2 with probability (1-

 
ఔభ೐೑೑

ఔ
), where ߥଵ௘௙௙ is the value of ߥଵthat minimizes ߨ. 

 
Fig. 6 Total rate of primary blockings when ሺCଵ, Cଶሻ ൌ ሺ7,1ሻ. 
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Fig. 7 Total rate of primary blockings when  ሺܥଵ, ଶሻܥ ൌ ሺ5,3ሻ. 

IV. OPERATORS GAMES 
In [6], the operators’ game was discussed for the situation 

when their channel deployment costs are symmetric. In this 
paper, we extend these results to the case where deployment 
costs are asymmetric. The game-theoretical model is tested to 
determine the degree of cost asymmetry needed to produce 
plausible equilibria between two operators, thus challenging 
the notion of a natural monopoly. The results provide insight 
on the ability of innovative entrants to challenge the market 
dominance of an incumbent.  

We normalize all revenues and costs with respect to the 
revenue generated per unit time by any active channel, which 
is then taken to be 1. The total cost incurred by operator m to 
deploy a channel per unit time is given by ݏ௠ ൏ 1 . All 
channels deployed by the same operator are assumed to 
generate the same cost, but only active channels generate 
revenue at any given time. When the system is in state ሺ݅, ݆ሻ, 
the instantaneous profit rates of Operators 1 and 2 are then 
given respectively by: 

 ଵܶ ൌ ݅ െ .ଵݏ  ଵ   (10)ܥ
 ଶܶ ൌ ݆ െ .ଶݏ  ଶ   (11)ܥ

The mean profit rates, or profitabilities, of Operators 1 and 
2 are then given respectively by: 

 ܴଵ ൌ ሺ݅ሻܧ െ  ଵ  (12)ܥଵݏ
 ܴଶ ൌ ሺ݆ሻܧ െ  ଶ  (13)ܥଶݏ

From Little’s Law [7], we know that the mean number of 
ongoing services in Operator 1 is its total rate (in Erlang) of 
incoming traffic. From an inspection of Fig. 1, we then get: 

ሺ݅ሻܧ  ൌ ଵሺ1ߥ െ ௕ܲଵሻ൅ߥଶሺ ௕ܲଶ െ ௕ܲሻ   (14) 

Likewise for Operator 2: 

ሺ݆ሻܧ  ൌ ଶሺ1ߥ െ ௕ܲଶሻ ൅ ଵሺߥ ௕ܲଵ െ ௕ܲሻ (15) 

The profitabilities of Operators 1 and 2 may then be 
expressed as: 

ܴଵ ൌ ଵሺ1ߥ െ ௕ܲଵሻ ൅ ߥଶሺ ௕ܲଶ െ ௕ܲሻ െ  ଵ (16)ܥଵݏ

ܴଶ ൌ ଶሺ1ߥ െ ௕ܲଶሻ ൅ ଵሺߥ ௕ܲଵ െ ௕ܲሻ െ  ଶ (17)ܥଶݏ

We consider a game in which each operator m chooses a 
number ܥ௠  of channels to be deployed with the purpose of 
maximizing its profitability, or payoff, ܴ௠. For each strategy 
profile ሺܥଵ,  generated by the user ߥ ଶሻ, the aggregate trafficܥ
population will face a hard blocking probability ௕ܲdetermined 
by ܥ ൌ ଵܥ ൅  ଶ as in Eq. 6. A users game will determine theܥ
primary traffic partition ሺߥଵ,  ଶሻ and the soft blockingߥ
probabilities ௕ܲଵ and ௕ܲଶ , so the profitabilities may be 
calculated from Eqs. 16 and 17.  

Table 1 shows the normal form of the operators game 
when ߥ ൌ 8 ଵݏ , ൌ ଶݏ ൌ .2  (symmetric costs), and users are 
free to minimize their individual soft blocking probabilities in 
a non-cooperative game, thus producing a Nash equilibrium 
between users primarily bound to each operator. Rows are 
indexed by ܥଵ  and columns are indexed by ܥଶ . Each cell 
shows the corresponding value of ሺܴଵ, ܴଶሻ. For the sake of 
readability, the full accuracy of the numbers is not shown. A 
Nash equilibrium between operators is said to be generated by 
a pure strategy profile ሺܥଵ,  ଶሻ  if the corresponding cell in theܥ
normal form shows a value of ܴଵ  that is maximal in its 
column and a value of  ܴଶ that is maximal in its row. Under 
this condition, no operator will be motivated to change his 
dimensioning strategy if he believes his opponent will not 
change his either. In Table 1, a Nash equilibrium emerges in 
cell (11, 11) with profit profile (0.3, 0.3). 

TABLE 1 THE NORMAL FORM OF THE OPERATORS GAME when ν ൌ 8,  sଵ ൌ sଶ ൌ .2 

Colunm 0 1 2 3 4 5 6 7 8 9 10 11 12 13 14 

Line 
Op
.1 

Op
.2 

Op
.1 

Op
.2 

Op
.1 

Op
.2 

Op
.1

Op
.2 

Op
.1 

Op
.2 

Op
.1 

Op
.2

Op
.1

Op
.2

Op
.1

Op
.2

Op
.1

Op
.2

Op
.1

Op
.2

Op
.1

Op
.2

Op
.1 

Op
.2 

Op
.1 

Op
.2 

Op
.1

Op
.2

Op
.1

Op.
2 

0 0.0 0.0 0.0 0.6 0.0 1.2 0.0 1.8 0.0 2.2 0.0 2.6 0.0 2.8 0.0 3.0 0.0 3.0 0.0 3.0 0.0 2.9 0.0 2.8 0.0 2.6 0.0 2.4 0.0 2.2

1 0.6 0.0 0.6 0.6 0.5 1.2 0.5 1.8 0.4 2.2 0.3 2.6 0.2 2.8 0.1 3.0 0.0 3.0
-

0.1
3.0

-
0.1

2.9 
-

0.2 
2.8 

-
0.2 

2.6 
-

0.2
2.4

-
0.2

2.2

2 1.2 0.0 1.2 0.5 1.1 1.1 0.9 1.7 0.7 2.1 0.5 2.5 0.3 2.8 0.1 2.9
-

0.1
3.0

-
0.2

2.9
-

0.3
2.8 

-
0.3 

2.7 
-

0.3 
2.5 

-
0.4

2.4
-

0.4
2.2

3 1.8 0.0 1.8 0.5 1.7 0.9 1.4 1.4 1.2 1.8 0.9 2.2 0.6 2.4 0.4 2.5 0.2 2.6 0.0 2.6
-

0.2
2.6 

-
0.3 

2.5 
-

0.4 
2.4 

-
0.4

2.2
-

0.5
2.1

4 2.2 0.0 2.2 0.4 2.1 0.7 1.8 1.2 1.5 1.5 1.2 1.8 0.9 2.0 0.6 2.1 0.4 2.2 0.2 2.2 0.0 2.2 
-

0.2 
2.2 

-
0.3 

2.1 
-

0.4
2.0

-
0.5

1.9

5 2.6 0.0 2.6 0.3 2.5 0.5 2.2 0.9 1.8 1.2 1.5 1.5 1.1 1.6 0.8 1.8 0.5 1.9 0.3 1.9 0.1 1.9 
-

0.1 
1.9 

-
0.2 

1.8 
-

0.4
1.8

-
0.5

1.7

6 2.8 0.0 2.8 0.2 2.8 0.3 2.4 0.6 2.0 0.9 1.6 1.1 1.3 1.3 1.0 1.4 0.7 1.5 0.4 1.6 0.2 1.6 0.0 1.6 
-

0.2 
1.6 

-
0.3

1.5
-

0.5
1.5

7 3.0 0.0 3.0 0.1 2.9 0.1 2.5 0.4 2.1 0.6 1.8 0.8 1.4 1.0 1.1 1.1 0.8 1.2 0.5 1.3 0.3 1.3 0.1 1.3 
-

0.1 
1.3 

-
0.3

1.3
-

0.4
1.2

8 3.0 0.0 3.0 0.0 3.0 
-

0.1 
2.6 0.2 2.2 0.4 1.9 0.5 1.5 0.7 1.2 0.8 0.9 0.9 0.6 1.0 0.4 1.0 0.2 1.0 0.0 1.0 

-
0.2

1.0
-

0.4
1.0

9 3.0 0.0 3.0 
-

0.1 
2.9 

-
0.2 

2.6 0.0 2.2 0.1 1.9 0.3 1.6 0.4 1.3 0.5 1.0 0.6 0.7 0.7 0.5 0.7 0.2 0.8 0.0 0.8 
-

0.2
0.8

-
0.4

0.8

10 2.9 0.0 2.9 
-

0.1 
2.8 

-
0.3 

2.6
-

0.2 
2.2 0.0 1.9 0.1 1.6 0.2 1.3 0.3 1.0 0.4 0.7 0.5 0.5 0.5 0.3 0.5 0.1 0.5 

-
0.1

0.5
-

0.3
0.5

11 2.8 0.0 2.8 
-

0.2 
2.7 

-
0.3 

2.5
-

0.3 
2.2 

-
0.2 

1.9 
-

0.1
1.6 0.0 1.3 0.1 1.0 0.2 0.8 0.2 0.5 0.3 0.3 0.3 0.1 0.3 

-
0.1

0.3
-

0.3
0.3

12 2.6 0.0 2.6 
-

0.2 
2.5 

-
0.3 

2.4
-

0.4 
2.1 

-
0.3 

1.8 
-

0.2
1.6

-
0.2

1.3
-

0.1
1.0 0.0 0.8 0.0 0.5 0.1 0.3 0.1 0.1 0.1 

-
0.1

0.1
-

0.3
0.1

13 2.4 0.0 2.4 
-

0.2 
2.4 

-
0.4 

2.2
-

0.4 
2.0 

-
0.4 

1.8 
-

0.4
1.5

-
0.3

1.3
-

0.3
1.0

-
0.2

0.8
-

0.2
0.5

-
0.1 

0.3 
-

0.1 
0.1 

-
0.1 

-
0.1

-
0.1

-
0.3

-0.1

14 2.2 0.0 2.2 
-

0.2 
2.2 

-
0.4 

2.1
-

0.5 
1.9 

-
0.5 

1.7 
-

0.5
1.5

-
0.5

1.2
-

0.4
1.0

-
0.4

0.8
-

0.4
0.5

-
0.3 

0.3 
-

0.3 
0.1 

-
0.3 

-
0.1

-
0.3

-
0.3

-0.3
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TABLE 2 THE NORMAL FORM OF THE OPERATORS GAME WHEN ν ൌ 8, sଵ ൌ .2,  sଶ ൌ .18 

Column 0 2 4 6 8 9 10 12 14 16 18 

Line Op.1 Op.2 Op.1 Op.2 Op.1 Op.2 Op.1 Op.2 Op.1 Op.2 Op.1 Op.2 Op.1 Op.2 Op.1 Op.2 Op.1 Op.2 Op.1 Op.2 Op.1 Op.2

0 0 0 0 1.3 0 2.4 0 3.1 0 3.4 0 3.5 0 3.4 0 3.2 0 2.9 0 2.6 0 2.3 

2 1.2 0 1.1 1.2 0.7 2.3 0.3 3.1 -0.1 3.4 -0.2 3.4 -0.3 3.3 -0.3 3.1 -0.4 2.9 -0.4 2.6 -0.4 2.3 

4 2.2 0 2.1 0.8 1.5 1.7 0.9 2.3 0.4 2.6 0.2 2.7 0 2.7 -0.3 2.7 -0.5 2.6 -0.6 2.4 -0.7 2.2 

6 2.8 0 2.8 0.4 2 1.1 1.3 1.6 0.7 1.9 0.4 2 0.2 2.1 -0.2 2.2 -0.5 2.2 -0.7 2.1 -0.9 2 

8 3 0 3 0 2.2 0.6 1.5 1 0.9 1.3 0.6 1.4 0.4 1.5 0 1.6 -0.4 1.7 -0.7 1.7 -0.9 1.6 

10 2.9 0 2.8 -0.2 2.2 0.2 1.6 0.5 1 0.8 0.7 0.9 0.5 1 0.1 1.1 -0.3 1.2 -0.7 1.3 -0.9 1.2 

12 2.6 0 2.5 -0.2 2.1 -0.1 1.6 0.1 1 0.4 0.8 0.5 0.5 0.6 0.1 0.7 -0.3 0.8 -0.7 0.9 -1 0.9 

14 2.2 0 2.2 -0.3 1.9 -0.3 1.5 -0.2 1 0 0.8 0.1 0.5 0.2 0.1 0.3 -0.3 0.4 -0.7 0.5 -1 0.5 

16 1.8 0 1.8 -0.3 1.6 -0.4 1.3 -0.4 0.9 -0.3 0.7 -0.2 0.5 -0.2 0.1 -0.1 -0.3 0 -0.7 0.1 -1 0.1 

18 1.4 0 1.4 -0.3 1.3 -0.5 1.1 -0.6 0.7 -0.5 0.5 -0.5 0.3 -0.4 0 -0.4 -0.4 -0.3 -0.8 -0.2 -1.1 -0.2 

 
Table 2 shows the same normal form when ݏଶ ൌ ଵݏ0.9 ൌ

.18, but with a larger infrastructure. For this reason, odd rows 
and columns are omitted in order to keep a manageable table 
size. No cell satisfies the condition for Nash equilibrium 
between pure strategies in this form. What will happen in real 
life will depend on the players’ ability, but a hint may be 
obtained by first assuming a hypothetical game in which 
players alternate moves  in which each one maximizes his/her 
profit after looking at Table 2. Let the game start at cell (0, 0), 
and let player 1 have the first move. He will deploy 8 
channels, moving the system to cell (8,0), where he enjoys a 
maximal-profit monopoly. Operator 2 then enters the game 
with a slightly smaller (10%) channel deployment cost and 
deploys 16 channels, taking the network to cell (8, 16) where 
her profit is maximized under current conditions. Operator 1 
will then look at Table 2 and see that he is incurring a loss, 
and the only way for him to minimize his loss (i.e. maximize 
his “profit”) is to leave the game, leading the system to cell (0, 
16), where Operator 2 enjoys a monopoly. 

If Operator 2 keeps looking for maximal profit, she would 
then reduce the dimension of her network to 9 channels, thus 
raising her profit to 3.5. This would prompt operator 1 to re-

enter the game with 12 channels, and Operator 2 to raise her 
number of channels to 18, thus forcing Operator 1 to leave the 
game again. So, if each operator makes his/her next move in 
search of maximal profit, the game will enter the loop given 
by ሺ0,18ሻ ՜ ሺ0,9ሻ ՜ ሺ12,9ሻ ՜ ሺ12,18ሻ ՜ ሺ0,18ሻ ՜ ڮ . 
However, such players’ behavior would be short-sighted, 
since it only aims at maximal profit immediately after the next 
move. Eventually, next time the system goes through cell (0, 
18), Operator 2 will observe that if she reduces her number of 
channels to 14 instead of 9, Operator 1 will not have any 
incentive to re-enter the game, and she can enjoy a stable, 
competitive monopoly, although with profit 2.9 instead of 3.5: 
a small price (17%) to pay for stability. On the other hand, 
this is still a weak stability, since it is based on the short-
sightedness of Operator 1. A close examination of row 18 of 
Table 2 will tell Operator 1 that he may also force Operator 2 
to leave the game by deploying 18 channels, if she cannot 
stand a lossy operation. However, this would let him with 
only 1.4 of profit, while the same strategy would yield profit 
2.9 to Operator 2. Both players are able to hurt each other. 
Each can achieve a competitive monopoly if the other one is 
not willing to withstand losses. 

TABLE 3 THE NORMAL FORM OF THE OPERATORS GAME when ν ൌ 8, sଵ ൌ .2, sଶ ൌ .15 

Colum
n 

0 2 4 6 8 10 12 14 16 18 20 22 24 26 

Line 
Op.

1 
Op.

2 
Op.

1 
Op.

2 
Op.

1 
Op.

2 
Op.

1 
Op.

2 
Op.

1 
Op.

2 
Op.

1 
Op.

2 
Op.

1 
Op.

2 
Op.

1 
Op.

2 
Op.

1 
Op.

2 
Op.

1 
Op.

2 
Op.

1 
Op.

2 
Op.

1 
Op.

2 
Op.

1 
Op.

2 
Op.

1 

O
p.
2

0 0 0 0 1.4 0 2.6 0 3.4 0 3.8 0 3.9 0 3.8 0 3.6 0 3.4 0 3.2 0 3 0 2.8 0 2.6 0 2.4

2 1.2 0 1.1 1.3 0.7 2.5 0.3 3.4 -0.1 3.8 -0.3 3.8 -0.3 3.7 -0.4 3.6 -0.4 3.4 -0.4 3.2 -0.4 3 -0.4 2.8 -0.4 2.6 -0.4 2.4

4 2.2 0 2.1 0.9 1.5 1.9 0.9 2.6 0.4 3 0 3.2 -0.3 3.3 -0.5 3.3 -0.6 3.2 -0.7 3.1 -0.8 3 -0.8 2.8 -0.8 2.6 -0.8 2.4

6 2.8 0 2.8 0.5 2 1.3 1.3 1.9 0.7 2.3 0.2 2.6 -0.2 2.8 -0.5 2.9 -0.7 2.9 -0.9 2.9 -1 2.8 -1.1 2.7 -1.1 2.5 -1.1 2.3

8 3 0 3 0.1 2.2 0.8 1.5 1.3 0.9 1.7 0.4 2 0 2.2 -0.4 2.4 -0.7 2.5 -0.9 2.5 -1.1 2.5 -1.2 2.4 -1.4 2.4 -1.4 2.2

10 2.9 0 2.8 -0.1 2.2 0.4 1.6 0.8 1 1.2 0.5 1.5 0.1 1.7 -0.3 1.9 -0.7 2.1 -0.9 2.1 -1.2 2.2 -1.4 2.2 -1.5 2.1 -1.6 2

12 2.6 0 2.5 -0.1 2.1 0.1 1.6 0.4 1 0.8 0.5 1.1 0.1 1.3 -0.3 1.5 -0.7 1.7 -1 1.8 -1.2 1.8 -1.5 1.9 -1.7 1.9 -1.8 1.8

14 2.2 0 2.2 -0.2 1.9 -0.1 1.5 0.1 1 0.4 0.5 0.7 0.1 0.9 -0.3 1.1 -0.7 1.3 -1 1.4 -1.3 1.5 -1.5 1.5 -1.8 1.6 -2 1.6

16 1.8 0 1.8 -0.2 1.6 -0.2 1.3 -0.1 0.9 0.1 0.5 0.3 0.1 0.5 -0.3 0.7 -0.7 0.9 -1 1 -1.3 1.1 -1.6 1.2 -1.9 1.3 -2.1 1.3

18 1.4 0 1.4 -0.2 1.3 -0.3 1.1 -0.3 0.7 -0.1 0.3 0.1 0 0.2 -0.4 0.4 -0.8 0.6 -1.1 0.7 -1.4 0.8 -1.7 0.9 -2 1 -2.2 1

20 1 0 1 -0.2 1 -0.4 0.8 -0.4 0.5 -0.3 0.2 -0.2 -0.2 0 -0.5 0.1 -0.9 0.3 -1.2 0.4 -1.5 0.5 -1.8 0.6 -2.1 0.7 -2.3 0.7

22 0.6 0 0.6 -0.2 0.6 -0.4 0.5 -0.5 0.2 -0.4 0 -0.4 -0.3 -0.3 -0.7 -0.1 -1 0 -1.3 0.1 -1.6 0.2 -1.9 0.3 -2.2 0.4 -2.4 0.4

24 0.2 0 0.2 -0.2 0.2 -0.4 0.1 -0.5 0 -0.6 -0.3 -0.5 -0.5 -0.5 -0.8 -0.4 -1.1 -0.3 -1.4 -0.2 -1.7 -0.1 -2 0 -2.3 0.1 -2.6 0.2

26 -0.2 0 -0.2 -0.2 -0.2 -0.4 -0.2 -0.6 -0.4 -0.6 -0.5 -0.7 -0.8 -0.6 -1 -0.6 -1.3 -0.5 -1.6 -0.4 -1.9 -0.3 -2.2 -0.2 -2.5 -0.1 -2.7
-

0.1
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Table 3 is a description of the same normal form when 
ଶݏ ൌ ଵݏ0.75 ൌ .15 . The same analysis applies, leading 
initially to the loop ሺ0,10ሻ ՜ ሺ6,10ሻ ՜ ሺ6,24ሻ ՜ ሺ0,24ሻ ՜
ሺ0,10ሻ ՜ ڮ . Operator 2 would then choose between an 
unstable, maximal-profit monopoly with 10 channels and 
profit 3.9; or a stable, competitive monopoly with 14 channels 
and profit 3.6. An important change will now arise in the 
situation of Operator 1, though. Now, in order to force 
Operator 2 to leave the game or incur a loss, Operator 1 must 
deploy 26 channels and have a negative profit (-.2) even if he 
succeeds. Since this can hardly be considered a competitive 
behavior, we may say that there is no real (or legal) possibility 
of Operator 1 achieving a competitive monopoly. Operator 1 
can hurt Operator 2 only by hurting himself, and this is not to 
be allowed. Therefore, a cost advantage of 25% would seem 
to give Operator 2 a much more decisive chance of 
challenging the initial move of Operator 1 than just 10%.  

V. CONCLUDING REMARKS 

Two interconnected games were discussed: the users game 
and the operators game.  In the users game, a uniform 
switching behavior is assumed for all users. For example, 
users may switch their primary operator whenever they 
estimate the blocking probability of their secondary 
operator to be smaller than their current primary operator; or, 
if they are too impatient to calculate good estimates of the 
blocking probabilities of each operator, they may switch 
whenever blocked by their primary operator and 
accommodated by the secondary one. The users switching 
strategy defines the users game, which will lead to an 
equilibrium that determines the primary traffic captured by 
each operator. The equilibria resulting from the two user 
strategic behaviors described above are compared with respect 
to their efficiency and fairness. 

At least for the example under discussion, the operators 
game leads to a Nash equilibrium between pure dimensioning 
strategies only in the case of symmetric costs (Table 1). If 
costs are asymmetric, no such equilibrium is found, at least 
for a large enough infra-structure (Tables 2 and 3). In this 
situation, game theory says that there is an equilibrium 
between mixed strategies, which are probability distributions 
over the strategy space. Instead of looking for such 
distributions, we have looked at alternating games in which 
players take profit-maximizing moves in alternating turns, and 
have found that such games end up in loops. Such loops 
suggest unstable competition in real life. In order to avoid 
such instability, we have found that players may successfully 
moderate their profit-maximizing behavior as long as their 
cost disadvantage is not too large, leading to competitive 
(“natural”) monopolies. For modest asymmetries (~10%) in 
the discussed example, both players may achieve a 
competitive monopoly. If the asymmetry is large enough 
(~25%), only the most efficient player may achieve a 
profitable competitive monopoly. 

The proposed game-theoretical model seems to make a 
plausible appraisal of the ability of an entrant to challenge an 
incumbent bandwidth provider in a competitive market. It is 
intended to provide a framework for future studies of interest 
to both regulators and companies. In order to better serve this 
purpose, more realistic features must still be incorporated. 
Here are some of them: 

a) Pricing. In real life, operators compete on the basis of 
prices as well as quality-of-service. So, there is a need 
to build pricing into the model, perhaps within a 
utility function that combines the effects of price and 
blocking probability; 
 

b) Lack of information. In real life, operators do not 
have information on either costs or dimension of the 
other competing networks, so they do not have the 
means to either build the normal form of the game 
(Tables 1-3) or look it up. So we need a model for 
their behavior based on the only variable which they 
can estimate, which is their own profitability, in order 
to study the dynamics of competition as guided by 
such partial information and compare it with the 
hypothetical game based on full information; and 
 

c) Sunk investment. The proposed model deals only with 
per-channel costs. However, the number of channels 
that may be deployed is limited by the infrastructure, 
which must be upgraded from time to time as traffic 
builds up. In order to take such sunk costs into 
consideration, the “channel deployment game” 
discussed in this paper must be taken as a sub-game of 
a larger “infrastructure game”, as discussed in [9]. 
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