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Abstract- For gene reactivation DNA demethylating agent DHAC 
(5,6-dihydro-5'-azacytidine hydrochloride) (10-4 M for 7 days) 
was applied in aseptic leaf cultures of wild type (WT) and 35S-
gshI-rbcS GM (genetically modified) transgenic (TR) poplar 
(Populus x canescens) clone lgl6. Gene expression levels were 
determined by RT-qPCR (reverse transcriptase quantitative 
PCR) measuring the mRNA levels of the prokaryotic gshI-rbcS-
mRNA (γ-glutamylcysteine synthetase) cloned from E. coli, and 
two endogenous poplar genes of gsh1-mRNA and gst-mRNA 
(glutathione S-transferase). For internal control, the 
constitutively expressed housekeeping poplar genes α-tubulin 
and actin were used, and the 2−ΔΔCt method was applied for data 
analysis. After DHAC treatment the expression levels of 35S-
gshI-rbcS transgene showed a double (1.8 - times) increment. 
The endogenous poplar gene gsh1 increased by 19.7-fold in the 
WT, and by 8.7-fold in the TR clone. The endogenous gst gene 
showed a 4.9 - times (in WT) and a 2.9-times (in TR) increment. 
Sequence analysis of DNA methylating enzymes were analyzed in 
silico and significant distinction was found among the three main 
plant DNA methylases (METases) of METs (maintenance 
methyltranferase), CMTs (chromomethylases) and DRMs (de 
novo domains rearranged DNA methylases). The DHAC-treated 
WT poplars with increased gene expressions of gsh1 and gst 
might provide novel plant sources for application for 
detoxification and soil remediation concerning general public 
frightened by GM poplars. 
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I. INTRODUCTION 
Poplars (Populus ssp.) are capable of removing and 

degrading toxic substances from the polluted soils through 
phytoextraction and phytoremediation due to the extensive 
root system, high water uptake capacity, rapid growth and 
large biomass production [13, 17, 28, 29]. 

This phytoremediation capacity of Populus x canescens 
has been significantly increased by genetic transformation 
with the prokaryotic 35S-gshI gene, which encodes for γ-
glutamylcysteine synthetase (γ-ECS, EC 6.3.2.2) [4, 31, 33]. 
Gene gshI was cloned from E. coli (NCBI X03954) [53]. The 
transgene construct included an additional targeting sequence 
(32 to 202 of 206 bp; NCBI M25614) of transit peptide (57 
amino acids, Pisum sativum) gene of rbcS (RuBPCase SSU: 
small subunit of RuBPCase, ribulose-1,5-bisphosphate 
carboxylase), which aimed to target the cytosolically 
synthesized RBCS-GSH complex into chloroplasts [31]. The 

transformed poplar clones showed higher contents of both 
GSH and its precursor of γ-L-glutamyl-L-cysteine (γ-EC) than 
the WT, which led to an improved detoxification capacity 
against various environmental pollutants [35, 36]. 

Transgenic clone studied here (TRlgl6) has been 
maintained in aseptic shoot cultures for about a decade 
without 35S-gshI-rbcS transgene elimination [7, 20, 21]. 
However, transgenes have been exposed to gene silencing 
processes either in the region of the constitutive CaMV-35S 
promoter, or in the coding regions [14, 18]. By the application 
of a DNA-demethylating agent in the study presented, this 
natural gene silencing process was reversed, and both genes 
and transgene were reactivated. 

II. MATERIALS AND METHODS 
A. Clones 

The genetically transformed (INRA 717-1-B4) poplar line 
(TR lgl6) [4, 31, 33] overexpressing 35S-gshI-rbcS (γ-
glutamylcysteine synthetase (EC 6.3.2.2) cloned from 
Escherichia coli (1557 bp; NCBI X03954) coupled with 
transit peptide rbcS (from Pisum sativum NCBI M25614) [23] 
was used in the control of WT (Populus x canescens = P. 
tremula x P. alba; 2n = 4x = 38; 4.5 x 108 bp) [44, 47]. 

B. Shoot cultures 

Nodal segments of poplar clones were micropropagated 
and maintained in vitro [19] (Fig.1). 

 

Fig. 1  Clones of Populus x canescens, WT and TR (35S-gshI-rbcS) in glass 
houses (a), propagated in aseptic shoot culture (b) and sources of explants 
(petiole, nodal segments, and leaf discs) prepared for the experiments (c) 

C. RT-qPCR 

Relative gene expression levels of 35S-gshI-rbcS 
transgene (NCBI #X03954; E. coli) [23] and the endogenous 
poplar gene gsh1 (γ-glutamylcysteine synthetase; EC 6.3.2.2) 
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and gst (glutathione S-transferase; EC 2.5.1.18) were 
analyzed by RT-qPCR in the control of constitutively 
expressed housekeeping poplar gene α-tubulin and actin. 
Total RNA was extracted from 0.05 g leaf disc tissues using 
the Absolutely RNA Miniprep Kit (# 400800, Stratagene, 
USA - Biomedica, Hungary) following the manufacture’s 
protocol. Three individual leaf discs were analyzed in 
duplicate measurements (n = 6) in each case. The quality and 
quantity of extracted RNA samples (2 µl) were measured by 
NanoDrop ND-1000 UV-Vis spectrophotometer (NanoDrop 
Technologies, Montchanin, DE, USA – BioScience, Budapest, 
Hungary). First strand cDNAs. Reverse transcription of first 
strand cDNA was synthesized on the mRNA templates by RT 
(reverse transcriptase of Moloney Murine Leukemia Virus: 
M-MuLV) with primer oligo(dT)18 (0.5 µg) following the 
manufacturer’s protocol (# K1622; Fermentas – Biocenter, 
Szeged, Hungary). First strand cDNAs (2.5 μl) were directly 
applied in RT-qPCR (25 µl) and probed by gene specific 
primers (400 nM). Primer pairs were as follows: for 
transgenic gene 35S-gshI-rbcS: 5’-aggtcaggacatcgaactgg-3’ 
and 5’-gatgcaccaaacagataagg-3’ which the amplified a 
fragment of 273 nt of the incorporated transgene (from 667 nt 
to 939 nt). For endogenous gsh1: 5’-agttccgaggctgacatgat-3’ 
and 5’-cagcacggttgttgtcagta-3’; for endogenous gst: 5’-
gcacaagaaagagcc(a/g)ttcc-3’ and 5’-agctcccagttcagctttga-3’; 
for control α-tubulin (poplar): 5’-taaccgccttgtttctcagg-3’ and 
5’-cctggggtatggaaccaagt-3’; and  actin gene (poplar): 5’-
aatggtaccggaatggtcaa-3’ and 5’-cccaacatacgcatcctttt-3‘ were 
applied [9, 21]. The DyNAmo HS SybrGreenI qPCR kit (#F-
410L, Finnzymes, Finland – Izinta, Hungary) was used for 
qPCR analyses. qPCR reactions were performed by Rotor 
Gene 6000 cycler (Corbett Research, Australia – Izinta, 
Hungary) in forty cycles (95 °C / 20 sec, 60 °C / 20 sec, 72 °C 
/ 20 sec) prior to a hold at 95 °C for 10 min, and a final hold 
at 4 °C. Data analysis. For both calibration and quantification 
of reactions, ten-fold serial dilutions (1 x, 10-1 x, 10-2 x, 10-3 x) 
of cDNAs were applied including controls of NTC (non DNA-
template control) and ddH2O. Data were analyzed by relative 
quantification of the 2−ΔΔCt method [32]. Ct values (threshold 
cycle). The threshold of fluorescence value (dR) of the 
amplified PCR products was determined manually above the 
background of fluorescence signals. Standard curve 
correlating Ct values to log amount of DNA were plotted at 
high R2 - ratio (0.976 to 0.987). ΔCt: ΔCt values were 
calculated as CtgshI minus Cta-tubulin and Ctgsh1 minus Cta-tubulin 
[32]. ΔΔCt values: ΔΔCt values were determined as mean 
Ctuntreated minus mean Cttreated. 

D. Lipoxygenase (LOX) Activity  

Cell-free extracts of leaf tissues of TR and WT clones were 
prepared before and after the DHAC treatment and the 
enzymatic activities of LIPOXYGENASE (LOX; EC 1.13.11.12) 
were determined at pH range 5.0 – 9.5 according to [3, 8]. 

E. Multiple Sequence Alignments  

Sequences were analyzed in silico by programs of BioEdit 
Sequence Alignment Editor (North Carolina State University, 
USA) [22], MULTALIN [12], CLUSTALW [45] and 
FastPCR [27]. For BLAST (Basic Local Alignment Search 
Tool) analysis the NCBI (National Center for Biotechnology 
and Information) server was used [1]. Molecular cladograms 
were edited by MEGA4 [42]. 

III. RESULTS AND DISCUSSION 

A. DNA Methylation  

DNA methylation is a natural enzymatic process of TGS 
(transcriptional gene silencing) catalyzed by DNA 
methyltransferase enzymes which results in the meiotically 
heritable methylation pattern (’inprints’) [34]. DNA 
methylation is not universal, as in the insect fruit fly 
Drosophyla has not been detected [25]. 

In Arabidopsis, there are at least three classes of DNA 
methyltransferases (METases). These are METs (maintenance 
DNA methyltranferase), CMTs (chromomethylase 3) and 
DRMs (de novo domains rearranged DNA methylases) [16]. 

The MET1 genes are similar in sequences, and 
homologues in functions to mammalian Dnmt1. The CMT3 is 
specific to the plant kingdom and contain a chromo domain 
[24]. 

CMTs transfer a methyl group (CH3) mainly from S-
adenosyl methionine (AdoMet-dependent methyltransferases) 
mainly to the position of cytosine-C5 (EC 2.1.1.73), and also 
of cytosine-N4 (E.C. 2.1.1.13) [11, 38] and adenine-N6 by 
adenine DNA methyltransferases (E.C. 2.1.2.72). The first 
eukaryotic adenine DNA methyltransferase was isolated from 
plants (wheat) and was found mainly responsible for the 
methylation of mitochondrial DNA [15]. 

The DRM class of genes include DRM1 (624 amino acid - 
aa) and DRM2 (626 aa) (syn. DNA-METase) (both EC 
2.1.1.37) and contain catalytic domains which shows 
sequence similarity to mammalian de novo Dnmt3 [10]. The 
conversion of 5-Methylcytosine to 5-Hydroxymethylcytosine 
were discovered recently in mammalian DNA [43]. In 
Arabidopsis, the same enzyme (DRM2) can methylate both 
cytosine and adenine nucleotides [49]. 

A process of RdDM (siRNA and micro-RNA directed 
DNA methylation) also occur in eukaryotes which was also 
observed first in plants [52].  

B. Triggering of DNA Methylation 

Gene expression and TGS can be triggered in vitro by 
up/down regulation of DNA methylase genes (syn.: 
re/activation, hypo/hyper/de methylation) [18]. For induced 
gene up-regulation, MTase-inhibitors such as the structurally 
modified cytosine analogues zebularine, 5-azacytidine (5-
azaC), 5-aza-2’-deoxycytidine (5-azadC) and 5,6-dihydro-5'-
azacytidine hydrochloride DHAC have been shown to be 
highly effective [11]. Alternatively, the drug 3-
aminobenzamide has been used for gene down-regulation in a 
series of genes [55]. Gene reactivation through the application 
of thymidine analogues can also occur in demethylation-
independent gene up-regulations [14]. 

The exogenously applied MTase-inhibitors act via 
covalent complex formation [14, 54] when present either in 
the cytosol or when incorporated into DNA as DNA base 
analogue [6, 26].  

The study presented here aimed to upregulate 
simultaneously both the prokaryotic gene 35S-gshI-rbcS and 
the endogenous eukaryotic poplar gene gsh1 and gst in both 
clones WT and TR after DHAC-treatment (10-4 M, for 7 days). 
Both genes gsh and gst play central role in detoxifications [9]. 

Reverse transcription (RT) followed by qPCR analysis was 
found to be an exceptionally sensitive method for gene 
expression analyses compared to RNA-DNA hybridizations 
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(Northern blots) [2] in both cases of absolute and relative 
quantification [50]. In the study presented, relative 
quantification was used as it is more relevant than absolute 
quantification to compare expression levels of different 
treatments [32, 37, 46]. 

Gene expression of transgene 35S-gshI-rbcS increased 
from a high relative expression level (13.5 relative units) to 
23.7 with about a two-fold increment compared to the 
endogenous gsh1 which increased from a lower level (1.3 rel. 
unit) to 13.9 with an 8.7-fold increment after DHAC-treatment 
(Fig.2). 
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Fig. 2  Cumulative gene expression levels (RT-qPCR) of gsh1, gst and 35S-
gshI-rbclS (cloned from E. coli) in the WT and transgenic (TR) poplars 

(Populus x canescens) exposed to DHAC (at 10-4 M, for 7 days) 

Gene expression of the endogenous gsh1 of the WT clone 
showed also high responsiveness to DHAC-treatment with an 
extremely high expression (19.8 - fold). This result indicates a 
difference in DNA methylating capacity between transgenes 
and proper wild type genes as a type of cosuppression [5, 30]. 
The endogenous poplar gst gene also showed DHAC-
inducibility with a 4.9 - times (WT) and a 2.9 - times 
increment (from 2.5 rel. unit to 7.3 in the TR clone). Increased 
levels of gsh1-mRNA (syn.: γ-ECS-mRNA) has also been 
reported in Brassica juncea [40], Brassica napus [41], 
Arabidopsis thaliana [23] exposed to cadmium stress. The 
moss Physcomitrella patens also showed a high level of γ-
ECS overexpression (5.7 – 7.9 - fold increase) in response to 
10 µM Cd2+ [39]. 

For functional analysis, enzyme activities of 
LIPOXYGENASE (LOX, EC 1.13.11.34), which catalyzes the 
conversion of arachidonic acid to 5-HPETE [48] were 
measured. The LOX activity was higher in the DHAC-treated 
WT clones than in the transgenic clone at all pH levels (Fig.3).  
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Fig. 3 LIPOXYGENASE (LOX) activity of the DHAC treated (at 10-4 M, for 
7 days) WT (wild type) and TR (transgenic 35S-gshI-rbcS) poplars (Populus x 

canescens) at the range of pH 5.0 - 9.5 

The LOX activity curves with two pH optima between the 
ranges of pH 5.0 – 9.5 indicate that two LOX izozymes are 
present in poplar. The promoter region of lox gene was found 
to be downregulated by DNA methylation in human U937 and 
HL-60TB cells [48], however in our experiments LOX 
measured at pH 6 and pH 8 in DHAC (10-4 M and 10-5 M) 
treated poplar did not show concentration dependent 
increment in the activity (detailed elsewhere). Concentration 
independent morphogenetic effect of DHAC treated poplar 
leaf discs were also found in adventitious root development at 
all concentrations (10-8 M to 10-6 M) with the same rooting 
capacity [21]. 

C. Multiple Sequence Analyses 

Protein sequence analyses were used to study METases 
identified in trees, which are still rarely available in gene 
banks. Trees (Populus, Prunus, Malus Elaeis), woody Vitis 
and herbaceous species were compared, and the results 
revealed distinctive groups between METs (DNA 
methyltransferases) and CMTs (chromomethylases) (Fig.4), 
and compared to the third group of METases of mammalian 
Dnmt3 homologue DRMs (domains rearranged DNA 
methylases) (Fig.5).  These results indicate an extreme 
molecular diversity of DNA methylases with indications for 
the possibility of site specific (single gene directed) DNA 
demethylation [51]. 

80       90        100       110    120       130      140
|    |    |    |    |    |    |    |    | |    |    |    |    |

1.  XP_002325288   FPTSITDPQPMGKVGMCFHPEQDRILTVRECARSQGFPDNYQFFGNIQHKHRQIGNAVPPPLAYALGRKL
2.  XP_002299134   V..VV.RAE.HNQA--IM......V..I..N..L.....Y..LC.P.KERYI.V....AV.V.R...YA.
3.  CAA05207       ....................D....V.............S...A...L......................
4.  CAQ18900       ....................D....V.............S...A...L......................
5.  AAC49931       ....................D..................H...S...I...............F......
6.  ACQ91179       ....................D....I.............S...Y..TL............T.........
7.  BAF34636       ...CV.K.G...M..K....D....V.............S.E.E.D.A...............F......
8.  ABW96889       V..VV.RAE.HNQA--LL......V.SI..N..L.....F.RLR.PVKERYI.V....AV.V.R...YSM
9.  BAH37019       V..VV.RAE.HNQI--IL..N.A.V.....N..L.....Y.KM..P.KE.YI.V....AV.V.R...YS.
10. CAJ01708       V..VV.RAE.HNQI--IL..N.G.V.....N..L.....Y.RMN.PMKE.YI.V....AV.V.R...YS.
11. BAC53936       V..VV.RAE.HNQ.--IL......V..I..N..L.....Y.KLT.P.KERYM.V....AV.V.RV..YS.
12. BAF34637       V..V.GRAE.HNH.--II..N...V.....N..L.....Y.RL..PTKK.YT.V....AV.V.R...YA.
13. BAF01425       V..VV.RAE.HNQ.--II....N.V.SI..N..L.....D.KL..PPKQ.YI.V....AV.V.K...YA.
14. CAS84142       V..VV.RAE.HNQ.--IL......V..I..N..L.....Y.KLT.P.KERYM------------------
15. ABB46585       V..VV.RAE.HNQI--IL..N.A.V.....N..L.....Y.KM..P.KE.YI.V....AV.V.R...YS.
16. ACN35047       V..VV.RAE.HNQ.--IL..T.A.V..I..N..L.....Y.RL..P.KE.YI.V....AV.V.R...YC.
17. CAJ01709       VG.VL.C.NIHMQA--LI..A...L.....S..L.....S.R.R.TVKDRY.......AV.VGR...YA.  

Fig. 4  Partial amino acid (70-140 aa) sequence alignments of METs (DNA-
methyltransferases, 1-7) and CMTs (chromomethylases, 8-17) blasted to 
XP_002325288 (Populus trichocarpa) from NCBI server [1], and edited by 
Multalin server [12]. Consensus aa (dots) are indicated. Accession numbers: 
XP_002325288 (MET, Populus trichocarpa, 1549 aa). XP_002299134 (MET, 
Populus trichocarpa, 973 aa). CAA05207 (MET, Solanum lycopersicum, 
1559 aa). CAQ18900 (MET, Nicotiana sylvestris, 1558 aa). AAC49931 (MET, 
Pisum sativum, 1554 aa). ACQ91179 (MET, Fragaria x ananassa, 1557 aa). 
BAF34636 (MET1b, Brassica rapa, 1519 aa). // ABW96889 (CMT, Elaeis 
guineensis, 925 aa). BAH37019 (CMT, OsMET2a, Oryza sativa Japonica 
Group, 907 aa). CAJ01708 (CMT1, Hordeum vulgare, 735 aa). BAC53936 
(CMT, Nicotiana tabacum, 741 aa protein). BAF34637 (CMT, Brassica rapa, 
805 aa). CAS84142 (CMT, Nicotiana tomentosiformis, 500 aa). ABB46585 
(MET2a, Oryza sativa Japonica, 371 aa). ACN35047 (Zea mays, 329 aa). 
BAF01425 (CMT, Arabidopsis thaliana, 839 aa). CAJ01709 (CMT2, 
Hordeum vulgare subsp. vulgare, 187 aa) 

IV. CONCLUSIONS 
To conclude, since DNA methylation patterns are inherited 

(‘epigenetic memory’) [6], the DHAC-treated WT poplars 
regenerated from leaf discs and with increased gene 
expression levels of endogenous genes gsh1 and gst might 
provide novel plant sources for the application to air and soil 
detoxification and remediation concerning the general public 
frightened by genetically modified (GM) organisms. 
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Fig. 5  Protein phylogram (Max. Parsimony by MEGA4) [42] of enzyme 
METs (DNA - methyltransferases) (654 aa each) of 25 plant species. Trees 

(Populus, Malus, Elaeis) and woody Vitis signed with symbols, main clades, 
rel. genetic distance (scale, 10 aa substitutions per scale), branch information 
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