Paper

Structural Health Monitoring Data Transmission for Composite Hydrokinetic Turbine Blades


Authors:
A. Heckman; J. L. Rovey; K. Chandrashekhara; S. E. Watkins; D. S. Stutts; A. Banerjee; R. S. Mishra
Abstract
A health monitoring approach is investigated for hydrokinetic turbine blades. In-service monitoring is critical due to the difficult environment for blade inspection and the cost of inspection downtime. Composite blade designs provide a medium for embedding sensors into the blades for in-situ health monitoring. The major challenge with in-situ health monitoring is transmission of sensor signals from the remote rotating reference frame of the blade to the system monitoring station. In the presented work, a novel system for relaying in-situ blade health measurements in hydrokinetic systems is described and demonstrated. An ultrasonic communication system is used to transmit sensor data underwater from the rotating frame of the blade to a fixed relay station. Data are then broadcast via radio waves to a remote monitoring station. Results indicate that the assembled system can transmit simulated sensor data with an accuracy of ±5% at a maximum sampling rate of 500 samples/sec. A power investigation of the transmitter within the blade shows that continuous max-sampling operation is only possible for short durations (~days), and is limited due to the capacity of the battery power source. However, intermittent sampling, with long periods between samples, allows for the system to last for very long durations (~years). Finally, because the data transmission system can operate at a high sampling rate for short durations or at a lower sampling rate/higher duty cycle for long durations, it is well-suited for short-term prototype and environmental testing, as well as long-term commercially-deployed hydrokinetic machines.
Keywords
Marine Energy; Hydrokinetic Energy; Structural Health Monitoring; Acoustic Communication
StartPage
50
EndPage
59
Doi
Download | Back to Issue| Archive