Paper

Dynamicanalysis of the Peripheral Vessel of a Human Finger by Optical Coherence Tomography


Authors:
Masato Ohmi; Mitsuo Kuwabara; Masamitsu Haruna
Abstract
OCT is a powerful tool for detection of physiological functions of micro organs underneath the human skin surface, besides the clinical application to ophthalmology, as recently demonstrated by the authors’ group. In particular, dynamics of peripheral vessels can be observed clearly in the time-sequential OCT images. Among the vascular system, only the small artery has two physiological functions both for the elastic artery and for muscle-controlled one. It, therefore, is important for dynamic analysis of blood flow and circulation. In the time-sequential OCT images obtained with 25 frames/s, it is found that the small artery makes a sharp response to sound stress for contraction and expansion while it continues pulsation in synchronization with the heartbeats. This result indicates that the small artery exhibits clearly the two physiological functions for blood flow and circulation. In response to sound stress, blood flow is controlled effectively by thickness change of the tunica media which consists of five to six layers of smooth muscles. It is thus found that the thickness of the tunica media changes remarkably in response to external stress, which shows theactivity of the sympathetic nerve. The dynamic analysis of the small artery presented here will allow us not only to understand the mechanism of blood flow control and also to detect abnormal physiological functions in the whole vascular system.
Keywords
OCT; Dynamic Analysis; Peripheral Vessels; Small Artery; Sympathetic Nerve
StartPage
46
EndPage
49
Doi
10.5963/LSMR0302001
Download | Back to Issue| Archive