Paper

Profiling of Thermostable Proteins in Diabetic Cardiovascular Rat Plasma


Authors:
Doan Viet Binh; Pham Dinh Minh; Nguyen Bich Nhi; Phan Van Chi; Nguyen Thi Minh Phuong
Abstract
Animal models of diabetes coupled with proteome profiling have great potential not only to provide important insights to the mechanisms of the development of diabetes, its complications, but also help to identify new protein potential candidate biomarkers and to support for therapy of the disease. The aim of this study is to profile thermostable proteins in diabetic cardiovascular rat plasma. Diabetic cardiovascular rats were induced by high-fat diet and low-dose streptozotocin (STZ) injection. Diabetic cardiovascular rat plasma has been used for thermostable pre-fractionation. The thermostable proteins have been separated and identified by using two-dimensional electrophoresis and nanoLC-MS/MS. At least five proteins (fibrinogen alpha chain, antithrombin-III precursor, angiotensinogen 1, haptoglobin, haptoglobin alpha 1S) were significantly up-regulated and three proteins (apolipoprotein A-IV, apolipoprotein E, apolipoprotein A-I) were down-regulated in diabetic cardiovascular samples, in which, the concentration of the antithrombin-III increased most (2.87 folds), followed by fibrinogen alpha chain (2.02 folds), angiotensinogen 1 (1.42 folds), haptoglobin (1.97 folds), haptoglobin alpha 1S (1.59 folds), while apolipoprotein A-I decreased 1.37 folds, apolipoprotein A-IV and apolipoprotein E were not detected in diabetic cardiovascular rat’s plasma, as compared with that of the control rats. The different expression level of thermostable proteins in STZ rat plasma could give us new and important evidence for the understanding of the mechanism of diabetic cardiovascular diseases.
Keywords
Cardiovascular; Rat Plasma; Thermostable Proteins; Type 2 Diabetes Mellitus
StartPage
9
EndPage
14
Doi
10.5963/LSMR0401002
Download | Back to Issue| Archive